
 1 

ON SOME APPLICATIONS OF THE VOLONTERIO’S TRANSFORM: SERIES 

DEVELOPMENT OF TYPE Nk+M  AND MATHEMATICAL CONNECTIONS WITH 

SOME SECTORS OF THE STRING THEORY 

 

 

Odoardo Volonterio
1
, Michele Nardelli

2
 

 

 

1
 Politecnico di Milano 

Piazza Leonardo da Vinci, 32 

20133 Milano, Italy 

 
2
Dipartimento di Scienze della Terra 

Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10 

80138 Napoli, Italy 

 
Abstract 

In this work we have described a new mathematical application concerning the discrete and the analytic functions: 

the Volonterio’s Transform (V Transform) and the Volonterio’s Polynomial. We have descrive various mathematical 

applications and properties of them, precisely the series development of the type Nk+M. Furthermore, we have 
showed also various examples and the possible mathematical connections with some sectors of Number Theory and 
String Theory. 
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VOLONTERIO’S TRANFORM GENERALIZED AND SERIES DEVELOPMENT OF TYPE 

Nk+M 
 

Definition 1 (transformed generalized V) 

 

The transform V of a discrete function   is an analytic function of a real variable (or complex) through which it is 

possible to pass from the world of discrete or finite mathematics in the world of differential mathematics. 

The transformed V provides an overview higher than it can provide a generating function. 

The transformed canonical is distinguished from generalized because its existence is based on continuous functions 

 and infinitely differentiable for t = 0 while the generalized is based on a continuous function and infinitely 

differentiable at  (where for  we obtain obviously the transform canonical). 

The properties of transformation and anti-transformation of the transform V are independent from the fact that we 

consider the transformed canonical or generalized. 

 

 

 

Definition 2 (inverse generalized transform V) 

 

The inverse transform V of an analytic function of a real variable t continues in the zero and infinite times 

differentiable at t = 0 (canonical) or at t = x (generalized) (in other words a function  developable in MacLaurin 

or Taylor series ) is a discrete function  defined in  through which it is possible the transition from the 

differential world to the world of discrete or finite mathematics. 
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DEFINITION OF TRANSFORM V 
 

Let   a discrete function, then we can define the transformation as follows: 

 

 
(1.1) 

 

 

CONDITION OF EXISTENCE AND UNIQUENESS OF THE TRANSFORM V 
 

To ensure the condition of existence of the transform must be ensured  the following relation: 

 
(a) 

 

where is the radius of the convergence while e is the Eulero-Nepero constant. 

 

The relation (a) is a necessary condition that has been demonstrated exploiting the condition of the root of Cauchy-

Hadamard while the condition of uniqueness can be attributed to the properties of series of powers  where e is the 

Euler-Nepero constant. 

 

 

Definition 1 of inverse transform V 

 

We define with inverse transform of  the discrete function  obtained by the following definition: 

 

 
(b) 

 

 

Definition 2 of inverse transform V 

 

Or by the following formula alternative to the (b): 

 

 

(c) 

 

where necessary and sufficient condition because (c) is valid is that is satisfied the condition  where  is the 

radius of convergence (a). 
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Definition 3 of inverse transform V 

 

 
(1.2) 

 

or, for Nk  0k  (see c): 
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Generalized definition of transform V 

 

As follows, we define the generalized transformed  : 

 

 
1.3 

 

 

Generalized definition of inverse transform V 
 

We define as generalized inverse transform of  the discrete function obtained by the following definition: 

 

 
1.4 

 

 

This definition is particularly useful in all those cases where the function   can not exist in 0. 

Another alternative definition is the following: 

 
1.5 
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Fundamental properties of the transform V 

Among the generalized transform and the canonical transform, is useful to keep in mind the following identity: 

 1.6 

 

 1.7 

 

 1.8 
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RELATION BETWEEN THE VOLONTERIO’S TRANFORM, OF LAPLACE AND ZETA 

 

We consider the following definitions of Gamma function, Laplace’s Transform and Zeta Transform: 

 
1.9 

 

we have: 

 
1.10 

 

thence: 

 

 
1.11 

 

 
1.12 

 

but, for the left-hand side we note that: 

 1.13 

 

thence: 

 
1.14 

 

while, for the right-hand side putting: 

 
1.15 

 

putting    we have: 

 1.16 

 

 1.17 
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vice versa 

 
1.18 

 

more generally, in the case of generalized transform V, we have: 

 1.19 

 

 
1.20 
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ADDITIONAL DEFINITIONS 
 

In order to read and interpret tables in complete sense clarifications is needed on the functions and abbreviations 

that have been introduced and also will be essential of the examples that follow after the tables. In any case, before 

proceeding to the list of transformations is useful to consider the following relations, definitions and functions. 

 

Definition of operator  
 

With the symbol we define the following operator: 

 

 
(1.21) 

 

where its application iterated n times on a determined function is expressed by the operator of the application 

in the following way  

 

for example, we consider    ttV sin ,thence: 

 

 
 

 

Definition and properties of the Volonterio’s polynomials 

 

(1.22) 

 

other formulas to determine the polynomial  (see TF N° 4 and 20) are the following: 

 (1.23) 

 

or by the following recursive formulas: 

 
(1.24) 

 

 

(1.25) 

 

or: 

 
(1.26) 

 

From the above definition, by the Volonterio’s transform: 
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(1.27) 

 

Definition of Bernoulli’s Polynomial: 
 

The Bernoulli’s polynomial (see TF N° 21) is: 

 

(1.28) 

 

The generating function of the Bernoulli’s polynomial is: 

 

(1.29) 

 

Definition of Eulero’s Polynomial: 
Eulero’s Polynomial (see TF N° 22): 

 

(1.30) 

 

The generating function of the Eulero’s polynomial is: 

 

(1.31) 

 

Definition of Laguerre’s Polynomial: 

Laguerre’s Polynomial (see TF N° 15 and N° 23) 

 
(1.32) 

 

Definition of the Bessel’s Polynomial of the first kind: 

 

(1.33) 

 

Definition of the Hermite’s Polynomial 

 
(1.34) 
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PROPERTIES OF THE TRANSFORM V 

 

PF 

N. 

Function 

 

Definition 

 

1   

2   

3  
 

4  
 

5  
 

6  
 

7  
 

8   

9   

10  
 

11  
 

12   

13   

14 
  

15 

 
 

16 
  

17   

18   

19  
 

 

 

 

 

 

 



 13 

 

 

 

TRANSFORMATION V OF SOME KNOWN FUNCTIONS 

 

TF 

N. 

Function 

 

Definition 

 

1  
 

2  (idem for 1)  

3   

4  
 

5   

6   

7   

8   

9   

10   

11   

12   

13   

14  
 

15 
  

16 
  

17 
  

18 
 

 

19 
  

20   

21  
 

22  
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TRANSFORMATION V OF SOME KNOWN FUNCTIONS 

 

TF 

N. 

Function 

 

Definition 

 

23  
 

24 
  

25 
  

26  
 

27  
 

28 
 

with 

  

29 
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FUNDAMENTAL PROPERTIES OF THE INVERSE TRANSFORM V 

 

PA 

N. 

Function 

 

Definition 

 

1   

2   

3   

4   

5  
 

6  
 

7  
 

8  
 

9  
 

10 
 

 

11 
 

 

12 
 

 

13   

14   
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INVERSE TRANSFORM OF KNOWN FUNCTIONS 

AF 

N. 

Function 

 

Definition 

 

1 1 
 

2   

3   

4   

5  
 

6   

7   

8   

9   

10   

11   

12 
 

 

13 
 

 

14   

15   

 

 

 

GENERALIZED TRANSFORMATION OF NOTE FUNCTIONS 

GTF 

N. 

Function 

 

 

Definition 

 

 

1  
 

2   

3   

4  
 

5   

6   

7   

8   
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GENERALIZED TRANSFORMATION OF NOTE FUNCTIONS 

GTF 

N. 

Function 

 

 

Definition 

 

 

9   

10   

11   

12   

13  
 

14  
 

15 
  

16 
  

17 
  

18 
 

 

19 
  

20   

21  
 

22  
 

23  
 

24 
 

 

25 
 

 

26  
 

27  
 

28 
 

with 
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GENERALIZED TRANSFORMATION OF NOTE FUNCTIONS 

GTF 

N. 

Function 

 

 

Definition 

 

 

29 
 

 

30 
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        GENERALIZED INVERSE TRANSFORMATION OF NOTE FUNCTIONS  

GAF 

N. 

Function 

 

 

Definition 

 
 

 

1  
 

 

2  
 

 

3  
 

 

4    

5    

6    

7 

 

 

  

 

8    

9    

10    

11    

12    

13    

14 
  

 

15 
  

 

16    
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From the GAF n.16, we observe: 

 

 1.35 

 

Where, especially, if we want to use this property we must remember to run the rest of the calculations with a seed 

equivalent based on the  properties (1.6), (1.7) and (1.8). 

 

 1.36 

 

 1.37 
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Example 

PROBLEM 

Solve the following equation to the finite difference of the 2nd order. 

 

 (1.38) 

 

Now, to solve such a simple equation  to the finite difference of the second order homogeneous with constant 

coefficients may be used various methods, including the method of the generating function and the method using 

the transform realized here. 

* * * * * 

SOLUTION 

a) METHOD OF THE GENERATING FUNCTION 

We consider the following generating function: 

 

 

(1.39) 

 

 

(1.40) 

 

 (1.41) 

 

 
(1.42) 

 

 
(1.43) 

taking into account the following observations: 

 

(1.44) 

 

From which we get the new generating function (have already been considered the initial conditions): 

 

(1.45) 
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b)RESOLVING METHOD BY TRANSFORMED V 

 

Calling with T this transformation from the variable  to the variable  and placing   with 

 , we obtain: 

 

 (1.46) 

 

 
(1.47) 

 

The characteristic equation associated is: 

 (1.48) 

 

i.e., the solution of the differential equation with the initial settings is: 

 (1.49) 

 

where now anti-transform, obtaining the solution searched: 

 (1.50) 
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Transformed V of a discrete periodic function: 
 

Let   be a particular discrete function  in which is valid the following relation: 

 1.51 

 

Thanks to the Fourier series in the discrete domain: 

 

1.52  

 

we can apply the transformation V to the (1.52) as in (1.53): 

 

 

1.53 

 

for the transformations tables, we obtain: 

 

 

1.54 

 

 

1.55 

 

 

 

1.56  

 

Now replacing  of the (1.52) in the eq. (1.56) we obtain the eq. (1.57): 

 

 

1.57  

 

 

1.58 
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thence expanding the term   ,we obtain: 

 

 
1.59 

 

Now, for the same definition of transformed  we have: 

 

 

1.60  

 

i.e. for thence   e namely: 

 

 

1.61  

 

 

1.62  

 

from which we deduce the following relations: 

 

 

1.63  

 

 

1.64  

 

In the particular case where the period N of the periodic discrete function is very large or even tending to infinity, we 

proceed as follows: 
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where the step is    namely thence rewrite the (1.63) as follows: 

 

 

 

1.65  

 

and for  we have  thence rewrite the eq. (1.65) as follows: 

 

 

(1.66) 

 

i.e.: 

 

 

(1.67) 

 

 

Given that  is the transformed  of  , we obtain the equality: 

 

 

(1.68) 

 

from which, we have that: 

 

 
(1.69) 

 

 

(1.70) 
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SERIES DEVELOPMENT OF THE TYPE Nk+M 

Assumption 
The intent is to find a form equivalent to the infinite sum below with  and  : 

 

(2.1) 

 
We will solve this problem by using the Volonterio’s Transform. 

In these proofs and examples  we will consider the convergence problem inherent in the solutions and criteria 

adopted. 
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Proof 
 

Consider the following examples with and  needed to understand the proof that will follow, where 

 is a discrete periodic function of value 1, of period  shifted by M. 

 
Table 1 

 0 1 2 3 4 5 6 7 8 9 10 

 4 7 10 13 16 19 22 25 28 31 34 

 

 

Table 2 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 

 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 

 

Thence for the (2.0) and to the Tables 1 and 2 where the relation between and is  we obtain the 

following Table: 
 

Table 3 

 0 1 2 3 4 5 6 7 8 9 10 

 
-4/3 -1 -2/3 -1/3 0 1/3 2/3 1 4/3 5/3 2 

 0 0 0 0 1 0 0 1 0 0 1 

  
 

  
 

  
 

  
 

 0 0 0 0  0 0  0 0  

 

 

With the Table 3 is easy to understand the following equivalence: 

 

 

(2.2) 

 

Now for the definition (1) of the Volonterio’s Transform, we can write the following relation (see tables and 

definitions attached): 

 
(2.3) 

 

Of course the relation (2.3) is the one that will lead us to obtain the generalized solution of the expression  (2.1). 
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We consider the following known relationship [A.V. Oppenheim R.W. Schafer – Elaborazione numerica dei segnali (Digital Signal Processing) – 

Franco Angeli Editions]: 

 

(2.4) 

 

and more in general with   M

N  we define the following expression: 

 

(2.5) 

 

of the (2.4) we must narrow the field to only non-negative integers, namely the (2.4) there must return the zero for 

each integer value negative, so we have to rewrite (2.4) as follows: 

 

 

(2.6) 

 

 

where  is a step discrete function  of Heaviside defined as: 

 

 
(2.7) 

 

furthermore, we observe that: 

 

 
(2.8) 

 

Now placing we deduce the discrete function  

 

(2.9) 

 

and then through the observation (2.8): 

 

(2.10) 

 

Or the equivalent expression: 

 
(2.11) 
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So to utilize the transformed V is useful to rewrite (2.10) in the following way: 

 

(2.12) 

 

then we can rewrite the relation (2.3) as follows: 

 

 

 

and thence: 

 
(2.13) 

 

From the PF N. 9 which is given here for convenience: 

 (2.14) 

 

we have: 

 

(2.15) 

 

While for the PF N.5 which is given here with  : 

 

 

(2.16) 

 

and thence: 

 

(2.17) 

 

We obtain finally the following equivalence: 

 

(2.18) 

 

 

To facilitate the understanding of the examples that follow will call with   
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and with  : 

 
 

manipulating the   in the following way: 

 

 

(2.19) 

 

we observe that the inside bracket of the (2.19) is precisely the function  

 

 

(2.20) 
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CASE 1 (N < M):  

Example 1.1: where k goes from 0 to 3 

 -2 -1 0 1 

 -2 1 4 7 

 1 1 1 1 

 
/  / / 

 

thence: 

 

(2.21) 

 

 

Example 1.2:  with k from 0 to 10: 

 -3 -2 -1 0 1 

 -1 3 7 11 15 

 1 1 1 1 1 

 
/ 

  
/ / 

 

thence: 

 

 

(2.22) 
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Example 1.3: where k goes from 0 to 9 

 

 -6 -5 -4 -3 -2 -1 0 1 2 3 

 -2 0 2 4 6 8 10 12 14 16 

 1 1 1 1 1 1 1 1 1 1 

 
/  

    
/ / / / 

 

thence: 

 

 

(2.23) 
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CASE 2 (N = M) 

 

Example 2.1: where k goes from 0 to 4 

 

 -2 -1 0 1 2 3 

 -5 0 5 10 15 20 

 1 1 1 1 / / 

 
/  / / / / 

 

thence: 

 

 

(2.24) 

 

 

Example 2.2: where  goes from 0 to 6 

 

 -2 -1 0 1 2 3 

 -7 0 7 14 21 28 

 1 1 1 1 / / 

 
/  / / / / 

 

thence: 

 

 

(2.25) 
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CASE 3 (N > M): 

 

Example 3.1:  where k goes from 0 to 4 

 

 -2 -1 0 1 2 3 

 -9 -2 5 12 19 26 

 1 1 1 1 1 1 

 
/ / / / / / 

 

thence: 

 

 

(2.26) 

 

*** 

 

In general from these observations by induction we conclude for deduction the following equivalence: 

 

 

(2.27) 

 

Where with  represent the function that returns the integer part of , and then we can rewrite the (2.18) in a 

simpler form: 

 

(2.28) 

 

where if    and in particular for  0M  we have   thence: 

 

 

(2.29) 
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PARTICULAR CASES 
 

Case with   

 

Case with  : 

 

(2.30) 

 

It can be shown easily from (2.2) and (2.3) that the function  satisfies the following differential equation: 

 

 
(2.31) 

 

thence: 

 

 

(2.32) 

 

we have for the TF N.2 , furthermore we have: 

 

 
(2.33) 

 

thence: 

 

 

(2.34) 

 

after several steps we obtain: 

 

(2.35) 

 

where here we separate the real part from the imaginary part: 

 

(2.36) 

 

it follows: 
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(2.37) 

 

and thence: 

 

 

(2.38) 

 

In particular for we have: 

 

 

(2.39) 

 

From 2.33 it is shown that: 

 

 
and 

 

 

 

 

 

Putting  we obtain 

 

 

 

but and thence 
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Case with  

 

Rewriting the eq. (2.18) as follows: 

 

 

(2.40) 

 

in this eq. we replacing the following expression  and thence 

 

 

(2.41) 

 

*** 
 

EXAMPLES 

 

Example 1 

Calculate    

 

Solution 

We consider   with N=2 and M=1 and we replace in the (2.41) obtaining: 

 

(2.42) 

 

the third summation of the (2.42) is null because M<M, thence: 

 

 

 

but 

 

 

 

then we proceed in the steps: 
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(2.43) 

 

 

(2.44) 

 

 

 

 

 

 

 

 

(2.45) 

 

 

(2.46) 

 

for the  TF.5 we have: 

 

(2.47) 

 

 

(2.48) 

 

Example 2 
Calculate  . We shall see how in this example the Volonterio’s polynomials lend themselves to providing a 

generalized solution of this problem. 

Solution 

In this case is M=0 thus the last term of the (2.30) is null: 

 

(2.49) 

 

For the TF. N.4 we obtain: 
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(2.50) 

 

where  is the Volonterio’s polynomial of order n. 

 

Putting  and  we have  : 

 

(2.51) 

 

 
(2.52) 

 

 
(2.53) 

 

 

Here we can connect with the Ramanujan’s equation concerning the number 8, that is a Fibonacci’s 

number and is linked to the physical vibrations of the superstrings, i.e. 
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Example 3 

Calculate . 

 

 

Solution 

 

(2.54) 

 

 

(2.55) 
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(2.56) 

 

 

(2.57) 

 

Now to calculate the transform, we use the TF No. 17: 

 
(2.58) 

 

Thence: 

 

(2.59) 

 

After some calculations we have: 

 
(2.60) 

 

Example 4 

Calculate    

 

Solution 

We'll see how this example is related to the Laguerre’s polynomials. 

 

(2.61) 

 

 

(2.62) 

 

 

(2.63) 

 

from the TF N. 15 we have: 

 
(2.64) 

 

then replacing: 
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(2.65) 

 

Putting N=2 and M=3 we have : 

 

(2.66) 

 

 

(2.67) 

 

 

(2.68) 

 

 

(2.69) 

 

 
(2.70) 

 

This last equation can be connected with the Euler Gamma Function and with the number linked to the physical 

vibrations of the bosonic strings, i.e. 24. 

Indeed, with regard the number 24, this is related to the “modes” that correspond to the physical vibrations of the 

bosonic strings by the following Ramanujan function: 
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Thence, we have the following expression: 
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
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(2.70b) 

 

ON SOME MATHEMATICAL CONNECTION WITH SOME SECTORS OF STRING THEORY 

 

In 1968 Veneziano proposed the following heuristic answer 

 

 
     
     ts

ts
tsA








,

 (3.1) 

 

with                                                                 ss '0   . 

 

Euler Gamma function has poles in the negative real axis at integer values    
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Hence, at fixed t , the amplitude has infinitely many poles at 
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with residue 
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In the bosonic string the simplest vertex operator is the one for the tachyon state  0N   hence  '/42 M . 

We have: 
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With regard the 4-point tachyon amplitude, we have the following equation: 
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Setting 4m we end up with 
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After fixing the  CSL ,2 invariance by putting the insertion points at z,1,0 and 
4z

we end up with 
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using Gamma function identities this expression can be given a nice form. One must use the integral representation 
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where 1 cba . With this, (3.8) can be shown to be equal to 
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in terms of the Mandelstam variables 
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;
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 ; 
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 (3.11) 

 

which satisfy on shell (i.e. use the tachyon mass 
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We can write also the following mathematical connection: 
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This expression can be related with the following Ramanujan’s modular equation linked with the “modes” (i.e. 8 that 

is also a Fibonacci’s number) that correspond to the physical vibrations of the superstrings: 
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Thence, we have the following relationship: 
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We note that this relationship ca be related also with the eq. (d), i.e. the inverse transform of 
 tV

, thence we 

obtain this further mathematical connection: 
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b)the open string scattering 

 

With regard the open string scattering, the amplitude is computed with operator insertions along the boundary of 

the disk which maps onto the real axis of the complex plane. The equation of the amplitude is: 
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(3.16) 

For a given ordering, the residual symmetry can be used to fix 3 points to 
xxxx  321 ,0,0

and 4x . The 

resulting expression contains a single integration for 10  x  
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This integral is related to the Euler Beta function (thence with the Euler Gamma function) 
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Whence, using now the tachyon mass '/12 M one recovers the Veneziano amplitude 
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Thence, we have the following possible mathematical relationship between  3.16), (3.17) and (3.19): 
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Also this relationship can be related with eq. (d), thence we obtain this further mathematical connection: 
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c) Four point amplitude for the tachyons from CFT 

 

The ground state tachyons in the twisted sector corresponds to: 
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For the near marginal tachyons, in the large N limit, which are in the  thkN  sector, the vertex operator in the 

 1,1  representation is, 
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The four point amplitude for these lowest lying tachyons can now be computed by taking two vertices in the 

 0,0
representation and two in the  1,1  representation. 
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The constant 
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This amplitude can now be computed and is given by, 
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where  zF is the hypergeometric function, 
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and                                               221 kks  ,  232 kkt  , 
 213 kks 

. 
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In the large N approximation, 
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Note that the terms proportional to Nk / in (3.27) shift the s-channel pole. There is an additional factor of  221.kk , 

due to which the contact term from any of the terms of (3.27) apart from 1, would at least be of   2
/ NkO . With this 

observation, the integral can now be performed for   1zF  . 
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Now using 
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where we have to expand the gamma functions. 

Also here we can write the following relationship between  (3.25) and (3.29): 
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Also this expression can be related with the eq. (d) and with the Ramanujan’s modular equation concerning the 

number 8 and thence, we obtain this further mathematical connection: 
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d) expressions concerning the four tachyon amplitude in CSFT 

 

With regard a closed analytical expression for the off-shell four tachyon amplitude in CSFT, Giddings gave an explicit 

conformal map that takes the Riemann surfaces defined by the Witten diagrams to the standard disc with four 

tachyon vertex operators on the boundary. This conformal map is defined in terms of four parameters  ,,, . 

The four parameters are not independent variables. They satisfy the relations 
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 (3.31) 
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, (3.32) 

 

where 
 k,0 

is defined by 
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In (3.33)  kK and  kE are complete elliptic functions of the first and second kinds,  kF , is the incomplete elliptic 

integral of the first kind. The parameters k,, 21  and 'k satisfy 
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By using the integral representations of the elliptic functions it is possible to write the equation (3.32) in a useful 

form 
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To expand (3.36) for small 


and  we have to divide the integration region into three intervals in such a way that 

the square roots in the denominators of (3.36) can be consistently expanded and the integrals in t performed. For 

example consider the integral in the first term of (3.36) , it can be rewritten as 
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In each integral of the rhs the integration domain is contained in the convergence radius of the Taylor expansions of 

the square roots containing 


, so that they can be safely expanded and the integrals in t performed. With this 

procedure one gets the following equation equivalent to (3.36): 
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(3.38) 

Thence, from (3.36) and (3.38) we can write the following mathematical relationship: 
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. (3.39) 

 

Also this expression can be related with the eq. (d), and thence we obtain this further mathematical connection: 
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e) physical interpretation of the nontrivial zeta zeros in terms of tachyonic string poles 

 

The four-point dual string amplitude obtained by Veneziano was 
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where the Regge trajectories in the respective uts ,, channels are: 
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The conservation of the energy-momentum yields: 
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We have also that the sum 
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in mass units of m Planck = 1, when all the four particles are tachyons and one has the on-shell condition: 
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– 2m2Planck = – 2            (3.45) 

 

in the natural units LPlanck = 1 such that the string slope parameter in those units is given by L2Planck = 1/2 and the 

string mass spectrum is quantized in multiplies of the Planck mass mPlanck = 1. 

From the conservation of energy-momentum (3.43) and the tachyon on-shell condition eq. (3.45) one can deduce 

that: 
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Therefore, from eqs. (3.44) – (3.46) it is straightforward to show: 
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This relationship among 84 2  muts will be crucial in what follows next. From eqs. (3.42), (3.44), and (3.47) 

we learn that: 
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where 1  and 
 ,

are confined to the interior of the critical strip. 

The derivation behind eq. (3.49) relies on the condition 1  eq. (3.48) and the identities 
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     
2
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2

cos4sinsinsin
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
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sin

1
1

,    (3.51) 

 

plus the remaining cyclic permutations from which one can infer 
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, (3.52) 

 

   
 

     
 
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

 

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, (3.53) 
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

 sin

. (3.54) 

 

Therefore, eqs. (3.50) – (3.54) allow us to recast the left hand side of (3.49) as 

 

         
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2
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4
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. (3.55) 

 

And, finally, the known functional relation 

 

       zz
z

z
z




 
2

cos212
, (3.56) 

 

in conjunction with the condition 1  such that   


22 


is what establishes the important identity 

(3.49) expressing explicitly the string amplitude  utsA ,,  either in terms of zeta functions or in terms of  functions. 

In conclusion, we have the following interesting relationship between the eqs. (3.41), (3.49) and (3.55): 

 

        


R
BxxdxsuAstAtsAA 


,1,,,

11

4
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, (3.57) 

 

from which we can to obtain the following equivalent expression: 

 

  


R
BxxdxA 


,

4

1
1

4

1

4

1 11

4      





8
cos

8
cos

8
cos

1

 

(3.58) 

 

In this expression there are both π and 8, i.e. the number that is connected with the “modes” that correspond to the 

physical vibrations of a superstring by the following Ramanujan function: 
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Thence the final mathematical connection: 
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