On a new mathematical application concerning the discrete and the analytic functions.
Mathematical connections with some sectors of Number Theory and String Theory.

Odoardo Volonterio', Michele Nardelli >3, Francesco Di Noto

Politecnico di Milano
Piazza Leonardo da Vinci, 32
20133 Milano, Italy'

2 Dipartimento di Scienze della Terra
Universita degli Studi di Napoli Federico II, Largo S. Marcellino, 10
80138 Napoli, Italy

3 Dipartimento di Matematica ed Applicazioni “R. Caccioppoli”

Universita degli Studi di Napoli “Federico II” — Polo delle Scienze e delle Tecnologie
Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

Abstract

In this work we have described a new mathematical application concerning the
discrete and the analytic functions: the Volonterio’s Transform and the Volonterio’s
Polynomial. The Volonterio’s Transform (V Transform), indeed, work from the
world of discrete functions to the world of analytic functions. We have described
various mathematical applications and properties of them. Furthermore, we have
showed also various examples and the possible mathematical connections with some
sectors of Number Theory and String Theory.

Definition 1 (transform V)

The transformed V of a discrete function, y(k) is an analytic function of a real
variable (or complex) through which it is possible to pass from the world of discrete
or finite mathematics to the world of differential mathematics.

Definition 2 (inverse transform V)

The inverse transform V of an analytic function 7 (¢) of a real variable ¢
continues in the zero and infinite times differentiable (in other words a function
V(t) developable in Maclaurin series ) is a discrete function y(k) defined through

1 Address mail: odoardo.volonterio@gmail.com



IN,, which it is possible the transition from the differential world to the world of
discrete or finite mathematics.

DEFINITIONS NECESSARY TO UNDERSTAND THE TRANSFORM V:

We define with §°(k) the following Kronecker's function:

6A(k)::[(1) 0 kez (1)

We define with u”(k) the following discrete function in step (Heaviside):

uA(k)::[(l) iig kez 2)

DEFINITION OF TRANSFORM V

Let y(k) a discrete function, then we can define the transformation 7 (¢) as
follows:

PO=TORL =3 k) s 3)

CONDITIONS OF EXISTENCE AND UNIQUENESS OF THE
TRANSFORM V

To ensure the condition of existence of the transform must be guaranteed the
following relationship:

1k
lim M<+oo e R=1lim

with e=2.718281828... 4
k— o0 k Ko+ |y (k)| ( )

1/k

where R is the radius of convergence, while “e” is the Eulero-Nepero constant.

The relation (4) is a necessary condition that we have demonstrated exploiting the
condition of the root of Cauchy-Hadamard while the condition of uniqueness can be

€6 9

relegated to the properties of series of powers where “e” is the Euler-Nepero constant.



DEFINITION OF INVERSE TRANSFORMATION V

We define with inverse transform of 7 () the discrete function y(k) obtained by
the following definition:

dk
Cdt

k)= TP le). k) = V] g (%)

or by the following alternative formula to the (5):

™

y(k):T*(V(z),k);:%r(kﬂ) [R(V(e%))cos(kE)dE| keN,

0

or the more exact formula:

01’ ,
Dnl T ——————— k=0
. [
y(k) =T '(V(t),k) = []2 0 ) (6)
En—r (i+ 1) (V[ ) coslk )t ... k0 N...k# 0
0
where necessary and sufficient condition because (6) to be valid, is that the
condition R> 1 is satisfied, where R is the radius of convergence (4).
We note that in this equation, there is the Euler gamma function I" and the
constant «t, fundamentals in various equations concerning the string theory.
For example, we consider the discrete functions:
vilk)=k=1 ¢ y,(k)=k|-1 (7)
Thence, we have that:
Vit)=(t=1)e" e V,(t)=(t—1)e" = V (k)=V,(k) (8)
where the inverse transform of 7 (¢) is:
y(k)=T""(V (1), k)=y,(k)=k—1 9)

thence, it 1s possible conclude that :



yl(k):yz(k) YV keN,

DEFINITIONS

(10)

To be able to read and interpret the tables in complete sense, is needed clarifications

on the functions and abbreviations that we have introduced and also will be
fundamentals of the examples that follow after the tables. In any case, before

proceeding to the list of transformations is useful to consider the following reports,

definitions and functions.

Fundamental relations (see definitions (1) and (2))

u(k+n)=[u” (k+n)]"
u® (k—n)=[u*(k—n)]"
u(k—n)=u"(k)u” (k—n)
u(k—n)=u”(k+m)u”(k—n)

[ (k))°=u®(—k)—5°(0)+u" (k)

Definition of the operator 9,

With the symbol ®, we define the following operator:

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)



—
qb,.—zdt (19)

where its application iterated n times of a certain function 7 (¢) will express by the
operator of application in the following way &;°V (¢).

For example, we consider 7 (¢)=sin(¢), thence:

@0 V(t)Zt%(t%(t% sin(t))):tcos(t)—3t2sin(t)—t3cos(t)



Definition of Volonterio's Polynomial:
V,(t)=e ' ®loe’ with V,(t):=1

Other formulas for obtain the polynomial V,(#) (vedi TF N° 4 e 20) are the
following:

Vralti= |7 0047, 1)

or:

+o0 tk
| 4 (t)ZeﬁZ kn—'
k=0 k

or:

(20)

1)

(22)

(23)

Below the proof of the egs. (20) and (23), where, in this case, the polynomial is
denoted with P, . (see also the references PF N. 7, PF N. 17, TF N. 4, TF N. 20)

Observations on the Volonterio’s Polynomial
T(k™.t)= 2 Vo) = T(y(k).1)

A) We observe that

Let

— e N
k)= k70 7l l,t)—tET(K 1)

(ko,t) = Bt)e';

(k,2)= te' = (t e

Tlk2, )= o1+ (ﬁ + i)' = Bi)e';
|

N N

5
k)= (1+ 3t+t et = (¢4 367+ £)e' = Pd)e':

b

T(k",1)= P(t)e P(t)= Volonterio’s Polynomial



B) We can deduce, from the (*), that:

e 1)z 15 lenl]:

ntl

i

erali= 4G fon

Now if we set ¢, = t—,
dt

C) we can write generalizing:
Punlt)= €0l (P e)e],
but A(f)=1, thence we obtain:
Pl e

[N.B. From this we deduce T(k ulk), ) p/e' =Pt ]

D) Based on the above points, we can write the following mixed equation
difference-differential:

Bald)= dB )+ B,
where P( )— diP( )
E) T(k"u(k).t) = ¢'P 1)
means that:
enf)g Kt
namely
Bl ey Kt



F) at this point we consider P(t) in such a way to apply the transformation V
in 7, ie. weputn=k and 7= ¢ in order to avoid any confusion.

where
RlE)= ety mi
& m!
Therefore:
1(Rle))= ¢ “—,r(m z)
m=0 m:
- ¢ f_m mt [m — Z(e 1
T(R(¢).t)= e Z ey m,

If { = x for ease of writing, we have:

namely

in other terms:

P (t)= B+ B,
: d" [
is: Pt)= g | )‘! 05

or Rq()_e(pt



Definition of Bernoulli's Polynomial:

The Bernoulli's Polynomail (see TF N° 21) is:

W=y -3 (- o)

+k
im0 1 +ni= & )

The generating function of the Bernoulli's Polynomial is:

t +oo k

=2 Bl
e’—l k=0 g k!

Definition of Euler's Polynomial:

Euler's Polynomial (see TF N° 22)'

zzz ()am

The generating function of the Euler's Polynomial is:

2e' & t*
=) E, (x)—
e[+1 = k( )k!

Definition of Laguerre's Polynomial:

Laguerre's Polynomial (see TF N° 15 and N° 23)

t n
L,,(t):% :l[t" (e_tt")

Definition of Bessel's Polynomial of the first kind:

_(t\'s (=D (e2)
J”(l)_(f),;) I (k+n+l)

Transform V of a discrete periodic function:

(24)

(25)

(26)

27)

(28)

(29)



Let »yy(k) be a particular discrete function in which the following relation applies:

yylk)=y (k+N) VkeN, e NeN

thanks to the Fourier series in the discrete domain:

N—-1 421'rnk N -1 71.21'rnk

i Ce ¥ with C,=> yy(k)e V
N5 k=0

we can apply the transformation V to the (31) as in the (32):
v(yy Z%ZC Tv(exp(i2mnkIN),t)

thanks to the transformation tables we obtain:

+1isin

2mn
ZCNt ( )(cos(tsin(zz\-;n

ol

Now substituting C, ofthe (31) in the (35) we have the eq. (36):

) (21Tn
tsin
¢sin 2mn
N

+isin

=52 ;

2|

N-1

—i2mn cos(2mn, . 2
D yylk)e™ k/N)e’ (2 /N)(cos(tsm( LR
e N

S~—————
~———
~———

+isin

2|
M7

Il
o

1 N—
tcos (2mn/N) _—i2mwnklN . [2mn
€ coS|ZSIn N

k:O

n

i2mtnk/N

So expanding the term e” we obtain:

(30)

(1)

(32)

(33)

(34)

(35)

(36)

(37)



Rt reosi 20 2mnk (.. [21nk . [121n
YN(t)'N,Z Z yylkle DECOSE N E 1sm@7@%cosﬁtsm@7@%+

0£k=0

+ isin%tsin@%n@% (38)

Now, thanks to the same definition of transform 7 , we have:

P0=2 nk (39)

wy (l):iNfl N-1 o etcos( n”)cos(2'ﬂn_tsin(2ﬂ'n)) (40)
N Nn:() k=0 N N N
SY (t):LN—l N-1 (k)etCOS(ZJT\;n)Sin 2Trn_t51n 27Tn =0 (41)
N N n=0 k=0 yN N N a

1 N-1N-1 ¢ cos 2T 21n (21
YN<Z‘):N”:0 > (ke ( N )cos v —tsin N (42)
N (k e’“’s(z;n)sin 2mnk s in[ 272 ) =0 *5)
n=0 k=0 Y N " _

In the particular case where the period N of the periodic discrete function is very
large or even tending to infinity, we proceed in the following way:




X, = 27]:[” where the stepis ;=27 ie. ;A x, then rewrite the (36) as follows:

(44)

e

21T

and for N—+ wehave lim yulk)=y(k) thence we can write the (44) as follows:

N—ow |\ =0

(t)= lim (Z_: yylk 2—(2 he' ™ cos (kx,—¢sin (x )))) (45)

1.e.:

2

—%i f ¢ cos(x 'cos (k x—tsin (x))dx (46)

Since ¥ (t) is the transform ¥V of y(k) we deduce the equality:

21

15w 0 tcos‘cos(kx—tsin(x))dx:]gy(k)% @7)

from which follows:

2m k

L tcos(x) _ . :t_

= { e cos(kx—tsin(x))dx x ViteC, VkeN (48)
+o (k) fk ) 1 N-1N-1 (k) tcos@%@ 2]'1'” iy . HZT[”H
ZoyN E_ NnZOZOyN ¢ COSET SIHDTDE

only and only if »ylk+ N)= y,(k] (49)

The eq. (49) shows how a development in Taylor’s series can be reduced to a double
summation ( N° elements) when is valid the condition (30). This is a formula that

N
represents the generalized solution of the differential equation dd_I;St) = V(1) where

T(ylk).e) = e



PROPERTIES OF THE TRANSFORM V

PF Function Definition
N. y(k)  keN, V(t):=T(y(k),t) t€R
1 oy, (k)+By,(k) oV (t)+BV,(1)
2 y(k)L:o V(t)L:O
3 y(k)l dl
4 y(K)5° (k=) Ly(n)
5 y (0 (k=n) (-3 k)
6 y(k)k t%V(t)
7 y(k)k @ oV (t) con ¢::t%
8 y(k) ot V(ak)
o y(k)e“k Vite")
10 y(k+n) j—; ()
11 y(k=1) v+ [V (E)dE
12 (k)sin (k) RV (te™))
13 (k)cos(ack) 3V (te™)
k —nr+m t—d—m
14 W C Ly
=y V(t)e' where
E (e o) 0l oo
y(1+k) V(t)=V(0)
16 1+k t
17 J/1(k)*y2(k) V1(k)V2(k)
18| T(T7( T(y(k) y(E—k), 1), K)oy 1) vty




TRANSFORMATION V OF SOME NOTE FUNCTIONS

T
F Function Definition
N y(k)  keN, V(t):=T(y(k),t) teR
1 5 (k—n) _'
n
2 uA(k) e
3 k te'

5 " e

6 e exp(e”)

7 sin (k) e “*sin (¢ sin(«))
8 cos(ock) "o (¢sin («))
9 o sin (k1r/2) sin (xt)

10 o’ cos(kT/2) cos(oct)

11 J((B+ic)) sin («t)e®

12 R(B+ix)) cos(axt)e’




TRANSFORMATION V OF SOME NOTE FUNCTIONS

T
F
N.

Function
y(k)  keN,

Definition

V(t):=T(y(k),1)

telR

FUNDAMENTAL PROPERTIES OF THE INVERSE TRANSFORM V
P . .
A Function Definition
N V(t) teR yAk):=T'(V(¢),k)  keN,
1 O‘Vl(t)‘i'ﬁVz(t) O‘)’1(k)+ﬁy2(k)
2 V(1) V():=T(y(k).t) t€R (k)|
3 V(at) o y(k)
4 tV(t) ky(k—=1)
|

6 V(1) % (o (£ )y (k1)

=0
7 eV (t) Zof(")y(k—f)

=0 T




FUNDAMENTAL PROPERTIES OF THE INVERSE TRANSFORM V

i Function Definition
~ V(t) teR yA(k):=T'(V(¢),k) k€N,
8 sin () V (1) :Z_OZ(—I)TO(ZTH(2Tk+1)y(k—2T—1)
9 cos(oxt)V (t) +Zj.;)(—l)T(sz(k_r)y(k—2T)
10 Z:V(” y(k+n)

g
11 dth(r)[_O k)=
12 [v(gag y(k=1)=y(=1)
13 V1(t)V2(t) yl(t)*y2(t)
14 V(1) T(T (T (y(k)y(E=k). 1), K)|=s. 1)
15 In(7) —yé%k—l)—ﬁigﬁln(z)zkzdz
16 In(£+1) 21”456: r0,z)z" 'dz con I(0,z):

INVERSE TRANSFORMATION OF THE NOTE
FUNCTIONS
AF|  Function Definition
N.| V(1) t€R yAk):=T'(V (t),k) k€N,
1 1 5 (k)
2 t" n16*(k—n)
3 o' (In(k))
4 e™ o
!
5 t" (kf‘n)
6 sin () sin (k 1t/2)
7 cos (1) cos (k/2)
8 sin (oct) «"sin (kt/2)
9 cos(xt) o cos(k/2)




INVERSE TRANSFORMATION OF THE NOTE
FUNCTIONS
AF|  Function Definition
N.| V(1) t€R yAk):=T"'(V (¢),k)  keEN,
10 sin (ot )e”’ 3((B+ia))
11 cos(oxt)e’’ R(B+in))
L "
12 Y (—1)" k!
1
13 1—; k!
k
14 (n;t)! 4 I(n+1+8)
. =0
15 e_t2 Hk(())
EXAMPLE 1
PROBLEM

Solve the following equation to the finite difference of the 2° order.
Y ,=3Y, +2Y,=0 Y,;=2 Y,=3 (50)

Now, to solve such a simple equation to the finite difference of the second order
homogeneous with constant coefficients, may be used various methods, including the
method of the generating function and the method through the transform V that we
have realized

SOLUTION

a) METHOD OF THE GENERATING FUNCTION
We consider the following generating function:

G(t):=) Y, " (51)
k=0
DYt 3D Y, 2D Y =0 (52)
k=0 k=0 k=0

(Y, +Y t+Y 4. )=3(Y,+Y, t+Y,£*+...)+2G(¢)=0 (53)



G(1)-Y,
> -3 . +2G (¢)=0 (54)

2-3t _ 2-3t 1 1

O e T —n0-20 1-¢ 12 (53)
Now, keep in mind the following observations:

< i 1 S IO

I;Ot_l_t <1 kzz‘:)(zt) =5 Ri<1 (56)

from which we obtain the new generating function (already have been considered the
initial condition):

G(t)=). (1+2)¢ (57)

b) RISOLUTION METHOD THROUGH THE TRANSFORM V

Calling with T such transformation from variable k€N to variable ¢€R and
placing Y,=y(k) with V(¢):=T(y(k),t) we have the following:

T(y(k+2),0)=3T (y(k+1),1)+2T(y(k),1)=0 (58)
d—zV(t)—3iV(t)+2V(t>:o V(0)=2 V(t)=3 (59)
dt’ dt

The associated characteristic equation is:

r?=3r+2=0 - r=1 r,=2 (60)

thence the solution of the differential equation with the initial conditions is:
V(t)=e'+e™ (61)
where now using the inverse transform, we have the desired solution:

Y, =y(k)=T""e'+e* k|=1+2* (62)

EXAMPLE 2
PROBLEM
Given the following Taylor series expansion:



V=& T ©)
determine the function that has generated such series expansion
% %k %k % %
SOLUTION
Rewrite the expression (63) as follows
_. X ¢ sin(k)
V0=t 2 o) (64)
for the transformation tables, we can write:
sin(k) \_ V(1) y(k+1) \_p(0) | T(y(k),1)
T\=otF—— where T|—— ,t)— P (65)
but we have also V(¢):=T(y(k),t) t€R
y(14+k)=sin(k) — y(k)=sin(k—1)=sin(k)cos(1)—cos(k)sin(1) (66)
now reassemble:
sin(k) |_ sin(=1) cos(l)T(sin(k),t)_sin(l)T(cos(k),t)
N7 " t t (67)
sin(k) \_sin(1) , cos(1)e"*"sin(zsin(1)) sin(1)e" " cos(zsin (1))
N )= ° t t (68)

and then the searched solution is

V(#)=sin(1)+(cos(1)sin(zsin(1))—sin(1)cos(¢sin(1)))e" " (69)



EXAMPLE 3

PROBLEM

Given the following composite function, find the generalized expression of the k-th
derivative.

f(x)=sin(bx)e"" (70)

SOLUTION
In order to use the transformed V we make the following changes in the function (70)

V(t)=f(x+1)=sin(b(t+x))e""™=(cos(bx)sin(bt)+sin (bx)cos(bt))e" ™ (71)
So, after some trivial step, we have:

y(k)=cos(bx)e™ T (sin (bt)e, k)+sin(bx)e‘” T (cos(bt) e, k) (72)
where thanks to the direct and inverse transformation tables from which we highlight
two properties:

T (sin(b1)V (1), k)=3 (T (' V (¢), k)) (73)
T '(cos(be) V (2), k)=R (T ("' V (1), k)) (74)
we obtain:
T (cos(bt)e”|=R (T (""" k)|=R((a+ib)] (75)
' (sin (bt)e"|=3(T7" (e ", k) |=5[(a+ib)'] (76)

So thanks to other rules associated with this transformation we have the solution
searched
dk _ ax ~ . k . ax . k
FV(x)_cos(zme 3((a+ib))+sin(bx)e” R((a+ib)) (77)
X

EXAMPLE 4
PROBLEM
Develop in binomial series the (sin) function, i.e.:

sin(x)=3 (X)an (78)

n=0 \1



SOLUTION
In order to use the transform V we perform the following formal changes

sin(x)|,_,=sin (k) thence a,=y(n) (79)
therefore the expression posed by the problem becomes:

2(k)=sin (k)= WG (80)

n=0 \1

where thanks to the following rules for the binomial expansion

(k=T T(y(n).0).k) = y(k)=T"'(e"T(z(k).1).n) (81)

we have
T(sin(k), t)=sin (rsin(1))e" " (82)

thence
a,=y(n)=T "(sin(¢sin (1))e" """, n) (83)

where putting «=sin(1) e B=cos(1)~1 and taking into account the AF #10 we
have:

a,=3((B+ic)")=T ((cos(1)—1+isin(1))")=3J ((e"—l)") (84)
and therefore as required by the problem is

sin(k)=. sl (85)

n=0 \1

where extending the variable 4 in the domain of the real, we have for each x the
following relation:

sin(x)=y, —EFD 50 yf) (86)

= n'I(x—n+1)

EXAMPLE 5
Determine the sum of the following binomial expansion:

+o0

S(k)=2,

n=0

thanks to the rules of the binomial expansion, we get

n

k )n o 87)



S(k)=T"e'T (ko ), k) (88)

EXAMPLE 6
Determine the analytical expression of the following finite sum.

S(n)ZZ:) e (89)

SOLUTION
Thanks to the following theorem of the finite sum expressed by the following
formula:

S=1"|¢'[ LT EAE |+ 3005 () with s(m)=|] "0 (90)

we proceed as follows:
y(k)=k 91)

where for the TF 4 we have that:
T, 0)=Vi()e'=(t+37+1) ¢ (92)

where V,(¢)=t+3¢°+¢ is the Volonterio's polynomial of the third order. Thence:

Sn)=1"{e'[ eE%(eﬁ(gﬂ §2+§3))d§,n) (93)
1e.
S(n)=T" e’f(1+7§+6§2+§3)d§,n) (94)
0

After some calculations, we obtain:

4
S(n)=1"[¢' t+%t2+2t3+tz n) (95)
1.e.:
Y O R T KU 7k K1k
=7 'e'|t+= 428+~ | n|= += +2 +—
S(n) S\t ety ") =1 2 (k=201 “(k=3)! " 4 (k—4)! (96)




S(n):k+%k(k—1)+2k(k—1)(k—2)+ik(k—1)(k—2)(k—3) 97)

In conclusion, we have:

S(n)=%4+ (98)

Multiplying the eq.(98) for 1/6, we obtain an equivalent formula that can be
connected to the Ramanujan's modular function, linked to the modes corresponding
to the physical vibrations of the bosonic strings.

We observe that the sum of the cubes of the numbers of the succession of natural
numbers is the square of the sum of the numbers of the succession of natural
numbers, namely:

ilﬁ:(i k) where kZ:)k:k(k;l) (99)

k=0

EXAMPLE 7

PROBLEM

Determine the generalized term of the Maclaurin's series expansion of the following
composite analytic function:

y(t)=e"sin(B?) (100)

SOLUTION
For the same definition of transform and inverse transform V and for the AF N° 10:

o=y (k)=T"(e"sin(Bt), k)=3 ((a+ip)) (101)
EXAMPLE 8

PROBLEM
Determine the generalized expression of the Fibonacci’s numbers.

SOLUTION
The law governing the Fibonacci's numbers is the following:

Vit Y=Y, Y,=0 Y,=1 (102)



kjo, 1,234 567 8 9 1011]12]13

14

15

16

o, 11,2358 1321 34|55|89 144|233

377

610 967

In order to apply the transformation V we must make, for formalities, the following

changes:

Vi=yk)  V(e)=T(y(k).1)

So rewriting everything using the transform V we obtain:

T(y(k),t)=T(y(k+1).0)+T(y(k+2),1)

Hﬂﬁ%Vm:%ﬂdﬁ v (0)=0 %V@ﬁd

where from this differential equation we obtain the following associated
characteristic:

_1+45
2

rr—r—1=0 with s

and thence

V(t):aer‘t+ber2[ with V(O):O e V(O):l

In conclusion, the solution of the differential equation is:

1+\/§[ 1-5
Vit)=—e > ——

Now inv-transform obtaining the searched solution:

59

145
2

YkZJ’(”):%

(103)

(104)

(105)

(106)

(107)

(108)

(109)

This expression can be connected with the Rogers-Ramanujan identities, that are
connected to the aurea ratio, thence to the physical vibrations of the supersrings that
are connected to the number 8, that is a Fibonacci's number (we remember that the

ratio between a Fibonacci's number and the subsequent tend to the aurea ratio

(1,61803398...)




We have the following expression:

k k
1 o1+ 1- 5
J_D 2 2
that is the eq. (109).

Now, it 1s well-known that the series of Fibonacci’s numbers exhibits a fractal
character, where the forms repeat their similarity starting from the reduction factor

179 = 0,618033 = % (Peitgen et al. 1986). Such a factor appears also in the

i
0>
I

famous fractal Ramanujan identity (Hardy 1927):

0,618033= 1/¢ = Q- R(q)+ Vs 5
p3Ns DL e e di ]l
2 P 5.[0 F175) 5
0 i
0 0
B} 31 V5 i
=20 - —R(g)+

and m 20% (@) N 3+\/§ L o d H,
D 2 \/_I 1/5)t4/5 D

where O = \/§2+1'

We have also that

7= %logé\/ﬁlo+ilﬁﬁ+ \/% O+4N—EH (109a)
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Furthermore, with regard the number 24, this is related to the physical vibrations of
the bosonic strings by the following Ramanujan function:
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Furthermore, egs. (109b) and (109c) are related. Indeed, we can write also the

following expression:
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Thence, after some calculations, we can rewrite the expression (109) also as follows:

Y, = y(n)= %EHHZ % - (- 0,61803398...)"E=
oy ;
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from which we can obtain the following mathematical connections with the eq.
(109c¢):
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EXAMPLE 9

Determine the function (analytic) generated by the following infinite sum:

k=+w

_ sin(x)
F= 2 0oy

We proceed in such a way as to make this equation conforms with the expression of
the definition of transform V.

(x=3) (110)

we observe that (k+1)!=(k+1)k! and furthermore we set x—3=¢ obtaining:

" osin(k) £

[(t+3)= ,;) PR (111)

of course we can see now clearly that (111) can be rewritten as follows:

. R L k (112)
0= X kg
by placing respectively, the following substitutions:
V()=/(+3) and y(k)=SE) (113)
k+1
Now we need to consider if is possible to perform the transformation (this is
equivalent to show that the eq. (110) converges), thence:
tim (S0 < i L= 0<to0 v (114)
ot | K1 koo |k 1 o DA

Equation (114) is to verify that the condition of existence of the transform of (k)
is true and then we proceed to the transformation using the attached tables in this



paper:

y(k+1) _Vl(t)_Vl(O)
k+10 7]

where for the initial value Theorem:

V(t)=T with y(k+1)=sin(k)u(k)

1 k=0
k)=
u(k) [0 oo keN

For the PF 16 we observe that:

where
y(1+k)=sin(k) where y(k)=sin(k—1)=sin(k)cos(1)—sin(1)cos(k)

thence

Ty(11++kk>,t):V(t)_tV(0) where  V(1)=T(y(k). 1)

T/sin(k)cos(1) - cos(k)sin(1),z) = ¢!l sin(zsin(1)) cos(1) -
- ¢ cos(¢sin(1)) sin(1)

V(t)=e"Wsin(¢sin(1))cos(1)—e “*Vecos(¢sin(1))sin(1)=e"“*Vsin (¢sin(1)—1)

V(0)=e"*"sin (¢sin(1)—1)=—sin(1)

thence the eq. (117) becomes:

eI Wgin (¢sin(1)—1)+sin(1)

f(t)= (1=3)
and finally the searched result of (110) is:

(115)

(116)

(117)

(118)

(119)

(120)

(121)



k=+o x—3)cos(1) - . .
kZ::O (Slin_(f))!.(x_”":e( ()sln((x(—jlsélgl(l)—1)+s1n(1) (122)

EXAMPLE 10

PROBLEM
Represent the Hermite’s numbers using an integral formula.
SOLUTION

Consider the following famous relationships concerning the polynomials and the
Hermite’s numbers:

> d" 2
H (t)=-1)"¢ ! 123
b e er a3)
p +o tk
e :;()Hk(o);! t0R (124)

The formula (124) satisfies the necessary and sufficient condition because the (6) is
valid, as it is convergent for each ?U R, and then the radius of convergence is *+ ©® > T
then in such case, the relation (6) is valid. Below there are some Hermite’s
polynomials :

H,(f)= 4-2; Hit)=87-12t; H,[f)=16:"- 482+ 12,
(125)

where if we place 7= 0, we obtain the Hermite’s numbers:

H,y(0)=1;

H,(0)=-2: H,0)=0:

b

H,(0)=0: H,(0)=12; H(0)=0; H0)=-120

b

So, by combining the formula (6) with the (123), we have that:

V(e)= |, = e cos(sin(2¢ ) - isin(sin(2¢)))), (127)

thence, the real part of (127) is:

e ¥ cos(sin(2¢))  (128)



which, substituted into (6), becomes a new formula of the Hermite’s numbers:
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= 27 (k+ )} o) cos(sin(2¢ ))) cos(ké JdE k2 0. (129)

0

We note that for H,(0)=12 and H,(0)= - 120, and know that 12 = 24/2 and 120 = 24*
5, we have a possible relationship with the physical vibrations of the bosonic strings
by the following Ramanujan function:
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Thence, we obtain the following mathematical connection with the second equation
(129):
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EXAMPLE 11
PROBLEM
Calculate (- 1)* by an integral expression using the (6).
SOLUTION

For the (4), follow that the radius of convergence is * ® > T | and then we can use the
(6). From TF N.5, placing ¢ = -1, we have:

V()= |- 1))z e (130)

therefore in the (6), we have:



k)= (v (e). k) = nzr(ku)}ﬁz(rf(e’f Deos(ké)ds kN k2o (131)

where:
Q(V(e’f )): {R(e'eif): e ) cos(sin(¢)),  (132)
therefore:
nl}e coslt cos sin(¢ ))d¢ k=0;
(- 1) = nzr (k+ l)f e cos(sin(¢ ) cos(k¢ Jd€ KON k#0. (133)

EXAMPLE 12
PROBLEM

Express the relation that exists between the Volonterio’s polynomials and the inverse
transform (6).

SOLUTION

From the formula (23) of the Volonterio’s polynomials we have:
o tk
= k' —
ZO 0 (134)

Since the radius of convergence is + @ > T | it is possible use the (6) and thence:

k" = nlj Rrlet)las  k=o;
0
k" - HEr (k + 1)} Rlet)|cos(k )de  kON, Kkto0. (135)
0
namely:
kK"=0 k= 0;
2

o - ;I’ (k+ 1)} ﬁ(n(eif )ecos(f)wsin(é))cos(kg )df kKON, k0. (136)
0



where:
Vlt)=t+ 62, Wile)=e+32+ 2 v(e)=t+ 702+ 6+ £,

Now, putting 7= 2 in the expression ¢+ 7¢° + 6¢° + t*, we have the following result:
2+ 7027+ 627+ 2% =2+ 704+ 608+ 16= 2+ 28+ 48+ 16= 94 ;

We note that 16= (48/3);(8x 2) and 48= 24x 2 are related with the physical vibrations
of the bosonic strings by the following Ramanujan function:
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Thence, also for the second equation (136), we can write the following mathematical
connection:

m
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Appendix 1
On some mathematical connections concerning some sectors of string theory.

Now we analyze the possible mathematical connections between some equations
regarding some sectors of string theory and some expressions already described
previously in this paper (see egs. (6) and (86)).

We define as inverse transform of 7{t) the discrete function »(k) obtained by the

k
following definition:  y(k)= T(V(¢).k) = %V(tﬂ[:o or by the following alternative
formula for k0 Nj :

A= T = 2 (ke e eolie e, a)

0

where I is the Euler Gamma function and ¢ is the Eulero-Nepero’s constant (
e= 2.718281828....).

+0

If we develop in binomial series the following function: sin(x) = Z Ei%ﬂn , applying

n=0

and using the transformed 7, we obtain the following relationship:

. _ iy r (x + 1) i_q)m
sin(x) = ;O—n!l' (x- - 1) J (e 1) )’
from which, integrating, we can to obtain:
. _ i r ()C u 1) -
JSII’I(X)— Igomj(e 1) ).

We know that ISin(X) = - cos(x) , thence, we obtain the following relationship:

g I'(x+ 1)

Iiomﬂ((ei e - coslal . m)

n=

a)4-point tachyon amplitude

In 1968 Veneziano proposed the following heuristic answer




with a (s)=a(0)+a's.

Euler Gamma function has poles in the negative real axis at integer values ¢ (s)=n
with residue

)= Ll (-a(s)+ n+ 1)

-a(s)l-afs) e - als)+ 20l als) (- 1))l- as)+ )

)

T -a(s)tn

Hence, at fixed ?, the amplitude has infinitely many poles at sU (0,@) for
a(s):a(0)+sa":nor

= M? (1.3)

with residue

o VT rald) v e+ e+ 2)dale)en) 1
Alsd) = e T i IDEERE

In the bosonic string the simplest vertex operator is the one for the tachyon state
N =0 hence M?=-4/a"'. We have:

(0; p) = gSIdzzeW - gsjdsz(z,z;p), (1.5)

With regard the 4-point tachyon amplitude, we have the following equation:

A.p,)= 6HZ p,H 2.0 j|'| dzz|'| -2 7" (1.6)

Setting m = 4 we end up with

A ) 5Hz p’EVolSch Iﬂ d’z ﬂ TR (W)

1

After fixing the SL(2,C) invariance by putting the insertion points at 0,1,z and z, - ©
we end up with

A (4) gs25 EZ pi@[dzﬂzr 'pilps |1_ Z|a 'P2lps (1.8)



using Gamma function identities this expression can be given a nice form. One
must use the integral representation
) w2_2nl {a)r (B)F (c)
R B e S T e O

2a2

where a+ b+ c= 1. With this, (1.8) can be shown to be equal to

1 0's/A(-1-a't/4)r (- 1-a'u/4)
[(2+a's/4)r(2+a't/4)1(2+ 0 'u/4)

Al 552

(1.10)

in terms of the Mandelstam variables
s==(p+ ) ==t p); w=-(ptp) (111
which satisfy on shell (i.e. use the tachyon mass - p; = M* = -4/a")

S+t+u:—§p2=ZMg=-E (1.12)
= oot

We can write also the following mathematical connection:

~ quHz p,DIdZZ| |’~7 Ples |0 'p2lps ~

1 0's/A(-1-a't/4) (- 1-0'u/4)
di r (2+a's/a)r (24 a't/4)r (2+a 'u/4)
16
0 -Z Py MP=-—2. (L13)

i=1

x gqéHZ

i

This expression can be related with the following Ramanujan’s modular equation
linked with the “modes™ (i.e. 8 that is also a Fibonacci’s number) that correspond to
the physical vibrations of the superstrings:

i » COS ntxw
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Thence, we have the following relationship:
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We note that this relationship ca be related also with the eq. (a), i.e. the inverse
transform of V/(¢) , thence we obtain this further mathematical connection:

TVehk) = 2 (ks 1 )% [ R[y[e* Jeos(e )at %u

n 0
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0 ngZ pDszz| |a |
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! 16
0 - 2= M?=-—"1
Z pi=) Mi=- o
0 J. » COSMtxw' o
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1] ey i) 3 1.15b
S 0 . (1.15b)

o, o

b)the open string scattering

With regard the open string scattering, the amplitude is computed with operator
insertions along the boundary of the disk which maps onto the real axis of the
complex plane. The equation of the amplitude is:



4

(4) = & inX(x) inX(x)\ < - 52 - X
A —Voz(SL(z,R))mldx"<ep e > VoZ(SL2R 52 ple x| Nx X,

(1.16)
For a given ordering, the residual symmetry can be used to fix 3 points to
% =0,x,=0,x,= x and x,=® . The resulting expression contains a single integration
for 0< x<1

20 'p; ]Pj

-7 (1.17)

Az o ,[ol | x|20 'p1p>

This integral is related to the Euler Beta function (thence with the Euler Gamma
function)

Bla,b) = Ioldxx“'l(l- x)"! (1.18)

Whence, using now the tachyon mass M’=-1/a' one recovers the Veneziano
amplitude

A - gSEr (‘rl(‘_ ‘isgr((sjt)f U E (1.19)

Thence, we have the following possible mathematical relationship between (1.16),
(1.17) and (1.19):

20 'p;Op;

()— & Py (*1) Py (XA) ~ 26 -
. Vol(SL(2,R)) m dx< et > Vol(SL(Z,R 6 62 p,[Jﬂ dxﬂ i x)

1= "7 0 gSE b 1( o5t ((S f);' 't)E. (1.20)

Also this relationship can be related with eq. (a), thence we obtain this further
mathematical connection:

T = 21 (ks 1%} (e ))coslt ) e %u

0

0 gSJ'O dx|x|2a npe

4

& pxln) iRl g, % .
7 Tt T, e ) i L T el b

1_ x|2a 'polps D gYEr (_rl_ a 'S)I- (' l_ a 't) %. (1.20b)

(-1-a(s+ 7))

20'p; DP/
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¢) Four point amplitude for the tachyons from CFT

The ground state tachyons in the twisted sector corresponds to:
k
M= -01- 20 (121
0 N[ (1.21)

For the near marginal tachyons, in the large N limit, which are in the (N - k)th sector,
the vertex operator in the (- 1-1] representation is,

The four point amplitude for these lowest lying tachyons can now be computed by
taking two vertices in the (0,0) representation and two in the (- 1-1) representation.

CICdZZ<V(:1,—1)(Zm »Z, )ewTFew 7NﬂFV(il,—1)(1)V(:1,—1)(292)807}76@TFV(il,—1)(0)>. (123)
The constant C = g.C; , where C; is related to g, by
4
C; = - (129)

This amplitude can now be computed and is given by,

|-2-t

-2-5
I=Clk k) a2 2 [
( 1 3) IC z |F(Z)|2 ’

(1.25)

where F(z) is the hypergeometric function,

Flz FH—I- Vli-aE) v, (1.26)

LI

N’ D n
and = '(k1+ kz)za L= '(k2+ k3)2a § = '(k3+ k1)2-
In the large N approximation,

= 1+ _H b2 %z3+ Q+ O((k/N)Z), (1.27)

Note that the terms proportional to /N in (1.27) shift the s-channel pole. There is an



additional factor of (k.k,)*, due to which the contact term from any of the terms of
(1.27) apart from 1, would at least be of O|(k/N)*|. With this observation, the integral
can now be performed for (2) - 1.
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Now using s+ ¢+ u= 4m’,

rH1— SHrH1— tHrHu S i

- _4n2gzg(l- 2m2)2 . (s- 2m2)2 + 3(S+ ) m? DX

c . (1.29)
7S t i rH1—5 —HI’HHEHFHH 5H
where we have to expand the gamma functions.
Also here we can write the following relationship between (1.25) and (1.29):
o A
1= Clk k)’ [ d*z
173 I |F( )|
N ! st
P rHl Hr Hl Hr H1+ > @
0 -41%g’[ + +3(s+ 1) - 8m? Dx (1.30)

s t i I'EI—S eranHrHufH

Also this expression can be related with the eq. (a) and with the Ramanujan’s
modular equation concerning the number 8 and thence, we obtain this further
mathematical connection:

T 6) = 21 (ks 1)H} (e |)cos{ it )t Hu

(=)
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d) expressions concerning the four tachyon amplitude in CSFT

With regard a closed analytical expression for the off-shell four tachyon amplitude in
CSFT, Giddings gave an explicit conformal map that takes the Riemann surfaces
defined by the Witten diagrams to the standard disc with four tachyon vertex
operators on the boundary. This conformal map is defined in terms of four parameters

a,B.y.0.
The four parameters are not independent variables. They satisfy the relations

af =1, yoi=1 (1.31)

and

N | =

=N o(8,,K)- A o(6,.5), (1.32)

where A o(0.k) is defined by

No0.k) = 2(EK)E )+ K(K)ES k) - K(K)F(0.K)). (1.33)

=

In (1.33) K (k) and E(k)are complete elliptic functions of the first and second kinds,
F(6.k) is the incomplete elliptic integral of the first kind. The parameters 8,.6,.k and
k' satisfy

kzzg—, KP=1-k, (1.34)
., . B : _a?
Sm291'ﬂ2+y2, 51n292-az+y2- (1.35)

By using the integral representations of the elliptic functions it is possible to write the



equation (1.32) in a useful form

y/a S\ pria 1

y- oyt T
\/z +V4\/1+t =y el )I”y “ t2+y4(m)3 4. (1.36)

) d

To expand (1.36) for small /¥ and ¢ we have to divide the integration region into
three intervals in such a way that the square roots in the denominators of (1.36) can
be consistently expanded and the integrals in ¢ performed. For example consider the
integral in the first term of (1.36), it can be rewritten as

yla 1 _ y? 1 1 1 y/a 1

Ly dt\/z2+ N 'Iaydt I dt - +L dt 1
Y \/1+\/1+t t\/1+};2\/1+t2 \/1+i \/1+t

(1.37)
In each integral of the rhs the integration domain is contained in the convergence
radius of the Taylor expansions of the square roots containing / , so that they can be
safely expanded and the integrals in ¢ performed. With this procedure one gets the
following equation equivalent to (1.36):

2

© FH;H H 2 D 2nt1 D
)y Y- ae ) o (- a)
aror Bl B L g HapE2nt 2k 18 y f
02 002 0
1 1
rir g L0 -
an _ 4k 0 0 H 1 0 0
ST -5kr,y“"1nyzu-(l-y“)K(VZ)Z 2= 1 20 5 +2k+lﬂy‘”‘-ﬁa—% lay )0+
n ] . :orgz-n@r @—z-an!k!@ n oo i
i y4n _ y4k i n ) 1 D n a_ 2k+3 DH 1
+ (1 5kn) 2k_ 2n 5kny lny + 2I’l+ 2k+ 35}/ Ey E (ay) EE 4 . (1-38)

Thence, from (1.36) and (1.38) we can write the following mathematical relationship:
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I'HLH E 2n+1
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02 ‘00 2 0O
_ V4n V4k_ 2 D4n_ _2k+3 anH_l
#{1-8,, ) = 8y iny +—2n+2k+3ﬁy %y% (ay) EE S (1.38b)

Also this expression can be related with the eq. (a), and thence we obtain this further
mathematical connection:

TV g) = 2 (ks 1%} (e ))cos{ k¢ )de %u

V/” 4 PAPYEL 1 _
e S o R S s

. erH 2nt1
)y e oy -5,

i
dror Lo B Bl a2t 261G
12 002 0

H T H H
4n _ 4k D " D
y-y -ékny“”lnyu -y )kl Z 1 020 0 20 H | Dy4k_%a_% oy 0
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y4” V4k 4n 2 1 D 4n e 2n DH _ m
- 1 - H__ -
H1m8,,) 7 G My T T Ey% (ay) EE L (1.380)

Around x=1/2,1ie ¢ =+/2-1 and ¥ =1, it is possible to obtain only * (or ¢ ) as a
function of / and not the opposite. Such an expansion can be obtained by first
expanding eq.(1.36) around ¥ = I and then looking for an expansion of ¢ in terms of

powers of 1- ¥ and In(1-y)

0 =2-1+a(l-y)+ a(l-y)+ 4 (1-y)n(1-y)+ b,(1- y) In(1- y )+
t 1=y )In(1- ) + o (1- y P (in(1-y))+ . (1.39)

The coefficients in (1.39) are determined by requiring that (1.36) is satisfied. We
provide here directly the expansion of X as a function of 1~/ up to the ninth order

X =

1.1 l-y@m_ 1 yg Ly -y
28(1 y)Hl 21gH HH lylog@4@ 61yH1+3logH DH

Lo y) - 07- 10810gH yH 2410gH _yH+ 641og H Hﬁ

1 -y
96(1 y)H7+1210gH HH 536 0
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—(1-y) H119+10010gHTH 40log’ H14VH 3201gH1 A (1-y)¥- 321+

4 H 10240

1
107520

- 601ogH Z H+ 12401ogH 4y "+ 2240l0g° Hl VHH (1- y) T 1871+ 57401ogH H+

1-y -y
+ 2912010g2H—H+ 3136010g3H—H +.. 1.40
040 04 DH ( )
e) physical interpretation of the nontrivial zeta zeros in terms of tachyonic string

poles

The four-point dual string amplitude obtained by Veneziano was
A4,-= A(S,t) + A(t,s) + A(u,s) = IRdx|x|a_l|1- x|B-1 = B(a LB ) , (1.41)
where the Regge trajectories in the respective $.%.% channels are:

1 1 1
-a(s)=1+5s, -ﬂ(t)=1+5t, -y(u)=1+5u. (1.42)

The conservation of the energy-momentum yields:

kit ky= kst kO kit ky- k- k=0, (1.43)

We have also that the sum
sttt uz 2R3+ K2+ k)4 2k Ok, - ky Tk, -k Oky) = -8 (1.44)

in mass units of mpn = 1, when all the four particles are tachyons and one has the
on-shell condition:

k k2 kz - m - — 2m Planck — — (145)

in the natural units %=c= G=10 Lpa« = 1 such that the string slope parameter in
those units 1s given by ¢ '= (1/ 2) Lpnsk = 1/2 and the string mass spectrum is
quantized in multiplies of the Planck mass #pjane = 1.
From the conservation of energy-momentum (1.43) and the tachyon on-shell
condition eq. (1.45), one can deduce that:

(k4 &) = (ko + k)70 KOk, = ky Ok, (1.46)

Therefore, from eqs. (1.44) — (1.46) it is straightforward to show:

stttuz2(-2-2-2)+ 2k Ok, - ky Ok + k)= - 12+ 2(k, Ok, - k, Ok, + k,)) =
= =12+ 2(k Tk, = ky Ok, - ey Ohy) = - 12- 2k, Tk = - 124 4= -8 (1.47)



This relationship among s+ ¢+ u = 4m* = -8 will be crucial in what follows next. From
egs. (1.42), (1.44), and (1.47) we learn that:
a+pry=1, (1.48)

There exists a well-known relation among the I functions (Euler Gamma function)
in terms of { functions (Riemann zeta function) appearing in the expression for
Als,t,u) when ¢.f fall inside the critical strip. In this case, the integration region in
the real line that defines A(s.t,u) in eq. (1.41) can be divided into three parts and leads
to the very important identity

~
—_
—

e g1 lalrls) Tl ], rlyls). ¢li-o)ch-
Aot = slo )= TG Toon) Thyesl T (]

where ¢ + B +y =1 and ¢ .8 are confined to the interior of the critical strip.
The derivation behind eq. (1.49) relies on the condition ¢ +  +y =1 eq. (1.48) and the
identities

sinm (o + )+ sinm(a +y)+sinm(p +y)= 4cos%cos%cos%, (1.50)
ry)=r(t-a-g)= L (1.51)

[a+p)sinm(a +p§)°
plus the remaining cyclic permutations from which one can infer

X)) 2rle -2,

(1.52)

) o gy st ee]

(1.53)

rr((/;)i(yy)):r(a)r(ﬁ)r(y)w. (1.54)

Therefore, egs. (1.50) — (1.54) allow us to recast the left hand side of (1.49) as
Als,tu)= Blo,p)- ;%%%r LB ). (1.55)

And, finally, the known functional relation

(2n)7¢ (1- 2) = 2cos%zr (2 (z), (1.56)

in conjunction with the condition @ + 8 +y =1 such that (2r)"’"'=2r is what



establishes the important identity (1.49) expressing explicitly the string
amplitude A(S,l,u) either in terms of zeta functions or in terms of I functions.
In conclusion, we have the following interesting relationship between the egs. (1.41),
(1.49) and (1.55):

A, - A(S,l‘)+ A( ) A( ) I dx|x|a_1|1- x|ﬂ_1 = B((I ,B ) [

o sl o ) R (< TR A i
:nicos%cos%co STl i), (57
from which we can to obtain the following equivalent expression:
%4‘ - %IRdx|x|”“|1- R %B(a B)= nlcos%cos%cos%r(a r(g)riy). (1.58)

In this expression there are both @ and 8, i.e. the number that is connected with the
“modes” that correspond to the physical vibrations of a superstring by the following
Ramanujan function:

0 Iw cosmixw' "”d
[ D w/
4nantilog ™ coshnx it ;4'
[ i g tw
oo 10 e ‘o) g (159

; IOgE\/HWH+ \/H10+47\/5H§

Thence the final mathematical connection:

l = l P L = l = l ﬂ ﬂ ﬂ
4A4 4IRdx|x| |1 X| 4B(a,ﬂ) . cos < cos o cos . I'(a )I’([i)l’(y)D
il Iw cosntxw e
4Hantilog 0 COShITx H \64'
D —w' D t'w

- e odi) 5 (160)
L

Also here we can to obtain an interesting mathematical connection between the eq.
(1.57) and the eq. (b). Thence, we have the following relationship:

0




jgon'rr(Ll)j((é - 1)) -~ cos{x) 0

.(x-n+1)
0 Als,e)+ Alt,s)+ Alu,s)= I dx|x|a_1|1- x|ﬂ'1 = Blo,B)0
e tllrg) rleX (), rlris) L h-a)eh-
e NG M Er i e

- ;cos%cos%cosﬂz @)r(g)riy). (1.60b)

/)Z)Z(l-y)

Mathematical connections between Gamma function and Riemann s zeta function

Riemann’s zeta function ( is defined by

()= 3 nL (1.61)

n=1

for Rez>1. In that region the series converges uniformly on compact sets and
represents a holomorphic function. If we consider the expression for the Gamma
function

M(z)= f: Fletdr (1.62)
for Rez> 0, and change the variable ¢ into ¢= ns for n N, we get
M z)= n’ J: s7lemds  (1.63)

i.e., we have

e[ e dr (1.64)

for any n N and Rez> 0. This implies that for Rez> 1, we have

- z-1 -nt g, = (" ,z- - - nt _ " - e’ _r" tz_l
e (=)= 3 g eerars e ‘E;f Edl—J’ot = [ i, (1.65)

T

This establishes the following integral representation for the zeta function.
For Rez> 1, we have

dr. (1.66)



For any zU C, we have

o 2ilAz - WNZ _ _
[(2)=n Zsm@?@'(l 2 1-2). (1.67)

Let Cbe a path. We cut the complex plane along positive real axis and consider the
integral
z-1

w

Jomdw. (1.68)

If the radius ¢ of the arc C, is less than 27 , it follows immediately from the Cauchy
theorem that this integral doesn’t depend on ¢ and the distance of the horizontal lines
from the positive real axis. We can estimate the integral over C, as

z-1

ICE ev: - 1a’w

2n

< Me ™ —_l‘d(ﬂ. (1.69)

0

Since w- e"- 1 has a simple zero at the origin, e” - 1= wg(w) where & is holomorphic
near the origin and g(O) = 1. It follows that

e~ 12 %|w| (1.70)

for small w. Hence, we have

z-1

J’CE ev::- 1a’w

<AnMe T (1.71)

for small ¢ .
From (1.71), we obtain the following interesting inverse formula:

z-1

JCS evx_ 1a’w

1
<
ST (171b)

In particular, if Rez> 1, we see that the integral over C, tends to 0 as ¢ - 0. Hence,
by taking the limit as ¢ goes to zero, and the horizontal lines tend to the real axis, we
get

-1 oo tz_l

mz-%ﬂ%mMﬂj dt =

z-1 o tz‘l o 1)ie® tz_l . iz\" t

= - 2ie™ sin(nz)r ()¢ (2) (1.72)

by (1.66). This implies that



z-1

w
Ce" -1

- 2ie™ sin(mz) (2)( (2) = J‘ dw (1.73)

for any path C we considered above and Rez > 1.
Furthermore, we have also the following mathematical connection:

z-1

- 2je'™ sin(/TZ)r (Z)Z (Z) - .[ -

Ce" -

w! 1
e o 1d‘% ae s (179

dwl
1

We remember that

0 0
0 0

B} 31 J5 0

=20 - > 0p

" 20 @) NEIREN Hl f( ) di EH (1.75)
D 2 \/_I 4/5 D
where
q):\/§+1
2

Furthermore, we remember that T arises also from the following Ramanujan’s
identities:

12 o+ 5[5+ Vi3]0, (1.75a)
BV /ET R B R

and

n:%logé\/ﬁlo+i1\/§@+\/H10+47J_HH (1.75b)

From (1.75b), we have that

m/142

1og§\/HWH+ \/HWHE (1.75¢).

24 =

Thence, with the eq. (1.74), we can obtain the following mathematical connections
with T and ®:



z-1 z-1
i sl (2 (2= [ 2w [ f% s
U 0
U 0
3 J5 1, (1.76)

D m=20-—R(g)+
201 (9)

3¢45 01 0 f2¢0 dr [
E 1+ ) eXPE\/gL) L1754 HE

and

z-1

z-1
W J d lR =<
Ce" -1 Ce"-1 4Me *°F

. JH10+11ﬁH+ JHMH% (1.77)

142 7 4 4

S

dwll

- 2ie™ sin(ﬂz)l’ (Z)Z (Z) = J

=

Thence, also mathematical connection with 24, i.e. the number concerning the
“modes” that correspond to the physical vibrations of the bosonic strings.

In conclusion, we have also a mathematical connection between the eq. (1.77) and the
eq. (6)

k)= 7 k)= 20 (e ) Rl Jeoslig )t . k0N, k2 0]

0

nzr (k + 1)} :R(V(e’f ))cos(kf Jdé O

z-1 z-1
w

[ L _<rno
ce” -1 ¢ e" -1 |4Me*™F

. n:%logé\/ﬁ1o+ilﬁﬁ+\/H10+47J§H§. (1.78)

0 -2ie™ sin(nz)l (2) (2) = J

dwll




Appendix 2.

Now we take the eq. (1.40):

x:% é(l V)Hl 2lo Hl VHH —1 V) lng VH 61 y)H1+3logH yHH
916(1- y) EW 1210gH VHH+ ﬁ(l v)° H 97- 10810gH VH 2410gH VH+ 6410 gH ‘4V HH+
25160(1 v) H119+1001ogH Z H 40log H14VH 32010 gH14V HH 10240(1_y)8[_ 101+

0,
2 o 107520

- 601ogH'TyH+ 124010g H '4y 1+ 2240l0g’ Hl ) T 1871+ 57401ogH '4y o

2fL- Y spl-y
+2912010g@ Z @+ 3136010g@ 2 EH+...

This is an expression concerning the four tachyon amplitude in CSFT. From this
equation, we take the following numbers:

1, 2, 3, 4, 7, 8, 12, 16, 24, 40, 60, 64, 96, 97, 100, 108, 119, 320, 321
1240, 1536, 1871, 2240, 2560, 5740, 10240, 29120, 31360, 107520

First series

1, 2, 3, 4, 7, 8§, 12, 16, 24, 40, 60, 64, 96, 97, 100, 108, 119, 320,

321,

Numbers Triangular Fibonacci’s | Partitions squares Subsequent
equals or equals or Equals or ratios
near near near

1 1 1 1 1

2 2 2 2/1=2

3 3 3 3 3/2=1,50

4 ~3 =5 4 4/3 =1,33

~\3, 14
7 =6 7 7/4=1,75




~N 3,14
8 ~6 8 8/7=1,14
12 ~10 ~13 ~11 ...1,50
16 ~15 ~15 16 ...1.33
~\\3, 14
24 ~21 ~21 =22 ...1,50
40 40,5~mean |=34 ~42 ...1,66=
between 36 1,618
and 45
60 =55 ~55=50 ...1,50
mean
between 60
and 40
64 ~66 64 ...1,06 =
~ §/1,618
96 ~91 ~89 ...1,50
97 ~100 ...1,01 =
~ 2,718
100 ~105 ~101 100 ...1,03 =
~ 32,718
108 ~105 ...1,08 =
~
119 ~120 ~116,5 L 1L1I0=
mean ~ 4o
between
89 and 144
320 =325 ~ 305 mean ...2,68~=
between 2,718
233 and 377
321 ~325 ~ 305 mean |~341 mean 1,003 =
between between ~ 10
233 and 377 | 297 and 395

Observations.

The numbers of the series are equal or near, initially, to the triangular numbers,
Fibonacci’s numbers, or partitions, and after there are the arithmetic means. We
observe, however, the presence of five squares, average distributed:

one for every two or three numbers.

About the subsequent ratios (a number divided by the previous), always interesting,
we can notice that include square roots, cube and so on of 7#=3,14, &= 1,618, e =
2,718 . the subsequent ratio more frequent 1,50, could be related to the




approximate mean between 1,34 and 1,67 thatis (1,34 + 1,67)/2 =3,01/2=1,505 =
1,50; or even better between 1,335 and 1,665, that is (1.335 + 1,665)/2 = 3/2 = 1,50
the exact value of the subsequent ratio, that is present five times in the last column.
That are look good connections. Even the mean between \/2,718 = 1,6486 and
V1,61803398 = 1,2720 is equal to (1,6486 + 1,2720)/2 = 2,9206/2 = 1,4603.
Furthermore /2 = 1,5708 and the mean between 1,6486; 1,2720 and 1,5708 1s 1,497
~ 1,50 thence very near to the value of the ratio. Therefore mean between the value of
the square root of e , the value of the square root of @ and of the value of n/2

Triangular

253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741,
780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275, 1326, 1378, 1431,
1485, 1540, 1596, 1653, 1711, 1770, 1830, 1891, 1953, 2016, 2080, 2145, 2211,
2278, 2346, 2415, 2485, 2556, 2628, 2701, 2775, 2850, 2926, 3003, 3081, 3160,
3240 ecc.

Partitions

i, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 5e¢, 77, 101, 135,
176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575,
1958, 2436, 3010, 3718, 4565, 5604, 6842, 8349, 10143,

12310, 14883, 17977, 21637, 26015, 31185, 37338, 44583,
53174, 63261, 75175, 89134, 105558,

Now we see the second series, with larger numbers:

Second series:

1240, 1536, 1871, 2240, 2560, 5740, 10240, 29120, 31360, 107520


http://it.wikipedia.org/wiki/Uno
http://it.wikipedia.org/wiki/2701_(numero)
http://it.wikipedia.org/wiki/Seicentosessantasei
http://it.wikipedia.org/wiki/Centocinquantatr%C3%A9
http://it.wikipedia.org/wiki/136_(numero)
http://it.wikipedia.org/wiki/Centoventi
http://it.wikipedia.org/wiki/105_(numero)
http://it.wikipedia.org/wiki/Novantuno
http://it.wikipedia.org/wiki/Settantotto
http://it.wikipedia.org/wiki/Sessantasei
http://it.wikipedia.org/wiki/Cinquantacinque
http://it.wikipedia.org/wiki/Quarantacinque
http://it.wikipedia.org/wiki/Trentasei
http://it.wikipedia.org/wiki/Ventotto
http://it.wikipedia.org/wiki/Ventuno
http://it.wikipedia.org/wiki/15_(numero)
http://it.wikipedia.org/wiki/10_(numero)
http://it.wikipedia.org/wiki/Sei
http://it.wikipedia.org/wiki/Tre

Numbers Triangular | Fibonacci’s | Partitions | Squares Subsequent
equals or ratios
near no

1240 = Mean 987 1255
1250 1597
between Mean 1292
1225 and
1275

1536 ~1540 =1597 ~1575 1,23

8
V3,14

1871 ~1830 1,21
~1891 ~1575 8
Mean ~1958 V3,14
1860,5 Mean 1766

2240 =2211 =1597 1958 1,19
=~2278 2=584 2436 8
Mean mean Mean \3,14
2244,5 2090,5 2197

2560 =~ 2556 ~ 2584 ~2436 1,14=

1,15=
8
\3,14
5740 - ~ 4181 =~ 5604
= 6765
Mean
5473
10240 - ~ 10946 ~10143 1,78
=1,77
=\3,14
29120 - =~ 28657 =26015, 2,84
~31185 = 2,718
Mean
28600
31360 - =28657 ~ 31185 1,076
8
~ V1,618
=1,0619
107520 - ~ 75025 ~ 105558 3.42




~121 393 = 3,14
Mean
98 209

Again, the numbers of this second series are near to triangular numbers, Fibonacci’s
numbers or partition numbers, or to the means of two respective consecutive
numbers. There are not squares, as in the first series. The subsequent ratios (also here
included generally between 1 and 2) are also here linked to constant as @, m and e or
to their square roots, cube and so on. Even here there are some possible connections
with the three most famous mathematical constants @, 7 and e.
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