On a triangle with two parallel sides

Hiroshi Okumura
Maebashi Gunma 371-0123, Japan
e-mail: hokmr@yandex.com

Abstract. We consider the side lengths of a triangle with two parallel sides by division by zero.
Keywords. triangle with parallel sides, division by zero.

1. Introduction

Let us consider a triangle $A B C$ in the plane such that $a=|B C|, b=|C A|$ and $c=|A B|$. Let θ_{a} (resp. θ_{b}) be the angle between $\overrightarrow{B A}$ and $\overrightarrow{A C}$ (resp. $\overrightarrow{B C}$) (see Figure 1). In this note we fix the points A, B and the angle θ_{b}, and consider the side lengths of parallel sides of $A B C$ in the case $\theta_{a}=\theta_{b}$ (see Figure 2). We use the definition of division by zero $[1,2]$

$$
\begin{equation*}
\frac{z}{0}=0 \text { for any real number } z \tag{1}
\end{equation*}
$$

We use a rectangular coordinate system such that A and B have coordinates $(p, 0)$ and ($q, 0$), respectively, where we assume $p=c+q$ and the point C lies on the region $y \geq 0$.

Figure 1.

Figure 2.

2. Side length

The point of intersection of the lines expressed by the equations $y \cos \theta_{a}=(x-$ $p) \sin \theta_{a}$ and $y \cos \theta_{b}=(x-q) \sin \theta_{b}$ coincides with the point C, and has coordinates

$$
\begin{equation*}
\left(\frac{p \sin \theta_{a} \cos \theta_{b}-q \sin \theta_{b} \cos \theta_{a}}{\sin \left(\theta_{a}-\theta_{b}\right)}, \frac{c \sin \theta_{a} \sin \theta_{b}}{\sin \left(\theta_{a}-\theta_{b}\right)}\right) . \tag{2}
\end{equation*}
$$

Therefore we get

$$
\begin{equation*}
a=\frac{c \sin \theta_{b}}{\sin \left(\theta_{a}-\theta_{b}\right)}, \quad b=\frac{c \sin \theta_{a}}{\sin \left(\theta_{a}-\theta_{a}\right)} . \tag{3}
\end{equation*}
$$

If $\theta_{a}=\theta_{b}$, then $\sin \left(\theta_{a}-\theta_{b}\right)=0$, and we get $a=b=0$ by (1). Therefore the side length of the parallel sides of a triangle equals 0 .

Notice that the y-coordinate in (2) also shows that the height corresponding to the base $A B$ equals 0 if $\theta_{a}=\theta_{b}$. Also (2) shows that the point C coincides with the origin $(0,0)$ if $\theta_{a}=\theta_{b}$.

References

[1] M. Kuroda, H. Michiwaki, S. Saitoh, M. Yamane, New meanings of the division by zero and interpretations on $100 / 0=0$ and on $0 / 0=0$, Int. J. Appl. Math., 27(2) (2014) 191-198.
[2] S. Saitoh, Division by zero calculus (draft).

