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ABSTRACT: This is the second in a series of 
articles dealing with machine learning in asset man-
agement. This article focuses on portfolio weighting 
using machine learning. Following from the pre-
vious article (Snow 2020), which looked at trading 
strategies, this article identifies different weight opti-
mization methods for supervised, unsupervised, 
and reinforcement learning frameworks. In total, 
seven submethods are summarized with the code 
made available for further exploration. 

TOPICS: Big data/machine learning, anal-
ysis of individual factors/risk premia, port-
folio construction, performance measurement*

In recent years, we have seen a trend 
toward online or dynamic portfolio 
asset allocation methods, clustering 
techniques, and methods that combine 

metadata on financial assets to help decide on 
the final weighting. Trading strategies and 
weight optimization methods can generally 

be considered as part of an integrated system. 
A trading strategy here is the use of perceived 
signals to execute trades, and weight opti-
mization is the optimal weight allocation of 
active and passive strategies.

Strong parallels can be drawn between 
weight optimization in machine learning and 
weight optimization in portfolio manage-
ment. When working with neural networks, 
we must often choose which optimization 
algorithm will produce faster and better 
updates for the network’s weight and bias 
parameters. This is needed for the internal 
nodes to learn the optimal relationship in 
data to minimize a prespecif ied loss func-
tion. Researchers end up testing the perfor-
mance of various optimizers, such as gradient 
descent, stochastic gradient descent (SGD), 
AdaGrad, RMSProp, and Adam, on their 
dataset. In the process, they might come to 
conclude that nothing really works that well. 
After some tinkering, a researcher might add 
a momentum component to SGD to curb the 

• Machine learning can help with most portfolio construction tasks, such as idea genera-
tion, alpha factor design, asset allocation, weight optimization, position sizing, and the 
testing of strategies.

• This is the second of a series of articles dealing with machine learning in asset manage-
ment and more narrowly weight optimization strategies equipped with machine learning.

• Following from the previous article, different weight optimization methods are considered 
for supervised, unsupervised, and reinforcement learning frameworks.

KEY FINDINGS
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high variance oscillation that makes standard SGD hard 
to converge. The next researcher might come along and 
see momentum as a problem when it ceases to stop as 
it reaches a local minimum. In response, the researcher 
could suggest a slope jump out of momentum as a rea-
sonable correction.1 

A development out of this constant tinkering was 
Adam, a method developed by Kingma and Ba (2014) that 
performs best by combining the properties of AdaGrad 
and RMSProp algorithms for a solution that can handle 
sparse gradients on noisy problems. In a similar spirit, 
we have seen modern portfolio optimization move from 
Markowitz’s mean–variance (MV) portfolio using his-
torical returns to dynamic models that use state-of-the-art 
reinforcement learning techniques. This process is not 
over; in both fields, new methods are brought to light on 
a frequent basis. Similar to machine learning, the optimal 
weighting strategy can and should be tested on validation 
data—in our parlance, back tests. We want to make sure 
that our data drive our optimization choices. 

SUPERVISED LEARNING

Supervised learning techniques learn the relation-
ship between independent attributes and a designated 
dependent attribute. Supervised learning refers to the 
mathematical structure describing how to make a pre-
diction yi given xi. Instead of learning from the environ-
ment, as in reinforcement learning, supervised learning 
methods learn the relationships in data. All supervised 
learning tasks are divided into classification or regression 
tasks. Classification models are used to predict discrete 
responses (e.g., binary 1, 0; multiclass 1, 2, 3). Regression 
is used for predicting continuous responses (e.g., 3.5%, 
35 times, $35,000). In portfolio weight optimization, 
we are generally presented with a continuous response 
problem. 

Deep Portfolio 

A useful deep learning technique for f inance is 
autoencoders. This is a learning process to train the 
architecture to replicate X itself, namely X = Y, via a 
bottleneck structure. An autoencoder can create a more 
cost-effective representation of X. Autoencoding is an 
unsupervised learning method because there is no target 

1 Nesterov accelerated gradient.

to predict. However, the low-dimensional encoding is 
used as an input to a supervised learning method to 
calibrate and map the inputs to the desired target. The 
autoencoder demonstrates that, in deep learning, it is 
not necessary to model the variance–covariance matrix 
explicitly because the model is already in predictive 
form. This portfolio optimization process follows four 
steps: (1) autoencoding, (2) calibrating, (3) validating, 
and (4) verifying. This method has been popularized by 
Heaton, Polson, and Witte (2017).

1. Autoencoding: Find the market cap, denoted by 
F (X)W

m , that solves the regularization problem

     
min X F (X)

W
W
m

2

2
−  subject to W Lm≤

 For appropriately chosen FW
m , this autoencodes X 

with itself and creates a more information-efficient 
representation of X. 

2. Calibrating: For a desired target Y, find the port-

folio map, denoted by F (X)W
p , that solves the regu-

larization problem

     min Y F (X)
W

W
P

2

2
−  subject to W LP≤

 This creates a nonlinear portfolio from X for the 
approximation of objective Y.

3. Validating: Find Lm and LP to suitably balance the 
trade-off between the two errors

  
X̂ F (X̂)m W

m

2

2

m
ε −=  and Ŷ F (X̂)P W

P

2

2

P
ε = −

 where Wm and Wp are the solutions to the valida-
tion and verification step

4. Verifying: Choose market cap Fm and portfolio 
map Fp such that the validation step is satisfactory.2

Linear Regression

We can also apply linear models to the problem of 
finding optimal portfolios (Britten-Jones 1999). There 
is a deep connection between f itting linear models 
and portfolio optimization. The normal equation is 
ˆ (X X) X y1θ = ′ ′− . Note that, in statistics or econometrics, 
it is more common to see (beta)β  instead of (theta).θ  

2 Resources: data (https://drive.google.com/open?id=1bJc 
UZbrZ8HFXs-cd0vGHeMop16Vf3n23); code (https://drive.google 
.com/open?id=1-hOEAiJqaNTUYIyamj26ZvHJNZq9XV09).
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The normal equation makes sense if you do want a 
linear model and the number of explanatory variables 
(features) is not too big (e.g., <100,000)—perfect for a 
small universe of stocks. 

It is not necessary to use the normal equation; one 
can also solve for the best coefficients using numerical 
search such as gradient descent. With this portfolio 
optimization method, regularization becomes a critical 
tool to improve out-of-sample performance. The tested 
regularization methods include l2-norm (ridge regres-
sion), L1-norm (LASSO), and a combination of L1 and 
L2 norms (elastic net regression). Regularization effec-
tively helps one to manage the variance–bias trade-off. 
Britten-Jones (1999) demonstrated a close equivalence 
between Markowitz portfolio optimization and ordinary 
least squares (OLS) regression. 

Specif ically, regress the excess returns of N 
stocks on a constant = 1 without an intercept. Collect 
the coefficients on each of the stocks in q. Rescale q 
so that the sum of the elements in q is 1: (

1Tθ =∗ θ
θ ). 

The rescaled coeff icients are the Markowitz optimal 
portfolio weights. As a result, any machine learning 
approach that yields coefficients for a linear model can 
be reinterpreted as a portfolio optimization approach 
(e.g., ridge regression → Tikhonov regularized optimal 
portfolio).3

Bayesian Sentiment

Advances in sentiment mining techniques led 
researchers in the 2010s to consider the use of public 
opinion for stock market prediction. Xing et al. (2018) 
decided to do the same for asset allocation by accounting 
for public mood using an online Bayesian asset allocation 
model. This model straddles between a trading strategy 
and weight optimization and falls within the supervised 
learning section because of its use of two neural models 
to generate market views. 

To address the much-discussed limitations of the 
Markowitz model, Bayesian methods take additional 
information such as investor judgement and market 
fundamentals into account, a method once proposed 
by Black and Litterman (1990). The difference is that 
classical methods rely on financial experts and over-
look public opinion and sentiment. A fair criticism of 

3 Resources: code (https://drive.google.com/open?id=1YDZ
Qvz6Pn2AFDX2Uprfaq9JoGvk7RpJy); paper (Britten-Jones 1999).

the Black and Litterman model is its subjective nature 
on market views; it leaves unanswered the question of 
how to assess these views. With the proposed method, 
public sentiment from the web can help researchers to 
formalize market views automatically.

The Black and Litterman model assumes that equi-
librium returns are normally distributed ~ ( , )Π τΣr Neq , 
where S is the covariance matrix of asset returns and 
t is an indicator of the confidence level of the capital 
asset pricing model estimation of P, the equilibrium 
risk premium of the market. The market views on the 
expected returns held by an investor agent are also nor-
mally distributed as ~  ( , )Ωr N Qviews . The posterior dis-
tribution of the portfolio returns that provide the views 
are therefore also Gaussian. 

With the distributions denoted as ~ ( , )µ Σr NBL , 
the vector of expected returns µ and the covariance 
matrix Σ  will be a function of the aforementioned 
variables:

[ , ] ( ,  ,  ,  ,  )µ Σ = τ Σ Ω Πf Q

The function can be induced by applying Bayes’ 
theorem on the probability density function of the pos-
terior expected returns:

( )
( | ) ( )

( | )
µ = µ Π Π

Π µ
pdf

pdf pdf
pdf

The optimized Bayesian portfolio weights now 
have a form similar to the Markowitz model by substi-
tuting the MV version of S and m with the new variables 
Σ  and µ:

( ) 1= δΣ µ∗ −wBL

A time series of asset prices, trading volume, and 
public sentiment data is used to approximate optimal 
market views. The sentiment is computed from a 
range of social media platforms using natural language 
processing techniques. The standard deviation will be 
interpreted as the confidence about the expected return 
of the portfolio, and a relative view would be described 
as taking the form “I have w1 confidence that asset x 
will outperform asset y by a%.” An absolute view, in 
contrast, will take the form “I have a w2 confidence 
that asset z will outperform the market by b%.” As a 
result, a portfolio of n assets and a set of k views can 
be represented by three matrixes Pk,n, Qk,1, and Wk,k. 
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Apart from performing slightly better than traditional 
methods, it also allows one to tell a nice Bayesian story.4

UNSUPERVISED LEARNING

Unlike supervised learning, which finds patterns 
using both input data and output data, unsupervised 
learning methods find patterns using only input data. 
An unsupervised learning framework is useful when 
researchers are not quite sure what to look for. Such 
a framework is often used for exploratory analysis and 
problem discovery purposes. Most unsupervised learning 
techniques take the form of dimensionality reduction or 
cluster analysis to establish groups of data that have some 
measure of similarity based on characteristic values.

Two of the most important techniques are K-means 
clustering and principal component analysis (PCA). The 
only requirement to be called an unsupervised learning 
strategy is to learn a new feature space that captures the 
characteristics of the original space by maximizing some 
objective function.5 PCA attempts to reduce the number 
of features while preserving the variance, whereas 
clustering reduces the number of data points by sum-
marizing them according to their mean expectations. 
However, those cluster assignments can also be used to 
label each data point with its assigned cluster, leading 
to a dimensionality reduction toward only one feature. 
K-mean and PCA in some sense maximize a similar 
objective function, with K-means having an additional 
categorical constraint. 

PCA

PCA and clustering techniques are used to build 
classes of similar assets. The steps here involve integrated 
portfolio selection and risk estimation to optimize the 
portfolio. Let Y = (Y1, …, Yn)

T denote an n-dimensional 
random vector with variance–covariance matrix S. 
The goal of PCA is to construct linear combinations 
P Yj, for 1,i j 1W

n

ij
= Σ = …= i n  in such a way that the Pi 

values are orthogonal so that S[PiPj] = 0 for ≠i j  so 
that the Pi are ordered to explain the largest percentage 
of the total variability in the system.

4 Resource: code (https://colab.research.google.com/drive/1
sMAoJZuuNIRnrivAzxHV5fulMOWO17mb).

5 Inherent to the PCA is the maximization of variance 
through a simple linear algebra operation by taking the eigenvec-
tors of a covariance matrix of features.

Each Pi explains the most significant percentage 
of total variability in the system that has not already 
been explained by Pi, …, Pi - 1. Using various selection 
techniques, one can identify an optimum level of these 
components and apply it to a universe of stocks. This 
is not a complicated method, but it is very powerful 
and can be used as a mediating step in various trading 
strategies, if not in the final allocation decision making.  
In the code notebook, there is additional experimenta-
tion to compare this technique with hierarchical clus-
tering methods.6

HIERARCHICAL RISK PARITY

The problem, as stated by López de Prado (2016), 
is that the MV portfolios are optimal in sample (training 
set) but perform poorly out of sample (test set). One way 
to deal with this problem is to drop forecasts altogether 
(e.g., risk parity [RP]). The problem is that both RP and 
MV require the inversion of a positive-definite covari-
ance matrix. A new method is therefore suggested to 
overcome the matrix inversion and forecast issue, called 
hierarchical risk parity. 

Hierarchical risk parity works by grouping similar 
investments into clusters based on a distance metric. The 
covariance matrix’s rows and columns also are reorga-
nized so that the largest values lie along the diagonal. 
Lastly, the allocations are split through recursive bisec-
tions of the reordered covariance matrix. 

One starts by defining a distance measure between 
investments from zero and one, di, j , after which one 
clusters the pair of columns (i*, j*) together such that 
(i , j )argmin {d }and(i, j)

`
i, j= ≠∗ ∗ i j . The next step is to 

update {d }
`

i, j  with the new cluster and apply steps 3 and 4  
recursively until all N-1 clusters are formed. 

We now place correlated investments close 
together and uncorrelated investments further apart 
and carry out a top-down allocation: We assign unit 
weights to all items by recursively bisecting a list of 
items by computing the variance and the split factor and 
rescaling the allocations; we iterate this process until full 
allocation is achieved. In the code, I have included an 
implementation using Robert Martin’s PyPortfolioOpt7 
and an implementation of Chapter 16 in Advances in 

6 Resource: code (https://colab.research.google.com/drive/1
mm9r6EZOERHYkycDbc74GY7S2U6h1oTc).

7 https://github.com/robertmartin8/PyPortfolioOpt.
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Financial Machine Learning (López de Prado 2018) by 
Hudson & Thames,8 a buy-side open-source research 
unit headed by Jacques Joubert.9

Network Graph

Given N assets in a portfolio, we have to iden-
tify the weights , ( 1)1Σ ==w wi i

N
i  so that highly corre-

lated assets obtain lower relative weights. To do this, 
we can use a weighted graph that is an ordered tuple, 

( , , )=G V E W , where V is a set of vertices (or nodes), E 
is a set of pairwise relationships (the edges) between the 
vertices, and W is a set of numerical values assigned to 
each edge. A useful representation of G is the adjacency 
matrix:

1,                

0,                   
=






A

if i is adjacent to j

otherwiseij

Here the pairwise relations are expressed as the ij entries 
of an ×N N  matrix where N is the number of nodes. 
The strategy is then to transform the historical pricing 
data into a graph with edges weighted by the correlation 
between each stock. We can then use graph centrality 
measures and graph algorithms to obtain the desired 
allocation weights. In five steps, we do the following:

1. Compute the distance correlation matrix rD(Xi, Xj) 
for the open, high, low, close, and return time 
series.

2. Use the NetworkX10 module to transform each 
distance correlation matrix into a weighted graph.

3. Adopt a winner-takes-all method and remove 
edges with correlations below a threshold value of 
rc = 0.325 (adjust this threshold value if the graph 
disconnects):

( , ),       

0,           
=

ρ ρ ≥ ρ




Cor

X X

otherwiseij

D i j c

8 https://hudsonthames.org/.
9 Resources: data (https://drive.google.com/open?id=198 

fpHhD973i3rKa9D7oz-SrmBwPykQEc), code (https://drive.google 
.com/open?id=1z3Fe7QXZ6c566KOG3HtQEfCc84UAGwFf ),  
code 2 (https://colab.research.google.com/drive/1-Z3OjjnIR- 
41E2tycKFosvxEt-RrAgZB).

10 https://github.com/networkx/networkx.

4. Inspect the distribution of edges (the so-called 
degree distribution) for each network.11 The degree 
of the ith vertex is given as 

( )
1

∑=
=

Deg i A
j

N

ij

5. Finally, build a master network by averaging over 
the edge weights of the open, high, low, close, and 
return networks and derive the asset weights from 
its structure. 

Multiple variations are available for constructing 
the network and obtaining the distance; a few different 
approaches are considered in the notebook. An extensive 
analysis can be found in a notebook by Maya Benowitz, 
a quant at CarVal.12

REINFORCEMENT LEARNING

Reinforcement learning in finance comprises the 
use of an agent that learns how to take actions in an envi-
ronment to maximize some notion of cumulative reward. 
We have an agent that exists in a predefined environ-
ment. The agent receives as input the current state St and 
is asked to take an action At to receive a reward Rt+1, the 
information of which can be used to identify the next 
optimal action, At+1 given the new state St+1. The final 
objective function can be the realized/unrealized profit 
and loss and even risk-adjusted performance measures 
such as the Sharpe ratio. Allocation decisions in finance 
are challenging to deal with because finance is partially 
observed, nonstationary, regime dependent, and noisy. 
Standard models apply and recombine single-period pre-
dictions using an optimizer, but in the real world, the 
actions could have long-term consequences that could 
be acted against by the environment. Reinforcement 
learning can help us to deal with some of these problems 
by taking a more holistic approach. 

Deep Determinist Policy Gradient

Deep learning models can be used in reinforce-
ment learning to solve high-dimensional problems. 

11 The degree of a node is simply the number of connections 
it has to other nodes.

12 Code available at https://colab.research.google.com/drive/ 
10WNiVuICvFajW2uTDrwI6w7aSUkjINPl.
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To deal with the continuous action space of portfolio 
weighting, we can use Google DeepMind’s off-policy 
and model free algorithm called deep deterministic 
policy gradient (Lillicrap et al. 2015). Using this method, 
we do not have to discretize continuous action spaces, 
which might lead to the curse of dimensionality and a 
loss of valuable information. The environment is derived 
from an OpenAI environment class.13 This environment 
takes arguments like trading cost and window size into 
account to approach a realistic setting. 

To start formalizing the problem, we set the 
number of stocks to N. At time step 1, we are fully 
invested, and the close/open relative price vectors are 
defined as 

1,  ,  ,  ,1, ,

1, ,

2, ,

2, ,

, ,

, ,

= …












y
S

S

S

S

S

St
t close

t open

t close

t open

N t close

N t open

The portfolio weight vector is then defined as

[ , , , ], 1, ,= …w w w wt o t t N t

Here wi,t is the fraction of investment in stock i at time 
stamp t. Note that wo,t represents the fraction of cash 
maintained. The profit after timestamp T is

1
1∏= ⋅

=
−p y wT

t

T

t t

Once we consider the trading cost factor of m, the 
trading cost at each time stamp is

  1

1

∑µ = µ
⋅

−−

−

y w
y w

wt
t t

t t
t

where   is the element-wise product. The profit can 
then be formulated as

(1 )
1

1∏= − µ ⋅
=

−p y wT
t

T

t t t

Now that we have dealt with the problem formula-
tion, we have to formulate the Markov decision process. 

13 More can be found in their documentation: https://gym.
openai.com/docs/.

We set the state ot as the fixed window W price history � ��
,Si t  of all the assets N:

[ ,  , , ]1, 2, ,

� �� � ��� � ���
= …o S S St t t N t

1

,

,

, 1

,

� ��

�
=

−





















−

− +

−

S

S

S

S

i t

i t W

i t W

i t W

Moreover, the action at is merely the portfolio 
weight vector as previously defined, wt. We therefore 
want to train a policy network: pq(at, ot). The underlying 
evolution and transition of state are then determined by 
the market, and we can simply obtain the observation 
of the states. The reward is specified as the log-profit at 
each time step, log pT, which avoids the sparsity of rewards 
problem. Recall that with the deep deterministic policy 
gradient algorithm we want to learn the policy network 
pq(at, ot) with a continuous action space reinforcement 
algorithm. The actor network is set to be the same as the 
policy network; the critic network is a linear combina-
tion of the actor network structure of the state and action; 
the exploration noise is set by the Ornstein–Uhlenbeck 
process with zero mean, 0.3 sigma, and 0.15 theta.14

The specific implementation in the code notebook 
looks at 15 stocks for the first 10 months in 2018 with 
data in minute format with open, close, high, low, and 
volume variables. This method is adapted from Jiang, Xu, 
and Liang’s (2017) work published on arXiv. The action 
space contains a cash position, long positions, and short 
positions. The algorithm is hardcoded to only act every 
seven minutes. Note that reinforcement models can be 
very unstable and are generally hard to converge; when 
they do converge, they generally overfit. At this stage, 
without any further innovation, reinforcement learning 
models have to be implemented with great care.15

SUMMARY

There are several ways in which modern machine 
learning innovations can be used to help portfolio 

14 For more information on this distinction, see the original 
DeepMind paper referenced at the start.

15 Resource: code (https://colab.research.google.com/
drive/1L3-D2ZmGZkPRsB9gb5BviGkSkMTLti7_).
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managers optimally allocate assets. Machine learning 
is poised to partially replace traditionally rigid alloca-
tion methods. This article divides these methods into 
supervised, unsupervised, and reinforcement learning 
frameworks. Within the supervised learning framework, 
three techniques were considered: first, a more tradi-
tional linear approach using OLS, Ridge, and LASSO 
regressions; second, a nonlinear deep learning approach 
using autoencoders; and lastly a Bayesian sentiment 
method. The article further identified three unsuper-
vised methods using principal component analysis, hier-
archical clustering analysis, and network graphs. The 
article f inished with a deep reinforcement learning 
approach to portfolio weight optimization. As with the 
first article, I expect to see much more growth in rein-
forcement learning methods in the coming years. To 
paraphrase Vladimir Vapkin, the inventor of the sup-
port-vector machine method: One should avoid solving 
difficult intermediate problems when what one truly 
wants to solve is a target problem.
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Machine Learning in Asset Management—Part 
1: Portfolio Construction—Trading Strategies
Derek Snow

The Journal of Financial Data Science
https://jfds.pm-research.com/content/2/1/10

ABSTRACT: This is the first in a series of articles dealing with 
machine learning in asset management. Asset management can be 
broken into the following tasks: (1) portfolio construction, (2) risk 
management, (3) capital management, (4) infrastructure and deploy-
ment, and (5) sales and marketing. This article focuses on portfolio 
construction using machine learning. Historically, algorithmic trading 
could be more narrowly defined as the automation of sell-side trade 
execution, but since the introduction of more advanced algorithms, the 
definition has grown to include idea generation, alpha factor design, 
asset allocation, position sizing, and the testing of strategies. Machine 
learning, from the vantage of a decision-making tool, can help in all 
these areas.

Building Diversified Portfolios that Outperform 
Out of Sample
MarcoS López De praDo

The Journal of Portfolio Management 
https://jpm.pm-research.com/content/42/4/59

ABSTRACT: In this article, the author introduces the Hierar-
chical Risk Parity (HRP) approach to address three major concerns 
of quadratic optimizers, in general, and Markowitz’s critical line 
algorithm (CLA), in particular: instability, concentration, and under-
performance. HRP applies modern mathematics (graph theory and 
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machine-learning techniques) to build a diversified portfolio based 
on the information contained in the covariance matrix. However, 
unlike quadratic optimizers, HRP does not require the invertibility 
of the covariance matrix. In fact, HRP can compute a portfolio on 
an ill-degenerated or even a singular covariance matrix—an impos-
sible feat for quadratic optimizers. Monte Carlo experiments show 
that HRP delivers lower out-of-sample variance than CLA, even 
though minimum variance is CLA’s optimization objective. HRP 
also produces less risky portfolios out of sample compared to traditional 
risk parity methods.
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