
The Journal of Financial Data Science 1Spring 2020

*All articles are now
categorized by topics
and subtopics. View at
PM-Research.com.

Derek Snow

is a doctoral candidate of
finance at the University
of Auckland in Auckland,
New Zealand.
d.snow@firmai.org

Machine Learning in Asset
Management: Part 2: Portfolio
Construction—Weight
Optimization
Derek Snow

ABSTRACT: This is the second in a series of
articles dealing with machine learning in asset man-
agement. This article focuses on portfolio weighting
using machine learning. Following from the pre-
vious article (Snow 2020), which looked at trading
strategies, this article identifies different weight opti-
mization methods for supervised, unsupervised,
and reinforcement learning frameworks. In total,
seven submethods are summarized with the code
made available for further exploration.

TOPICS: Big data/machine learning, anal-
ysis of individual factors/risk premia, port-
folio construction, performance measurement*

In recent years, we have seen a trend
toward online or dynamic portfolio
asset allocation methods, clustering
techniques, and methods that combine

metadata on financial assets to help decide on
the final weighting. Trading strategies and
weight optimization methods can generally

be considered as part of an integrated system.
A trading strategy here is the use of perceived
signals to execute trades, and weight opti-
mization is the optimal weight allocation of
active and passive strategies.

Strong parallels can be drawn between
weight optimization in machine learning and
weight optimization in portfolio manage-
ment. When working with neural networks,
we must often choose which optimization
algorithm will produce faster and better
updates for the network’s weight and bias
parameters. This is needed for the internal
nodes to learn the optimal relationship in
data to minimize a prespecif ied loss func-
tion. Researchers end up testing the perfor-
mance of various optimizers, such as gradient
descent, stochastic gradient descent (SGD),
AdaGrad, RMSProp, and Adam, on their
dataset. In the process, they might come to
conclude that nothing really works that well.
After some tinkering, a researcher might add
a momentum component to SGD to curb the

• Machine learning can help with most portfolio construction tasks, such as idea genera-
tion, alpha factor design, asset allocation, weight optimization, position sizing, and the
testing of strategies.

• This is the second of a series of articles dealing with machine learning in asset manage-
ment and more narrowly weight optimization strategies equipped with machine learning.

• Following from the previous article, different weight optimization methods are considered
for supervised, unsupervised, and reinforcement learning frameworks.

KEY FINDINGS

 b
y

A
vi

ra
th

 K
ak

ka
r

on
 M

ar
ch

 2
5,

 2
02

0.
 C

op
yr

ig
ht

 2
02

0
Pa

ge
an

t M
ed

ia
 L

td
.

ht
tp

s:
//j

fd
s.

pm
-r

es
ea

rc
h.

co
m

D
ow

nl
oa

de
d

fr
om

http://www.PM-Research.com
https://www.iijournals.com/topic/big-datamachine-learning
https://www.iijournals.com/topic/analysis-individual-factorsrisk-premia
https://www.iijournals.com/topic/analysis-individual-factorsrisk-premia
https://www.iijournals.com/topic/portfolio-construction
https://www.iijournals.com/topic/portfolio-construction
https://www.iijournals.com/topic/performance-measurement-0
https://jfds.pm-research.com

2 Machine Learning in Asset Management: Part 2: Portfolio ConstruCtion—Weight oPtimization Spring 2020

high variance oscillation that makes standard SGD hard
to converge. The next researcher might come along and
see momentum as a problem when it ceases to stop as
it reaches a local minimum. In response, the researcher
could suggest a slope jump out of momentum as a rea-
sonable correction.1

A development out of this constant tinkering was
Adam, a method developed by Kingma and Ba (2014) that
performs best by combining the properties of AdaGrad
and RMSProp algorithms for a solution that can handle
sparse gradients on noisy problems. In a similar spirit,
we have seen modern portfolio optimization move from
Markowitz’s mean–variance (MV) portfolio using his-
torical returns to dynamic models that use state-of-the-art
reinforcement learning techniques. This process is not
over; in both fields, new methods are brought to light on
a frequent basis. Similar to machine learning, the optimal
weighting strategy can and should be tested on validation
data—in our parlance, back tests. We want to make sure
that our data drive our optimization choices.

SUPERVISED LEARNING

Supervised learning techniques learn the relation-
ship between independent attributes and a designated
dependent attribute. Supervised learning refers to the
mathematical structure describing how to make a pre-
diction yi given xi. Instead of learning from the environ-
ment, as in reinforcement learning, supervised learning
methods learn the relationships in data. All supervised
learning tasks are divided into classification or regression
tasks. Classification models are used to predict discrete
responses (e.g., binary 1, 0; multiclass 1, 2, 3). Regression
is used for predicting continuous responses (e.g., 3.5%,
35 times, $35,000). In portfolio weight optimization,
we are generally presented with a continuous response
problem.

Deep Portfolio

A useful deep learning technique for f inance is
autoencoders. This is a learning process to train the
architecture to replicate X itself, namely X = Y, via a
bottleneck structure. An autoencoder can create a more
cost-effective representation of X. Autoencoding is an
unsupervised learning method because there is no target

1 Nesterov accelerated gradient.

to predict. However, the low-dimensional encoding is
used as an input to a supervised learning method to
calibrate and map the inputs to the desired target. The
autoencoder demonstrates that, in deep learning, it is
not necessary to model the variance–covariance matrix
explicitly because the model is already in predictive
form. This portfolio optimization process follows four
steps: (1) autoencoding, (2) calibrating, (3) validating,
and (4) verifying. This method has been popularized by
Heaton, Polson, and Witte (2017).

1. Autoencoding: Find the market cap, denoted by
F (X)W

m , that solves the regularization problem

min X F (X)

W
W
m

2

2
− subject to W Lm≤

 For appropriately chosen FW
m , this autoencodes X

with itself and creates a more information-efficient
representation of X.

2. Calibrating: For a desired target Y, find the port-

folio map, denoted by F (X)W
p , that solves the regu-

larization problem

 min Y F (X)
W

W
P

2

2
− subject to W LP≤

 This creates a nonlinear portfolio from X for the
approximation of objective Y.

3. Validating: Find Lm and LP to suitably balance the
trade-off between the two errors

X̂ F (X̂)m W

m

2

2

m
ε −= and Ŷ F (X̂)P W

P

2

2

P
ε = −

 where Wm and Wp are the solutions to the valida-
tion and verification step

4. Verifying: Choose market cap Fm and portfolio
map Fp such that the validation step is satisfactory.2

Linear Regression

We can also apply linear models to the problem of
finding optimal portfolios (Britten-Jones 1999). There
is a deep connection between f itting linear models
and portfolio optimization. The normal equation is
ˆ (X X) X y1θ = ′ ′− . Note that, in statistics or econometrics,
it is more common to see (beta)β instead of (theta).θ

2 Resources: data (https://drive.google.com/open?id=1bJc
UZbrZ8HFXs-cd0vGHeMop16Vf3n23); code (https://drive.google
.com/open?id=1-hOEAiJqaNTUYIyamj26ZvHJNZq9XV09).

 b
y

A
vi

ra
th

 K
ak

ka
r

on
 M

ar
ch

 2
5,

 2
02

0.
 C

op
yr

ig
ht

 2
02

0
Pa

ge
an

t M
ed

ia
 L

td
.

ht
tp

s:
//j

fd
s.

pm
-r

es
ea

rc
h.

co
m

D
ow

nl
oa

de
d

fr
om

https://jfds.pm-research.com

The Journal of Financial Data Science 3Spring 2020

The normal equation makes sense if you do want a
linear model and the number of explanatory variables
(features) is not too big (e.g., <100,000)—perfect for a
small universe of stocks.

It is not necessary to use the normal equation; one
can also solve for the best coefficients using numerical
search such as gradient descent. With this portfolio
optimization method, regularization becomes a critical
tool to improve out-of-sample performance. The tested
regularization methods include l2-norm (ridge regres-
sion), L1-norm (LASSO), and a combination of L1 and
L2 norms (elastic net regression). Regularization effec-
tively helps one to manage the variance–bias trade-off.
Britten-Jones (1999) demonstrated a close equivalence
between Markowitz portfolio optimization and ordinary
least squares (OLS) regression.

Specif ically, regress the excess returns of N
stocks on a constant = 1 without an intercept. Collect
the coefficients on each of the stocks in q. Rescale q
so that the sum of the elements in q is 1: (

1Tθ =∗ θ
θ).

The rescaled coeff icients are the Markowitz optimal
portfolio weights. As a result, any machine learning
approach that yields coefficients for a linear model can
be reinterpreted as a portfolio optimization approach
(e.g., ridge regression → Tikhonov regularized optimal
portfolio).3

Bayesian Sentiment

Advances in sentiment mining techniques led
researchers in the 2010s to consider the use of public
opinion for stock market prediction. Xing et al. (2018)
decided to do the same for asset allocation by accounting
for public mood using an online Bayesian asset allocation
model. This model straddles between a trading strategy
and weight optimization and falls within the supervised
learning section because of its use of two neural models
to generate market views.

To address the much-discussed limitations of the
Markowitz model, Bayesian methods take additional
information such as investor judgement and market
fundamentals into account, a method once proposed
by Black and Litterman (1990). The difference is that
classical methods rely on financial experts and over-
look public opinion and sentiment. A fair criticism of

3 Resources: code (https://drive.google.com/open?id=1YDZ
Qvz6Pn2AFDX2Uprfaq9JoGvk7RpJy); paper (Britten-Jones 1999).

the Black and Litterman model is its subjective nature
on market views; it leaves unanswered the question of
how to assess these views. With the proposed method,
public sentiment from the web can help researchers to
formalize market views automatically.

The Black and Litterman model assumes that equi-
librium returns are normally distributed ~ (,)Π τΣr Neq ,
where S is the covariance matrix of asset returns and
t is an indicator of the confidence level of the capital
asset pricing model estimation of P, the equilibrium
risk premium of the market. The market views on the
expected returns held by an investor agent are also nor-
mally distributed as ~ (,)Ωr N Qviews . The posterior dis-
tribution of the portfolio returns that provide the views
are therefore also Gaussian.

With the distributions denoted as ~ (,)µ Σr NBL ,
the vector of expected returns µ and the covariance
matrix Σ will be a function of the aforementioned
variables:

[,] (, , , ,)µ Σ = τ Σ Ω Πf Q

The function can be induced by applying Bayes’
theorem on the probability density function of the pos-
terior expected returns:

()
(|) ()

(|)
µ = µ Π Π

Π µ
pdf

pdf pdf
pdf

The optimized Bayesian portfolio weights now
have a form similar to the Markowitz model by substi-
tuting the MV version of S and m with the new variables
Σ and µ:

() 1= δΣ µ∗ −wBL

A time series of asset prices, trading volume, and
public sentiment data is used to approximate optimal
market views. The sentiment is computed from a
range of social media platforms using natural language
processing techniques. The standard deviation will be
interpreted as the confidence about the expected return
of the portfolio, and a relative view would be described
as taking the form “I have w1 confidence that asset x
will outperform asset y by a%.” An absolute view, in
contrast, will take the form “I have a w2 confidence
that asset z will outperform the market by b%.” As a
result, a portfolio of n assets and a set of k views can
be represented by three matrixes Pk,n, Qk,1, and Wk,k.

 b
y

A
vi

ra
th

 K
ak

ka
r

on
 M

ar
ch

 2
5,

 2
02

0.
 C

op
yr

ig
ht

 2
02

0
Pa

ge
an

t M
ed

ia
 L

td
.

ht
tp

s:
//j

fd
s.

pm
-r

es
ea

rc
h.

co
m

D
ow

nl
oa

de
d

fr
om

https://jfds.pm-research.com

4 Machine Learning in Asset Management: Part 2: Portfolio ConstruCtion—Weight oPtimization Spring 2020

Apart from performing slightly better than traditional
methods, it also allows one to tell a nice Bayesian story.4

UNSUPERVISED LEARNING

Unlike supervised learning, which finds patterns
using both input data and output data, unsupervised
learning methods find patterns using only input data.
An unsupervised learning framework is useful when
researchers are not quite sure what to look for. Such
a framework is often used for exploratory analysis and
problem discovery purposes. Most unsupervised learning
techniques take the form of dimensionality reduction or
cluster analysis to establish groups of data that have some
measure of similarity based on characteristic values.

Two of the most important techniques are K-means
clustering and principal component analysis (PCA). The
only requirement to be called an unsupervised learning
strategy is to learn a new feature space that captures the
characteristics of the original space by maximizing some
objective function.5 PCA attempts to reduce the number
of features while preserving the variance, whereas
clustering reduces the number of data points by sum-
marizing them according to their mean expectations.
However, those cluster assignments can also be used to
label each data point with its assigned cluster, leading
to a dimensionality reduction toward only one feature.
K-mean and PCA in some sense maximize a similar
objective function, with K-means having an additional
categorical constraint.

PCA

PCA and clustering techniques are used to build
classes of similar assets. The steps here involve integrated
portfolio selection and risk estimation to optimize the
portfolio. Let Y = (Y1, …, Yn)

T denote an n-dimensional
random vector with variance–covariance matrix S.
The goal of PCA is to construct linear combinations
P Yj, for 1,i j 1W

n

ij
= Σ = …= i n in such a way that the Pi

values are orthogonal so that S[PiPj] = 0 for ≠i j so
that the Pi are ordered to explain the largest percentage
of the total variability in the system.

4 Resource: code (https://colab.research.google.com/drive/1
sMAoJZuuNIRnrivAzxHV5fulMOWO17mb).

5 Inherent to the PCA is the maximization of variance
through a simple linear algebra operation by taking the eigenvec-
tors of a covariance matrix of features.

Each Pi explains the most significant percentage
of total variability in the system that has not already
been explained by Pi, …, Pi - 1. Using various selection
techniques, one can identify an optimum level of these
components and apply it to a universe of stocks. This
is not a complicated method, but it is very powerful
and can be used as a mediating step in various trading
strategies, if not in the final allocation decision making.
In the code notebook, there is additional experimenta-
tion to compare this technique with hierarchical clus-
tering methods.6

HIERARCHICAL RISK PARITY

The problem, as stated by López de Prado (2016),
is that the MV portfolios are optimal in sample (training
set) but perform poorly out of sample (test set). One way
to deal with this problem is to drop forecasts altogether
(e.g., risk parity [RP]). The problem is that both RP and
MV require the inversion of a positive-definite covari-
ance matrix. A new method is therefore suggested to
overcome the matrix inversion and forecast issue, called
hierarchical risk parity.

Hierarchical risk parity works by grouping similar
investments into clusters based on a distance metric. The
covariance matrix’s rows and columns also are reorga-
nized so that the largest values lie along the diagonal.
Lastly, the allocations are split through recursive bisec-
tions of the reordered covariance matrix.

One starts by defining a distance measure between
investments from zero and one, di, j , after which one
clusters the pair of columns (i*, j*) together such that
(i , j)argmin {d }and(i, j)

`
i, j= ≠∗ ∗ i j . The next step is to

update {d }
`

i, j with the new cluster and apply steps 3 and 4
recursively until all N-1 clusters are formed.

We now place correlated investments close
together and uncorrelated investments further apart
and carry out a top-down allocation: We assign unit
weights to all items by recursively bisecting a list of
items by computing the variance and the split factor and
rescaling the allocations; we iterate this process until full
allocation is achieved. In the code, I have included an
implementation using Robert Martin’s PyPortfolioOpt7
and an implementation of Chapter 16 in Advances in

6 Resource: code (https://colab.research.google.com/drive/1
mm9r6EZOERHYkycDbc74GY7S2U6h1oTc).

7 https://github.com/robertmartin8/PyPortfolioOpt.

 b
y

A
vi

ra
th

 K
ak

ka
r

on
 M

ar
ch

 2
5,

 2
02

0.
 C

op
yr

ig
ht

 2
02

0
Pa

ge
an

t M
ed

ia
 L

td
.

ht
tp

s:
//j

fd
s.

pm
-r

es
ea

rc
h.

co
m

D
ow

nl
oa

de
d

fr
om

https://jfds.pm-research.com

The Journal of Financial Data Science 5Spring 2020

Financial Machine Learning (López de Prado 2018) by
Hudson & Thames,8 a buy-side open-source research
unit headed by Jacques Joubert.9

Network Graph

Given N assets in a portfolio, we have to iden-
tify the weights , (1)1Σ ==w wi i

N
i so that highly corre-

lated assets obtain lower relative weights. To do this,
we can use a weighted graph that is an ordered tuple,

(, ,)=G V E W , where V is a set of vertices (or nodes), E
is a set of pairwise relationships (the edges) between the
vertices, and W is a set of numerical values assigned to
each edge. A useful representation of G is the adjacency
matrix:

1,

0,
=

A

if i is adjacent to j

otherwiseij

Here the pairwise relations are expressed as the ij entries
of an ×N N matrix where N is the number of nodes.
The strategy is then to transform the historical pricing
data into a graph with edges weighted by the correlation
between each stock. We can then use graph centrality
measures and graph algorithms to obtain the desired
allocation weights. In five steps, we do the following:

1. Compute the distance correlation matrix rD(Xi, Xj)
for the open, high, low, close, and return time
series.

2. Use the NetworkX10 module to transform each
distance correlation matrix into a weighted graph.

3. Adopt a winner-takes-all method and remove
edges with correlations below a threshold value of
rc = 0.325 (adjust this threshold value if the graph
disconnects):

(,),

0,
=

ρ ρ ≥ ρ

Cor

X X

otherwiseij

D i j c

8 https://hudsonthames.org/.
9 Resources: data (https://drive.google.com/open?id=198

fpHhD973i3rKa9D7oz-SrmBwPykQEc), code (https://drive.google
.com/open?id=1z3Fe7QXZ6c566KOG3HtQEfCc84UAGwFf),
code 2 (https://colab.research.google.com/drive/1-Z3OjjnIR-
41E2tycKFosvxEt-RrAgZB).

10 https://github.com/networkx/networkx.

4. Inspect the distribution of edges (the so-called
degree distribution) for each network.11 The degree
of the ith vertex is given as

()
1

∑=
=

Deg i A
j

N

ij

5. Finally, build a master network by averaging over
the edge weights of the open, high, low, close, and
return networks and derive the asset weights from
its structure.

Multiple variations are available for constructing
the network and obtaining the distance; a few different
approaches are considered in the notebook. An extensive
analysis can be found in a notebook by Maya Benowitz,
a quant at CarVal.12

REINFORCEMENT LEARNING

Reinforcement learning in finance comprises the
use of an agent that learns how to take actions in an envi-
ronment to maximize some notion of cumulative reward.
We have an agent that exists in a predefined environ-
ment. The agent receives as input the current state St and
is asked to take an action At to receive a reward Rt+1, the
information of which can be used to identify the next
optimal action, At+1 given the new state St+1. The final
objective function can be the realized/unrealized profit
and loss and even risk-adjusted performance measures
such as the Sharpe ratio. Allocation decisions in finance
are challenging to deal with because finance is partially
observed, nonstationary, regime dependent, and noisy.
Standard models apply and recombine single-period pre-
dictions using an optimizer, but in the real world, the
actions could have long-term consequences that could
be acted against by the environment. Reinforcement
learning can help us to deal with some of these problems
by taking a more holistic approach.

Deep Determinist Policy Gradient

Deep learning models can be used in reinforce-
ment learning to solve high-dimensional problems.

11 The degree of a node is simply the number of connections
it has to other nodes.

12 Code available at https://colab.research.google.com/drive/
10WNiVuICvFajW2uTDrwI6w7aSUkjINPl.

 b
y

A
vi

ra
th

 K
ak

ka
r

on
 M

ar
ch

 2
5,

 2
02

0.
 C

op
yr

ig
ht

 2
02

0
Pa

ge
an

t M
ed

ia
 L

td
.

ht
tp

s:
//j

fd
s.

pm
-r

es
ea

rc
h.

co
m

D
ow

nl
oa

de
d

fr
om

https://jfds.pm-research.com

6 Machine Learning in Asset Management: Part 2: Portfolio ConstruCtion—Weight oPtimization Spring 2020

To deal with the continuous action space of portfolio
weighting, we can use Google DeepMind’s off-policy
and model free algorithm called deep deterministic
policy gradient (Lillicrap et al. 2015). Using this method,
we do not have to discretize continuous action spaces,
which might lead to the curse of dimensionality and a
loss of valuable information. The environment is derived
from an OpenAI environment class.13 This environment
takes arguments like trading cost and window size into
account to approach a realistic setting.

To start formalizing the problem, we set the
number of stocks to N. At time step 1, we are fully
invested, and the close/open relative price vectors are
defined as

1, , , ,1, ,

1, ,

2, ,

2, ,

, ,

, ,

= …

y
S

S

S

S

S

St
t close

t open

t close

t open

N t close

N t open

The portfolio weight vector is then defined as

[, , ,], 1, ,= …w w w wt o t t N t

Here wi,t is the fraction of investment in stock i at time
stamp t. Note that wo,t represents the fraction of cash
maintained. The profit after timestamp T is

1
1∏= ⋅

=
−p y wT

t

T

t t

Once we consider the trading cost factor of m, the
trading cost at each time stamp is

 1

1

∑µ = µ
⋅

−−

−

y w
y w

wt
t t

t t
t

where is the element-wise product. The profit can
then be formulated as

(1)
1

1∏= − µ ⋅
=

−p y wT
t

T

t t t

Now that we have dealt with the problem formula-
tion, we have to formulate the Markov decision process.

13 More can be found in their documentation: https://gym.
openai.com/docs/.

We set the state ot as the fixed window W price history � ��
,Si t of all the assets N:

[, , ,]1, 2, ,

� �� � ��� � ���
= …o S S St t t N t

1

,

,

, 1

,

� ��

�
=

−

−

− +

−

S

S

S

S

i t

i t W

i t W

i t W

Moreover, the action at is merely the portfolio
weight vector as previously defined, wt. We therefore
want to train a policy network: pq(at, ot). The underlying
evolution and transition of state are then determined by
the market, and we can simply obtain the observation
of the states. The reward is specified as the log-profit at
each time step, log pT, which avoids the sparsity of rewards
problem. Recall that with the deep deterministic policy
gradient algorithm we want to learn the policy network
pq(at, ot) with a continuous action space reinforcement
algorithm. The actor network is set to be the same as the
policy network; the critic network is a linear combina-
tion of the actor network structure of the state and action;
the exploration noise is set by the Ornstein–Uhlenbeck
process with zero mean, 0.3 sigma, and 0.15 theta.14

The specific implementation in the code notebook
looks at 15 stocks for the first 10 months in 2018 with
data in minute format with open, close, high, low, and
volume variables. This method is adapted from Jiang, Xu,
and Liang’s (2017) work published on arXiv. The action
space contains a cash position, long positions, and short
positions. The algorithm is hardcoded to only act every
seven minutes. Note that reinforcement models can be
very unstable and are generally hard to converge; when
they do converge, they generally overfit. At this stage,
without any further innovation, reinforcement learning
models have to be implemented with great care.15

SUMMARY

There are several ways in which modern machine
learning innovations can be used to help portfolio

14 For more information on this distinction, see the original
DeepMind paper referenced at the start.

15 Resource: code (https://colab.research.google.com/
drive/1L3-D2ZmGZkPRsB9gb5BviGkSkMTLti7_).

 b
y

A
vi

ra
th

 K
ak

ka
r

on
 M

ar
ch

 2
5,

 2
02

0.
 C

op
yr

ig
ht

 2
02

0
Pa

ge
an

t M
ed

ia
 L

td
.

ht
tp

s:
//j

fd
s.

pm
-r

es
ea

rc
h.

co
m

D
ow

nl
oa

de
d

fr
om

https://jfds.pm-research.com

The Journal of Financial Data Science 7Spring 2020

managers optimally allocate assets. Machine learning
is poised to partially replace traditionally rigid alloca-
tion methods. This article divides these methods into
supervised, unsupervised, and reinforcement learning
frameworks. Within the supervised learning framework,
three techniques were considered: first, a more tradi-
tional linear approach using OLS, Ridge, and LASSO
regressions; second, a nonlinear deep learning approach
using autoencoders; and lastly a Bayesian sentiment
method. The article further identified three unsuper-
vised methods using principal component analysis, hier-
archical clustering analysis, and network graphs. The
article f inished with a deep reinforcement learning
approach to portfolio weight optimization. As with the
first article, I expect to see much more growth in rein-
forcement learning methods in the coming years. To
paraphrase Vladimir Vapkin, the inventor of the sup-
port-vector machine method: One should avoid solving
difficult intermediate problems when what one truly
wants to solve is a target problem.

REFERENCES

Black, F., and R. Litterman. 1990. “Asset Allocation: Com-
bining Investor Views with Market Equilibrium.” Goldman
Sachs Fixed Income Research 115.

Britten-Jones, M. 1999. “The Sampling Error in Estimates
of Mean–Variance Efficient Portfolio Weights.” The Journal
of Finance 54 (2): 655–671.

Heaton, J. B., N. G. Polson, and Witte. 2017. “Deep Learning
for Finance: Deep Portfolios.” Applied Stochastic Models in Busi-
ness and Industry 33 (1): 3–12.

Jiang, Z., D. Xu, D., and J. Liang. 2017. “A Deep Reinforce-
ment Learning Framework for the Financial Portfolio Man-
agement Problem.” arXiv preprint 1706.10059.

Kingma, D. P., and J. Ba. 2014. “Adam: A Method for Sto-
chastic Optimization.” arXiv preprint 1412.6980.

Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y.
Tassa, D. Silver, and D. Wierstra. 2015. “Continuous Con-
trol with Deep Reinforcement Learning.” arXiv preprint
1509.02971.

López de Prado, M. 2016. “Building Diversified Portfolios
That Outperform Out of Sample.” The Journal of Portfolio
Management 42 (4): 59–69.

——. Advances in Financial Machine Learning, 1st ed.. Newark:
John Wiley & Sons, 2018.

Snow, D. 2020. “Machine Learning in Asset Management—
Part 1: Portfolio Construction—Trading Strategies.” The
Journal of Financial Data Science 2 (1): 10–23.

Xing, F. Z., E. Cambria, L. Malandri, and C. Vercellis. 2018.
“Discovering Bayesian Market Views for Intelligent Asset
Allocation.” In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pp. 120–135. Cham,
Switzerland: Springer, 2018.

To order reprints of this article, please contact David Rowe at
d.rowe@pageantmedia.com or 646-891-2157.

ADDITIONAL READING

Machine Learning in Asset Management—Part
1: Portfolio Construction—Trading Strategies
Derek Snow

The Journal of Financial Data Science
https://jfds.pm-research.com/content/2/1/10

ABSTRACT: This is the first in a series of articles dealing with
machine learning in asset management. Asset management can be
broken into the following tasks: (1) portfolio construction, (2) risk
management, (3) capital management, (4) infrastructure and deploy-
ment, and (5) sales and marketing. This article focuses on portfolio
construction using machine learning. Historically, algorithmic trading
could be more narrowly defined as the automation of sell-side trade
execution, but since the introduction of more advanced algorithms, the
definition has grown to include idea generation, alpha factor design,
asset allocation, position sizing, and the testing of strategies. Machine
learning, from the vantage of a decision-making tool, can help in all
these areas.

Building Diversified Portfolios that Outperform
Out of Sample
MarcoS López De praDo

The Journal of Portfolio Management
https://jpm.pm-research.com/content/42/4/59

ABSTRACT: In this article, the author introduces the Hierar-
chical Risk Parity (HRP) approach to address three major concerns
of quadratic optimizers, in general, and Markowitz’s critical line
algorithm (CLA), in particular: instability, concentration, and under-
performance. HRP applies modern mathematics (graph theory and

 b
y

A
vi

ra
th

 K
ak

ka
r

on
 M

ar
ch

 2
5,

 2
02

0.
 C

op
yr

ig
ht

 2
02

0
Pa

ge
an

t M
ed

ia
 L

td
.

ht
tp

s:
//j

fd
s.

pm
-r

es
ea

rc
h.

co
m

D
ow

nl
oa

de
d

fr
om

https://jfds.pm-research.com/content/2/1/10
https://jpm.pm-research.com/content/42/4/59
https://jfds.pm-research.com

8 Machine Learning in Asset Management: Part 2: Portfolio ConstruCtion—Weight oPtimization Spring 2020

machine-learning techniques) to build a diversified portfolio based
on the information contained in the covariance matrix. However,
unlike quadratic optimizers, HRP does not require the invertibility
of the covariance matrix. In fact, HRP can compute a portfolio on
an ill-degenerated or even a singular covariance matrix—an impos-
sible feat for quadratic optimizers. Monte Carlo experiments show
that HRP delivers lower out-of-sample variance than CLA, even
though minimum variance is CLA’s optimization objective. HRP
also produces less risky portfolios out of sample compared to traditional
risk parity methods.

 b
y

A
vi

ra
th

 K
ak

ka
r

on
 M

ar
ch

 2
5,

 2
02

0.
 C

op
yr

ig
ht

 2
02

0
Pa

ge
an

t M
ed

ia
 L

td
.

ht
tp

s:
//j

fd
s.

pm
-r

es
ea

rc
h.

co
m

D
ow

nl
oa

de
d

fr
om

https://jfds.pm-research.com

