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                                                                                    Abstract 

In this paper we have described in the Section 1 some equations and theorems concerning the 

Circle Method applied to the Goldbach’s Conjecture. In the Section 2, we have described some 

equations and theorems concerning the Circle Method to investigate Germain primes by the 

Major arcs. In the Section 3, we have described some equations concerning the equivalence 

between the Goldbach’s Conjecture and the Generalized Riemann Hypothesis. In the Section 4, we 

have described some equations concerning the p-adic strings and the zeta strings. In conclusion, in 

the Section 5, we have described some possible mathematical connections between the 

arguments discussed in the various sections. 

 

1. On some equations and theorems concerning the Circle Method applied to the Goldbach’s 

Conjecture [1] 

 

Generating Functions on the Circle Method  

If we consider a generating function  of a power series  with z0=0  and  ρ=1 we have that: 
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Often are interesting only the representations at k at a time of numbers ai, the sum of these 

returns another number  n; for which the k-ple obtained, as part of the set of all integers N, are 

only a subset of the Cartesian product  N
k
 (or of  N x N if k=2).  

For example, for k=2 if n is the number sum belonging to N (set of the integers), and a1, a2 the 

numbers belonging to N, then the representations in pairs of numbers  ai  are: 

{ }2 1 2 1 2( ) : ( , ) :r n a a N N n a a= ∈ × = +  (1) 

In general with the Taylor’s series or with the residue Theorem, we obtain that:  

2 1

1 ( )
( )

2 n

f z
r n dz

i zπ += ∫�    (2) 

i.e. r2(n) correspond with an of the series. 

Having to work with a Cartesian product, it is possible also define (for the Cauchy’s product): 

2
n

0 0

( )     c =n n
n h k

n h k n
h k n

f z c z a a z
∞ ∞

= ≥ ≤
+ =

= ⋅ ⋅∑ ∑ ∑  (3) 

with  akah≠1 if  h and k belonging to N, then cn correspond to r2(n);  thence, also here we have that: 

 

2

2 1

1 ( )
( )

2 n

f z
r n dz

i zπ += ∫�                                           (4)  

where the integral on the right is along a circle γ(ρ), path counterclockwise, centered in the origin 

and unit radius.  

Is logic that in the case of Goldbach’s Conjecture we replace at N the set of primes P and the terms 

ai  are belonging to P. 

In general we have to deal with an additive problem with k>2, such as: the Waring’s problem (any 

k>2 and power s); the Vinogradov’s Theorem (for k=3 and with ai belonging to the set of the prime 

numbers P); the problem of the twin number for n=2, if  –P={-2,-3,-5,-7,-11,…} and we consider P-

P, studying the pairs (p1,p2) with  p1,p2∫P  such that  n=p1-p2.  

Then in the general case for k>2 is interesting the resolution of the equation of the type: 

1 2 ... kn a a a= + + +  

{ }1 2 1 2( ) : ( , ,..., ) : ...k
k k kr n a a a N n a a a= ∈ = + + +  

In this case we must choose a function  
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for which: 
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If we choose as generating function of the series the  

                                                                         
1

0

1
( )

(1 )
n

n

f z z
z

∞

−
=

= =
−∑  

Thence, if the power of the f is  s=1, the eq. (4’) can be rewritten as follow: 

1

1
( )

2 (1 )k k n

dz
r n

i z zπ +=
−∫�                                     (5) 

The eq. (5) of the general case is interesting because the integrand function has a easy singularity 

on γ(1); so it can easily integrate. In fact, for ρ<1 we can develop the k-th power of a binomial: 

( )
0 1 2

0

1
(1 ) ( ) ( ) ( ) ... ( ) ( )

0 1 21
k m m

k
m

k k k k k
z z z z z z

m mz

∞
−

=

− − − − −         
= − = − + − + − + + − = −         −          
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If we replace in the eq. (5), we obtain: 

                                      
1

1
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− −
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For m = n the integral is 2πi, while 0 in the other cases; thence the result is: 

1
( 1)

1
n k n k

n k

− + −   
= − =   −   

                                    (6) 

Thence we can rewrite the eq. (6) as follows: 

                                      
1

1
0

1 1
( ) ( 1)

2 (1 ) 2
m m n

k k n
m

kdz
r n z dz

mi z z iπ π

∞
− −

+
=

− 
= = − = −  

∑∫ ∫� �  

1
( 1)

1
n k n k

n k

− + −   
= − =   −   

                                    (6b ) 

 

The eq. (6) represent just the way of writing n as a sum of k elements of power s=1.  
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The Vinogradov’s simplification 

Vinogradov, however, made the further observation that to r2(n) can contribute only the integers  

m≤n; so we can introduce a different function (as opposed to one that led to eq. (6)), more useful 

to: 

1

0

1
( ) :

1

NN
m

N
m

z
f z z

z

+

=

−= =
−∑   true for  z≠1 

For n≤N, for the Cauchy’s Theorem, we can write: 

1

( )1
( )

2

k
N

k n

f z dz
r n

i zπ += ∫�                     (7) 

Now fN(z) is a finite sum and there are no convergence problems, so the integrand function in the 

equation (7) has no points of singularity. Thence, now we can permanently fix the curve on which 

it integrates. Indeed, we take as curve the complex exponential function 2( ) : ixe x e π= (
1
) and making 

a change of variable  z = e(α) the eq. (7) becomes: 

1 2

1
2

1 2 2

0

( ) ( ) (( ) )  ( )
p N p N

V e n d e p p n d r nα α α α α
≤ ≤

− = + − =∑ ∑∫          (8) 

The eq. (8) is the n-th Fourier coefficient of ( ( ))k
Nf e α . If now we put  ( ) ( ( ))NT f eα α= , we obtain: 

0

1
( )sin( ( 1) )1 (( 1) ) 2   ( ) ( ) ( ( )) ( ) 1 ( ) sin( )

1   

N

N N
m

e N Ne N
ZT T f e e m e

N Z

α π αα αεα α α α α πα
αε

=

 + − + == = = =  −


+

∑  

The function above now can be studied and is an element of elemental analysis exploitable. 

Property of TN(αααα) 

The function T has peaks on the integer values and decreases much on the non-integer values. It’s 

easy to see, also as numerical computation, (see [3]) that: 

1 1
| ( ) | min( 1, ) min( 1, )

| sin( ) | || ||NT N Nα
πα α

≤ + ≤ +   (9) 

                                                           

1 We note that this function is orthogonal in the range [0,1] indeed: 
0

1

1   
exp( )exp( )

0 altrimenti

se a b
az bz dx

=
− = 


∫   for 

which is  
0

1

( ) (exp( ))exp( )k
kr n f z z dz= −∫  
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where ||α|| is the distance between two numbers, T is periodic of period 1 and α<sin(πα) for 

αε(0,1/2]. If we use the eq. (9) and δ = δ(N) is chosen not too small, then the contribution in the 

range [δ,1-δ] is negligible. For example, if  δ>1/N  then: 

1 1 1
12

| ( ) ( ) | | ( ) |
|| || 1

k k k
N N k

d
T e n d T d

k

δ δ δ

δ δ δ

αα α α α α δ
α

− − −
−− ≤ ≤ ≤

−∫ ∫ ∫ (10) 

Taking into account of eq. (8) and eq. (10) for n = N, k=2 e 1 ( )o Nδ − = we obtain that: 

221 1

2

0

1 sin( ( 1) ) sin( ( 1) )
( ) 2

2 sin( ) sin( )

N N
r n d d

i

δ

δ

π α π αα α
π πα πα

−   + += =   
   
∫ ∫   (10b) 

 

practically the Goldbach’s Conjecture via the Circle Method. 

The Goldbach’s Conjecture, without to consider the difference between the weak and the strong 

conjecture, says that “given an even number greater than 4 this is always the sum of two prime 

numbers”.  

For the Goldbach’s Conjecture, therefore, we are interested to the representations: 

{ }2 1 2 1 2( ) : ( , ) :r n p p P P n p p= ∈ × = +  

where p1, p2 are prime numbers not necessarily distinct, belonging to the set of the prime 

numbers P and for the moment we do not consider n as even number, but any (for example we 

accept also 2+3=5 at this stage of investigation). Putting: 

( ) ( ) ( )N
p N

V V e pα α α
≤

= = ∑    (11) 

then the Goldbach’s problem, with the techniques of real and complex analysis, results for  n ≤ N: 

1 2

1 1
2

1 2 2

0 0

( ) ( ) (( ) )  ( )
p N p N

V e n d e p p n d r nα α α α α
≤ ≤

− = + − =∑ ∑∫ ∫   (12) 

In the following, instead of consider directly the eq. (12), we can consider a weighted version with 

weight different from 1 (instead of consider p1+p2, we consider log(p1+p2)=logp1*logp2): 

1 2

2 1 2( ) : log log
p p n

R n p p
+ =

= ∑ (13) 

It’s clear that r2(n) is positive if R2(n) is also positive; then it is sufficient to study R2(n) for the 

Goldbach’s conjecture.  

A weighted version of eq. (11) now is: 
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( ) ( ) log  ( )N
p N

S S p e pα α α
≤

= = ∑     (14) 

Bearing in mind the Dirichlet’s Theorem on the arithmetic progressions, choosing q, a such that 

MCD(q,a)=1, we write that 

mod

( ; , ) log
p N
p a q

N q a pθ
≤
≡

= ∑    (15) 

Theorem of  Siegel - Walfisz  

Let  C,A>0  with  q  and a relatively prime, then  

mod

log ( )
( ) logC

p N
p a q

N N
p O

q Nϕ≤
≡

= +∑  

for logAq N≤  

the previous constant C does not depend on N, a, q (but more depend on A: C(A)). 

 

Thence, from the Theorem of Siegel – Walfisz (see [4]) we have that: 

( ; , ) ( )
( ) logC

N N
N q a O

q N
θ

ϕ
= +   (16) 

where we have defined  

                                              ( ; , ) ( ) ( exp( ( ) log ))
logC

N
E N q a O O N C A N

N
= = − . 

where ϕ  is the Euler totient function and C must be chosen not very large. The theorem is 

effective when q is very small compared to N. At this point, similarly to (12) we can write that for 

n≤N: 

1
2

0

( ) ( )S e n dα α α−∫     (17) 

 

As preliminary operation, we see some value of S (for the exponential we recall the transformation 

exp(2 )x ixπ→  thence for example to   ½  it comes to exp(2πi*1/2)=-1): 

S(0)  =  θ(N,1,1)≈N 

S(1/2) =  - θ(N,1,1)+2 log2≈-N 

S(1/3) =  exp(1/3) θ(N,3,1) + exp(2/3) θ(N,3,2) + log 3 ≈ - ½ N 
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S(1/4) =  exp(1/4) θ(N,4,1) + exp(3/4) θ(N,4,3) + log 2 ≈ 0 

 

Now we see S also for some rational value  a/q, when  0 ≤a≤q  and  MCD(a,q)=1. In this case the 

eq. (14) becomes:  

1
mod

( / ) log  ( / )
q

h p N
p h q

S a q p e p a q
= ≤

≡

= ⋅ =∑ ∑    

*

1 1 1
mod

( / ) log  = ( / ) ( ; , ) ( / ) ( ; , ) (log log )
q q q

h p N h h
p h q

e h a q p e h a q N q a e h a q N q a O q Nθ θ
= ≤ = =

≡

= ⋅ ⋅ ⋅ = ⋅ ⋅ +∑ ∑ ∑ ∑  (18) 

the asterisk in the last summation denote the further condition that MCD(h,q)=1. 

From the eq. (18) taking into account the eq. (16), we obtain: 

* *

1 1

( / ) ( / ) ( / ) ( ; , ) (log log )
( )

q q

h h

N
S a q e h a q e h a q E N q a O q N

qϕ = =
= ⋅ + ⋅ ⋅ +∑ ∑    

*

1

( )
( / ) ( ; , ) (log log )

( )

q

h

q
e h a q E N q a O q N

q

µ
ϕ =

= + ⋅ ⋅ +∑    (19) 

where µ is the Moebius’s function(
2
).  

For the Moebius’s function, |S(α)| is large when α is a rational number, in a neighborhood of  a/q, 

and from the previous examples we have seen also that  S(a/q)  decreases as  1/q. 

Realizing how about S, we can now try to find an expression for R2(n) and usually is used the 

“partial sum on the arcs”.  

Putting: 
a

q
α η= + , for |η| small, we obtain: 

( ) ( )
( / ) ( ) ( ; , , ) ( ) ( ; , , )

( ) ( )m N

q q
S a q e m E N q a T E N q a

q q

µ µη η η η η
ϕ ϕ≤

+ = ⋅ = +∑  

From the eqs. (16) and (19) we have that: 

( ; , , ) ( (1 | |) exp( ( ) log ))AE N q a O q N N C A Nη η= + −  

                                                           

2 µ(q)=0 se q è divisibile per il quadrato di qualche numero primo, è (-1)k se q=p1p2...pk dove i pi sono k numeri primi 
distinti. 
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If as in [3] we denote with q,a ( , ), '( , )) 
a a

q a q a
q q

ξ ξ− +M ( ) :=  ( the Farey’s arc concerning the rational 

number a/q, with ( , )q aξ  and '( , )q aξ  of order  (qQ)
-1

, then we define the set or the union of the Major 

and Minor arcs as follow:  

[ ]*

1

:= ( , )      m:= (1,1),1 (1,1) \
q

q P a

q a ξ ξ
≤ =

+UUM M M  (20) 

Also here the asterisk indicates the additional condition that the MCD(q,a)=1. For the range of the 

Minor arc instead of consider [0,1] we have passed to [ ](1,1),1 (1,1)ξ ξ+ , that is possible for the 

periodicity 1.  

It’s clear that, starting again to the eq. (17), now R2(n) is the sum of two integrals, one on the 

Major arc and the other on the Minor arc (as we have said when we have considered the eq. (12)) 

and for  n≤N  is: 

1
2 2

2

0

( ) ( ) ( ) ( ) ( ) ( )R n S e n d S e n dα α α α α α= − = + − =∫ ∫ ∫
M m

 

How we have defined the Major arcs in the eq. (20), we have that  

'( , )
* 2 2

2
1 ( , )

( ) ( ) ( ( )) ( ) ( ) ( ) ( )
q aq

m
q P a q a

a a
R n S e n d S e n d R n R n

q q

ξ

ξ

η η η α α α
≤ = −

= + − + + − = +∑∑ ∫ ∫ M
m

(21) 

In the following with the symbol  ≈ we denote as in [3] an asymptotic equality (to the infinity). 

The eq. (21) can be rewrite also as follows: 

'( , ) 2
* 2

2
1 ( , )

( )
( ) ( ) ( ( ))

( )

q aq

q P a q a

q a
R n T e n d

q q

ξ

ξ

µ η η η
ϕ≤ = −

≈ − + =∑∑ ∫M  

'( , )2
* 2

2
1 ( , )

( )
( ) ( ) ( )

( )

q aq

q P a q a

q a
e n T e n d

q q

ξ

ξ

µ η η η
ϕ≤ = −

= − −∑ ∑ ∫   (22) 

If we extend the integral that contains T throughout the range [0,1]  

1
2

1 20

( ) ( ) 1 1
m m n

T e n d n nη η η
+ =

− = = − ≈∑∫  (23) 

Thence, we obtain: 

2
*

2
1

( )
( ) ( )

( )

q

q P a

q a
R n n e n

q q

µ
ϕ≤ =

≈ −∑ ∑M  (24) 
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where the inner sum is called the Ramanujan’s sum and we can show it with a Theorem that can 

be expressed as a function of µ and ϕ: 

2 2

2

( )
( ) ( ) ( ) ( , )

( ) ( )
( ) ( , ) ( )( ) ( )

( , ) ( , )
q P q P

q
q q q q q n

R n n n
q qq q n q

q n q n

µ
µ ϕ µµ
ϕ ϕϕ ϕ≤ ≤

≈ =∑ ∑M  

If we extend the sum to q≥1 and we consider another Theorem (see [3]), we obtain: 

2

1

( )
( ) ( , )

( ) (1 ( ))
( ) ( )

( , )

n
q p

q
q q n

R n n n f p
qq

q n

µ
µ
ϕ ϕ≥

≈ = +∑ ∏2  (25) 

The “productor” is on all the prime numbers; further we have that: 

2

2

1
  se p|n( )

1( ) ( , )
( )

1( ) ( )  altrimenti
( , ) ( 1)

n

q
pq q n

f p
qq

q n p

µ
µ
ϕ ϕ


 −= = 
−
 −

 

If n is odd then 1 (2) 0nf+ =  thence the eq. (23) states that there aren’t Goldbach’s pairs for n. 

Indeed R2(n)=0 if n-2 is not prime number, R2(n)=2log(n-2) if n-2 is a prime number. If, instead, n is 

even, we can obtain the following expression:  

( )2
| |

1 1
( ) (1 ) (1 )

1 1p n p n

R n n
p p

≈ + −
− −

∏ ∏2  

( )
( )

2

2
| 2 |

2 2

1 1 1
( ) 2 ( ) (1 ) ( )

1 ( 2) 21
o

p n p p n
p p

pp p
R n n C n

p p p pp>
> >

− −≈ ⋅ − =
− − −−

∏ ∏ ∏2    (26) 

where C0  is the constant of the twin primes. The eq. (26) is the asymptotic formula for R2(n) based 

on the Number Theory  and provides a value greater than r2(n) of a quantity ( log n )
2
, for the 

weights  logp1logp2. 

 

2. On some equations concerning the Circle Method to investigate Germain Primes [2] 

 

In this section we apply the Circle Method to investigate Germain primes. As current techniques 

are unable to adequately bound the Minor arc contributions, we concentrate on the Major arcs, 
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where we perform the calculations in great detail. The methods of this section immediately 

generalize to other standard problems, such as investigating twin primes or prime tuples. 

We remember the Siegel-Walfisz Theorem, that will be useful in the follow.  

Let 0, >BC  and let a  and q  be relatively prime. Then 

                                                        ( )
( )

∑
≡
≤








+=
qap

xp
C x

x
O

q

x
p

log
log

φ
.    (27) 

Definition 1 

A prime p  is a Germain prime (or p  and 
2

1−p
 are a Germain prime pair) if both p  and 

2
1−p

 are 

prime. An alternate definition is to have p  and 12 +p  both prime. 

Let DB,  be positive integers with BD 2> . Set NQ Dlog= . Define the Major arc qa,M  for each 

pair ( )qa,  with a  and q  relatively prime and Bq log1 ≤≤  by 

                                                   








<−






−∈=
N

Q

q

a
xxqa :

2
1

,
2
1

,M     (28) 

if  
2
1≠

q

a
  and 

                                                  





 −





 +−−=
2
1

,
2
1

2
1

,
2
1

2,1 N

Q

N

Q
UM .    (29) 

We have that the our generating function is periodic with period 1, and we can work on either 

[ ]1,0  or 




−
2
1

,
2
1

. As the Major arcs depend on N  and D , we should write ( )DNqa ,,M  and  

( )DN ,M . Note we are giving ourselves a little extra flexibility by having Nq Blog≤  and each 

qa,M  of size 
N

NDlog
.  By definition, the Minor arcs m  are whatever is not in the Major arcs. Thus 

the Major arcs are the subset of 




−
2
1

,
2
1

 near rationals with small denominators, and the Minor 

arcs are what is left. Here near and small are relative to N . Then 

                   ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫−
−+−=−= 2

1

2

121 ,;1
M m NNNNN dxxexFdxxexFdxxexFAAr .    (30) 
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We chose the above definition for the Major arcs because our main tool for evaluating ( )xFN  is 

the Siegel-Walfisz formula (see eq. (27)), which states that given any 0, >CB , if Nq Blog≤  and 

( ) 1, =qr  then 

                                                       ( )
( )

∑
≡
≤








+=
qrp

Np
C N

N
O

q

N
p

log
log

φ
.    (31) 

For C  very large, the error term leads to small, manageable errors on the Major arcs. 

Now we apply partial summation multiple times to show u  is a good approximation to NF  on the 

Major arcs qa,M . Define  

                                                               ( ) ( ) ( )
( )2

2

q

acac
aC qq

q φ
−

= .    (32) 

We show 

Theorem 1 

For qa,M∈α ,   

                                               ( ) ( ) 







+







−= − N

N
O

q

a
uaCF DCqN 2

2

log
αα .    (33) 

The problem is to estimate the difference 

                              ( ) ( ) ( ) ( ) ( )ββααα uaC
q

a
F

q

a
uaCFS qNqNqa −








+=








−−=, .    (34) 

To prove Theorem 1 we must show that  ( )
N

N
S

DCqa 2

2

, log −≤α .  It is easier to apply partial 

summation if we use the λ -formulation of the generating function NF  because now both NF  and 

u  will be sums over  Nmm ≤21, . Thus 

 

                          ( ) ( ) ( ) ( )( ) ( ) ( )( )∑ ∑
≤ ≤

−−−=
Nmm Nmm

qqa mmeaCmmemmS
21 21, ,

212121, 22 ββλλα  

                                       ( ) ( ) ( ) ( ) ( )( )βλλ 21
,

2121 22
21

mmeaC
q

a
mmemm

Nmm
q −








−







−= ∑

≤
 

                                       ( ) ( ) ( ) ( ) ( ) ( )ββλλ 122121

1 2

22 memeaC
q

a
mmemm

Nm Nm
q∑ ∑

≤ ≤ 










−








−







−=  
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                                       ( ) ( ) ( )β111

1 2

22
,, meNmbNma

Nm Nm
mm∑ ∑

≤ ≤








=  

                                       ( ) ( )∑
≤

=
Nm

qa memS
1

11, ; βα ,    (35) 

where 

                    ( ) ( ) ( ) ( ) ( )aC
q

a
mmemmNma qm −








−= 21211 2,

2
λλ ;        ( ) ( )β21 2,

2
meNmbm −=  

                                               ( ) ( ) ( )∑
≤

=
Nm

mmqa NmbNmamS
2

22
,,; 111, α .    (36) 

Recall the integral version of partial summation states 

                                              ( ) ( ) ( ) ( ) ( )∑ ∫
=

−=
N

m

N

m duubuANbNAmba
1

1
' ,    (37) 

where b  is a differentiable function and  ( ) ∑ ≤
=

um mauA .  We apply this to  ( )Nmam ,12
 and 

( )Nmbm ,12
.  As  ( ) ( ) 2

2

4
22 2 mi

m emembb βπβ −=−== ,  ( ) ( )22 24' meimb ββπ −−= .  Applying the integral 

version of partial summation to the 2m -sum gives 

     ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∑
≤ ≤

==−







−







−=

Nm Nm
mmqqa NmbNmameaC

q

a
mmemmmS

2 2

22
,,22; 11221211, βλλα  

                        ( ) ( ) ( ) ( )duueNmaiNeNma
N

u
um

m
Nm

m ββπβ −







+−








= ∫ ∑∑ =

≤≤
1 11

2

2

2

2
,42, .    (38) 

The first term is called the boundary term, the second the integral term. We substitute these into 

(35) and find 

                                        ( ) ( ) ( ) ( )+











−








= ∑ ∑

≤ ≤

ββα 11,

1 2

2
2, meNeNmaS

Nm Nm
mqa  

                                      ( ) ( ) ( )∑ ∫ ∑
≤

=
≤ 











−








+

Nm

N

u
um

m meduueNmai
1 2

2 11 1,4 βββπ .    (39) 

The proof of Theorem 1 is completed by showing ( )BS qa ;, α  and ( )IS qa ;, α , where B = Boundary 

and I = Integral, are small. The first deal with the boundary term from the first partial summation 

on ( )BSm qa ;, ,2 α . 

Lemma 1 
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                                                          ( ) 







= − N

N
OBS DCqa log

;
2

, α .    (40) 

Proof.  Recall that 

  ( ) ( ) ( ) ( ) ( ) ( ) ( )ββββα 1111,

1 2

2

1 2

2
,22,; meNmaNemeNeNmaBS

Nm Nm
m

Nm Nm
mqa ∑ ∑∑ ∑

≤ ≤≤ ≤








−=












−








= .    (41) 

As ( ) 12 =− βNe , we can ignore it in the bounds below. We again apply the integral version of 

partial summation with 

         ( ) ( ) ( ) ( ) ( )∑ ∑
≤ ≤









−







−==

Nm Nm
qmm aC

q

a
mmemmNmaa

2 2

21 21211 2, λλ ;      ( )β11
mebm = .    (42) 

We find 

       ( ) ( ) ( ) ( ) ( ) ( )∑ ∫ ∑ ∑∑
≤

=
≤ ≤≤









−








=

Nm

N

t
tm Nm

m
Nm

mqa dtteNmaiNeNmaBSNe
1 1 2

2

2

2 0 11, ,2,;2 ββπβαβ .    (43) 

To prove Lemma 1, it suffices to bound the two terms in (43), which we do in Lemmas 2 and 3. 

 

Lemma 2 

                                           ( ) ( ) 







=








∑ ∑

≤ ≤ N

N
ONeNma C

Nm Nm
m log

,
2

1

1 2

2
β .    (44) 

Proof.  As ( ) 1=βNe , this factor is harmless, and the 21,mm -sums are bounded by the Siegel-

Walfisz Theorem. 

                           ( ) ( ) ( ) ( ) ( ) =







−







−=∑ ∑ ∑∑

≤ ≤ ≤≤Nm Nm Nm
q

Nm
m aC

q

a
mmemmNma

1 1 22

2 21211 2, λλ  

                           ( ) ( ) ( ) =−















−
















= ∑∑

≤≤

2
2211

21

NaC
q

a
mem

q

a
mem q

NmNm

λλ  

                           
( )
( )

( )
( ) ( ) =−
















+

−
⋅















+= 2

log

2

log
NaC

N

N
O

q

Nac

N

N
O

q

Nac
qC

q

C

q

φφ
 

                           







=

N

N
O Clog

2

    (45) 

as  ( ) ( ) ( )
( )2

2

q

acac
aC qq

q φ
−

=   and  ( ) ( )qbcq φ≤ . 



 14

Lemma 3 

                                   ( ) ( )∫ ∑ ∑= −
≤ ≤









=







N

t DC
tm Nm

m N

N
OdtteNmai

0

2

1 log
,2

1 2

2
ββπ .    (46) 

Proof.  Note  
N

N

N

Q Dlog=≤β ,  and  ( ) ( )
( )

( )
( )22

2

q

ac

q

ac
aC qq

q φφ
−

=  .  For  Nt ≤ , we trivially bound the 

2m -sum by N2 . Thus these t  contribute at most 

                                                 ∫ ∑=
≤

≤=
N

t
tm

D NNNNdt
0

2

1

log2 ββ .    (47) 

An identical application of Siegel-Walfisz as in the proof of Lemma 2 yields for  Nt ≥ , 

                ( )∑ ∑
≤ ≤

=
tm Nm

m Nma
1 2

2
,1

( )
( )

( )
( ) ( ) =−
















+

−
⋅















+ tNaC

N

N
O

q

Nac

N

t
O

q

tac
qC

q

C

q

log

2

log φφ
 

                                               







=

N

tN
O

Clog
.    (48) 

Therefore  

                             ( )∫ ∑ ∑= −
≤ ≤









=








=

N

Nt DCC
tm Nm

m N

N
O

N

N
OdtNma

loglog
,

23

1

1 2

2

ββ .    (49) 

We note also that: 

                         ( ) ( ) ⇒







=








∫ ∑ ∑= −

≤ ≤

N

t DC
tm Nm

m N

N
OdtteNmai

0

2

1 log
,2

1 2

2
ββπ  

                        ( )∫ ∑ ∑= −
≤ ≤









=








=⇒

N

Nt DCC
tm Nm

m N

N
O

N

N
OdtNma

loglog
,

23

1

1 2

2

ββ .    (50) 

   

We now deal with the integral term from the first partial summation on ( )ISm qa ;, ,2 α . 

Lemma 4 

                                                    ( ) 







= − N

N
OIS DCqa 2

2

, log
;α .    (51) 

Proof.  Recall  

                            ( ) ( ) ( ) ( )∑ ∫ ∑
≤

=
≤ 











−








=

Nm

N

u
um

mqa meduueNmaiIS
1 2

2 11 1, ,4; βββπα     (52) 
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where 

                                      ( ) ( ) ( ) ( ) ( )aC
q

a
mmemmNma qm −








−= 21211 2,

2
λλ .    (53) 

Thence, the eq. (52) can be rewrite also as follow: 

      ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∫ ∑
≤

=
≤ 











−








−







−=

Nm

N

u
um

qqa meduueaC
q

a
mmemmiIS

1 2

11 2121, 24; ββλλβπα .    (53b) 

We apply the integral version of partial summation, with 

                                 ( ) ( )∫ ∑=
≤

−







=

N

u
um

mm duueNmaa
1 1

2

21
, β         ( )β11

mebm = .    (54) 

We find 

                                 ( ) ( ) ( ) ( )+







−= ∑ ∫ ∑

≤
=

≤
βββπα NeduueNmaiIS

Nm

N

u
um

mqa

1 2

21 1, ,4;  

                                                  ( ) ( ) ( )dttmeduueNma
N

t
tm

N

u
um

m 11 1 1
2

1 2

2
,8 ∫ ∑∫ ∑=

≤
=

≤








−+ βπβ .    (55) 

For the eq. (53), we can rewrite the eq. (55) also as follow: 

              ( ) ( ) ( ) ( ) ( ) ( ) ( )+







−−








−= ∑ ∫ ∑

≤
=

≤
ββλλβπα NeduueaC

q

a
mmemmiIS

Nm

N

u
um

qqa

1 2
1 2121, 24;  

              ( ) ( ) ( ) ( ) ( ) ( )dttmeduueaC
q

a
mmemm

N

t
tm

N

u
um

q 11 1 2121
2

1 2

28 ∫ ∑∫ ∑=
≤

=
≤









−−








−+ βλλπβ .    (55b) 

The factor of  ( ) ( )βπβππβ ii 248 2 ⋅−=   and comes from the derivative of ( )β1me . Arguing in a 

similar manner as above in Theorem 1 and in Lemmas 5 and 6 we show the two terms in (55) are 

small, which will complete the proof. 

Lemma 5 

                           ( ) ( ) ( ) 







=








− −

≤
=

≤
∑ ∫ ∑ N

N
ONeduueNmai DC

Nm

N

u
um

m log
,4

2

1 1

1 2

2
βββπ .    (56) 

Proof. Arguing along the lines of Lemma 3, one shows the contribution from Nu ≤   is bounded 

by NN Dlog . For Nu ≥  we apply the Siegel-Walfisz formula as in Lemma 3, giving a 

contribution bounded by 
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( )
( )

( )
( ) ( ) <<














−
















+

−
⋅















+∫ =

duuNaC
N

N
O

q

Nac

N

u
O

q

uacN

Nu qC

q

C

q

log

2

log
4

φφ
β   

                                                  ∫ =
<<<<

N

Nu CC N

N
du

N

uN

loglog

3 β
β .    (57) 

As  
N

NBlog≤β , the above is  







− N

N
O DClog

2

. 

Lemma 6 

                      ( ) ( ) ( ) 







=








− −=

≤
=

≤
∫ ∑∫ ∑ N

N
OdttmeduueNma DC

N

t
tm

N

u
um

m 2

2

11 1 1
2

log
,8

1 2

2
βπβ .    (58) 

Proof.  Arguing as in Lemma 3, one shows that the contribution when Nt ≤   or Nu ≤  is 









− N

N
O DC 2log

. We then apply the Siegel-Walfisz Theorem as before, and find the contribution 

when  Nut ≥,  is 

                                          ∫ ∫= =
<<<<

N

Nt

N

Nu CC N

N
dudt

N

ut

loglog
8

24
2 ββ .    (59) 

As  
N

NDlog≤β , the above is  







− N

N
O DC 2

2

log
. This complete the proof of Theorem 1. 

We note that, for the eq. (56) and (58), the eq. (55) can be rewritten also as follows: 

                                 ( ) ( ) ( ) ( )+







−= ∑ ∫ ∑

≤
=

≤
βββπα NeduueNmaiIS

Nm

N

u
um

mqa

1 2

21 1, ,4;  

     ( ) ( ) ( ) =







−+ ∫ ∑∫ ∑=

≤
=

≤
dttmeduueNma

N

t
tm

N

u
um

m 11 1 1
2

1 2

2
,8 βπβ 








− N

N
O DClog

2

+ 







− N

N
O DC 2

2

log
.    (59b) 

 

With regard the integrals over the Major arcs, we first compute the integral of ( ) ( )xexu −  over the 

Major arcs and then use Theorem 1 to deduce the corresponding integral of ( ) ( )xexFN − .  

By Theorem 1 we know for qax ,M∈ that  

                                          ( ) ( ) 







<<








−− − N

N
O

q

a
xuaCxF DCqN 2

2

log
.    (60) 
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We now evaluate the integral of ( )xe
q

a
xu −








−  over qa,M ; by Theorem 1 we then obtain the 

integral of ( ) ( )xexFN −  over qa,M . Remember that 

                                                        ( ) ( )( )∑
≤

−=
Nmm

xmmexu
21 ,

21 2 .    (61) 

Theorem 2 

                                  ( )∫ 







+








−=−⋅








−

qa N

N
O

N

q

a
ede

q

a
u D

, log2M
ααα .    (62) 

We first determine the integral of u  over all of 




−
2
1

,
2
1

, and then show that the integral of ( )xu  is 

small if 
N

Q
x > . 

Lemma 7 

                                                          ( ) ( ) ( )∫− +=−2

1

2

1 1
2

O
N

dxxexu .    (63) 

Proof. 

    ( ) ( ) ( )( ) ( ) ( )( )∫ ∫ ∑ ∑ ∑ ∑ ∫− − ≤ ≤ ≤ ≤ −
−−=−⋅−=−2

1

2

1
2

1

2

1
2

1

2

1 2121

1 2 1 2

122
Nm Nm Nm Nm

dxxmmedxxexmmedxxexu .    (64) 

The integral is 1 if 012 21 =−− mm  and 0 otherwise. For { }Nmm ,...,1, 21 ∈ , there are 

( )1
22

O
NN +=





 solutions to 012 21 =−− mm , which completes the proof. 

Define  

                                          




 −+−=
N

Q

N

Q
I ,

2
1

1 ,        




 −=
N

Q

N

Q
I

2
1

,2 .    (65) 

The following bound is crucial in our investigations. 

Lemma 8 

For 1Ix ∈  or ,2I  ( ) xaxe

1

1

1 <<
−

  for  { }2,1−∈a . 

Lemma 9 

                                                 ( ) ( )∫ ∪∈ 







=−

21 logIIx D N

N
Odxxexu .    (66) 

Proof.  We have 
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          ( ) ( ) ( )( ) ( ) ( ) ( )∫ ∫ ∑ ∫ ∑ ∑
≤ ≤ ≤

=−⋅−=−−=−
i i iI I

Nmm
I

Nm Nm

dxxexmexmedxxmmedxxexu
21 1 2,

2121 212  

                                     
( ) ( )( )

( )
( ) ( )( )

( ) ( )dxxe
xe

xNexe

xe

xNexe
iI

−








−−
+−−−










−
+−= ∫ 21

122

1

1
    (67) 

because these are geometric series. By Lemma 8, we have 

                                       ( ) ( )∫ ∫ =<<<<−
i iI DI N

N

Q

N
dx

xx
dxxexu

log

22
,    (68) 

which completes the proof of Lemma 9. 

Lemma 10 

                                                     ( ) ( ) ( )∫
+

−=
=−N

Q

N

Q
x

D NOdxxexu2

1

2

1 log .    (69) 

Lemma 11 

                                                  ( ) ( )∫− 







+=−N

Q

N

Q D N

N
O

N
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Proof of Theorem 2.  We have 
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Note there are two factors in Theorem 2. The first, 







−

q

a
e , is an arithmetical factor which 

depends on which Major arc qa,M  we are in. The second factor is universal, and is the size of the 

contribution.  

An immediate consequence of Theorem 2 is 

Theorem 3 
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From Theorem 3 we immediately obtain the integral of ( ) ( )xexFN −  over the Major arcs M : 

Theorem 4 
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is the truncated singular series for the Germain primes. 

 

 

3. On some equations concerning the equivalence between the Goldbach’s Conjecture and the    

Generalized Riemann Hypothesis [3] 

We know the Goldbach’s conjecture: “Every even integer > 2 is the sum of two primes”. In 1922 

Hardy and Littlewood guesstimated, via a heuristic based on the circle method, an asymptotic for 

the number of representations of an even integer as the sum of two primes: Define 

                                                ( ) =Ng 2 # { qp, prime : }Nqp 2=+ . 

Their conjecture is equivalent to  ( ) ( )NINg 22 ≈   where 

                                         ( ) ( )∫∏
−

>
−









−
−=

22

2
2

2 2loglog2

1
2

N

p
Np tNt

dt

p

p
CNI     (75) 

and  2C , the “twin prime constant”, is defined by 
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Thence, the eq. (75) can be rewritten also as follows: 
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and thence, we obtain: 
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or 
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We believe that a better guesstimate for ( )Ng 2   is given by 
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Thence, for eq. (75) we can rewrite the eq. (79) also as follows: 
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Indeed it could well be that 
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Thence, for eq. (79b), we obtain the following equation: 
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                                                                                                                                                                (80b)   

We introduce the function 

                                                       ( ) ∑
=+

=
)(,

2

loglog2

primeqp
Nqp

qpNG .    (81) 

The analysis of Hardy and Littlewood suggests that ( )NG 2 , plus some terms corresponding to 

solutions of  Nqp lk 2=+ , should be very “well-approximated” by 

                                                      ( ) ∏
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⋅
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N
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p
CNJ ,    (82) 

and the approximation  ( ) ( )NINg 22 ≈   is then deduced by partial summation. (In fact we believe 

that  ( ) ( ) ( )( )12/122 oNONJNG ++= .) 

Theorem 1 

The Riemann Hypothesis is equivalent to estimate 

                                                  ( ) ( )( ) ( )∑
≤

+<<−
xN

oxNJNG
2

12/322 .    (83) 

Theorem 2 
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The Riemann Hypothesis for Dirichlet L-functions ( )χ,sL , over all characters mmodχ  which are 

odd squarefree divisors of q , is equivalent to the estimate 

                                                  ( ) ( )( ) ( )

( )

∑
≡
≤

+<<−
qN

xN

oxNJNG

mod22
2

12/322 .    (84) 

Theorem 3 

The Riemann Hypothesis for Dirichlet L-functions ( ) qsL mod,, χχ  is equivalent to the conjectured 

estimate 
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Let  
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First note that  
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and a similar argument works for 3≥l . Also it is well-known that there are 
( )1oN  pairs of integer 

qp,  with Nqp 222 =+ . Thus  

                                            ( ) ( )∑
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+=
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NNOqpNE
2

23/1

2

logloglog22 .    (88) 

Now, when we study solutions to Nqp 22 =+  we find that l  divides p  if and only if 

lqN mod2 2≡ . Thus if ( ) 0/2 =lN  or  – 1  then l  divides pq  if and only if lq mod0≡ . If 

( ) 1/2 =lN   then there are 2 non-zero values of lq mod  for which l  divides p , and we also need 

to count when l  divides q . Therefore our factor is 2 if 2=l , and 
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Now   #{ } ( )122:0, 2 ONNnmnm +==+>   so we predict that 
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and thus, after partial summation, that 
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Subtracting this from ( )NI 2 , we obtain the prediction ( )NI 2∗ , as in (79). We can give the more 

accurate prediction 
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The explicit version of the Prime Number Theorem gives a formula of the form 

                                                  ( )∑ ∑
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ρ
ρ

ρ

ρ
Im

2loglog ,    (92) 

where the sum is over zeros ρ  of ( ) 0=ρζ  with ( ) 0Re >ρ . In Littlewood’s famous paper he 

investigates the sign of ( ) ( )xLix −π  by a careful examination of a sum of the form 

( )∑ ≤T
xLi

ρρ
ρ

Im:
,  showing that this gets bigger than  

ε−2/1x  for certain values of x , and smaller 

than   – 
ε−2/1x  for other values of x . His method can easily be modified to show that the above 

implies that 

 

                                              
( )1logmax oB
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xyp +
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=−∑     (93) 

where  ( ){ }0:Resup == ρζρB   (note that  2/11 ≥≥ B ). By partial summation it is not hard to 

show that 
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so that, by Littlewood’s method, 
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Therefore the Riemann Hypothesis ( )2/1=B  is equivalent to the conjectured estimate 
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This implies Theorem 1 since 
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Going further we note that for any coprime integers 2, ≥qa  
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and thus 
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where ( ){ }0,:Resup == χρρ LBq  for some ( )qmodχ .  R.C. Vaughan noted that by the same 

methods but now using the above formula, we get a remarkable cancellation which leads to the 

explicit formula 
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where  ( ) dtttc ∫
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  is a constant depending only on ρ  and σ . Thus Theorem 3 follows 
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As in the proof of (97) we have 
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Now, Hardy and Littlewood showed that Generalized Riemann Hypothesis implies that 
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We expect, as we saw in the precedent passages, that  ( ) ( ) ( )12/122 onnJnG +<<−   and so we 

believe that 
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for 0=δ . This implies, by Cauchy’s inequality, that 
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by (97), which implies the Riemann Hypothesis if 0=δ  (as after (96) above); and implies that  

( ) 0≠ρζ  if  4/3Re >ρ  if  2/1=δ  (that is, assuming Hardy and Littlewood’s (102)).  

We find that (85) is too delicate to obtain the Riemann Hypothesis for ( ) ( )qsL mod,, χχ  from 

(103). Instead we note that 
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plus an error term  
( )( )12 oBqxO +

, where 
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2,2
 . As in (97) one can show that 
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so that 
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where  ( ){ }0,:Resup == χρρ LCq  for some mmodχ , where qm  and m  is odd and squarefree. 

This implies Theorem 2. By the above we see that if (103) holds with 0=δ  then 2/1=qC  and 

thus the Riemann Hypothesis follows for L-functions with squarefree conductor. 

 

4. On some equations concerning the p-adic strings and the zeta strings [4] [5] [6] [7]. 

 

Like in the ordinary string theory, the starting point of p-adic strings is a construction of the 

corresponding scattering amplitudes. Recall that the ordinary crossing symmetric Veneziano 

amplitude can be presented in the following forms: 
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where 1=h , π/1=T , and 
( )

2
1

s
sa −−=−= α

, ( )tb α−= , ( )uc α−=  with the condition 

8−=++ uts , i.e. 1=++ cba . 

The p-adic generalization of the above expression 
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where p
...

 denotes p-adic absolute value. In this case only string world-sheet parameter x  is 

treated as p-adic variable, and all other quantities have their usual (real) valuation. 

Now, we remember that the Gauss integrals satisfy adelic product formula 
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what follows from 
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These Gauss integrals apply in evaluation of the Feynman path integrals 
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for kernels 
( )',';'','' txtxKv  of the evolution operator in adelic quantum mechanics for quadratic 

Lagrangians. In the case of Lagrangian  
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for the de Sitter cosmological model one obtains 
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Also here we have the number 24 that correspond to the Ramanujan function that has 24 

“modes”, i.e., the physical vibrations of a bosonic string. Hence, we obtain the following 

mathematical connection: 
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The adelic wave function for the simplest ground state has the form 
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where 
( ) 1=Ω

p
x

 if 
1≤

p
x

 and 
( ) 0=Ω

p
x

 if 
1>

p
x

. Since this wave function is non-zero only in 

integer points it can be interpreted as discreteness of the space due to p-adic effects in adelic 

approach. The Gel’fand-Graev-Tate gamma and beta functions are: 
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where Ccba ∈,,  with condition 1=++ cba  and ( )aζ  is the Riemann zeta function. With a 

regularization of the product of p-adic gamma functions one has adelic products: 
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where 1=++ cba . We note that ( )baB ,∞  and 
( )baBp ,

 are the crossing symmetric standard and 

p-adic Veneziano amplitudes for scattering of two open tachyon strings. Introducing real, p-adic 

and adelic zeta functions as 
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one obtains 
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where ( )aAζ  can be called adelic zeta function. We have also that 
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Let us note that ( )2exp xπ−  and 
( )

p
xΩ

 are analogous functions in real and p-adic cases. Adelic 

harmonic oscillator has connection with the Riemann zeta function. The simplest vacuum state of 

the adelic harmonic oscillator is the following Schwartz-Bruhat function: 
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whose the Fourier transform 
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has the same form as ( )xAψ . The Mellin transform of ( )xAψ  is 
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and the same for ( )kAψ . Then according to the Tate formula one obtains (126). 

The exact tree-level Lagrangian for effective scalar field ϕ  which describes open p-adic string 

tachyon is  
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where p  is any prime number, 
22 ∇+−∂= t�

 is the D-dimensional d’Alambertian and we adopt 

metric with signature ( )++− ... . Now, we want to show a model which incorporates the p-adic 

string Lagrangians in a restricted adelic way. Let us take the following Lagrangian  
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Recall that the Riemann zeta function is defined as 
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Employing usual expansion for the logarithmic function and definition (132) we can rewrite (131) 

in the form 
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where 
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. 









2
�ζ

 acts as pseudodifferential operator in the following way: 
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where   
( ) ( ) ( )dxxek ikx φφ ∫

−=~
   is the Fourier transform of ( )xφ . 

Dynamics of this field φ  is encoded in the (pseudo)differential form of the Riemann zeta function. 

When the d’Alambertian is an argument of the Riemann zeta function we shall call such string a 

“zeta string”. Consequently, the above φ  is an open scalar zeta string. The equation of motion for 

the zeta string φ  is 
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which has an evident solution 0=φ . 

For the case of time dependent spatially homogeneous solutions, we have the following equation 

of motion for the zeta string 
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With regard  the open and closed scalar zeta strings, the equations of motion are 
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and one can easily see trivial solution 0== θφ . 

 

The exact tree-level Lagrangian of effective scalar field ϕ , which describes open p-adic string 

tachyon, is: 
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where p  is any prime number, 
22 ∇+−∂= t�

 is the D-dimensional d’Alambertian and we adopt 

metric with signature ( )++− ... , as above. Now, we want to introduce a model which incorporates 

all the above string Lagrangians (139) with p  replaced by Nn ∈ . Thence, we take the sum of all 

Lagrangians nL  in the form 

 

                            

∑ ∑
∞+

=

+
−∞+

= 













+
+−

−
==

1

12

1

2

2 1
1

2
1

1

2

n

nm

n n

D
n

nnn n
n

n

n

g

m
CCL n φφφ

�

L

,    (140) 

 

whose explicit realization depends on particular choice of coefficients nC
, masses nm

 and coupling 

constants ng
. 

Now, we consider the following case 
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where h  is a real number. The corresponding Lagrangian reads 
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and it depends on parameter h . According to the Euler product formula one can write 
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Recall that standard definition of the Riemann zeta function is 
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which has analytic continuation to the entire complex s  plane, excluding the point 1=s , where it 

has a simple pole with residue 1. Employing definition (144) we can rewrite (142) in the form 
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Here 
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
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 acts as a pseudodifferential operator 
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where  
( ) ( ) ( )dxxek ikx φφ ∫
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   is the Fourier transform of ( )xφ . 

We consider Lagrangian (145) with analytic continuations of the zeta function and the power 

series 
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where AC  denotes analytic continuation. 

Potential of the above zeta scalar field (147) is equal to hL−
 at 0=� , i.e. 
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where 1≠h  since ( ) ∞=1ζ . The term with ζ -function vanishes at ,...6,4,2 −−−=h . The equation 

of motion in differential and integral form is 
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respectively. 
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Now, we consider five values of h , which seem to be the most interesting, regarding the 

Lagrangian (147): ,0=h  ,1±=h  and 2±=h .  For 2−=h , the corresponding equation of motion 

now read: 
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This equation has two trivial solutions: ( ) 0=xφ  and ( ) 1−=xφ . Solution ( ) 1−=xφ  can be also 

shown taking  ( ) ( )( )Dkk πδφ 2
~ −=  and  ( ) 02 =−ζ  in (151). 

For 1−=h , the corresponding equation of motion is: 
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where 
( )
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1
1 −=−ζ

.  

The equation of motion (152) has a constant trivial solution only for ( ) 0=xφ . 

For 0=h , the equation of motion is 
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It has two solutions: 0=φ  and 3=φ . The solution 3=φ  follows from the Taylor expansion of the 

Riemann zeta function operator 
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as well as from ( ) ( ) ( )kk D δπφ 32
~ = . 
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For 1=h , the equation of motion is: 
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where ( ) ∞=1ζ   gives   ( ) ∞=φ1V .  

In conclusion, for 2=h , we have the following equation of motion: 
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Since holds equality 

                                                 

( ) ( )∫ ∑
∞

=
==−−

1

0 1 2 2
11ln

n n
dw

w

w ζ
 

 

one has trivial solution 1=φ  in (156). 

Now, we want to analyze the following case: 
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. In this case, from the Lagrangian (140), 

we obtain: 
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The corresponding potential is: 
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We  note that 7 and 31 are prime natural numbers, i.e. 16 ±n  with n =1 and 5, with 1 and 5 that 

are Fibonacci’s numbers. Furthermore, the number 24 is related to the Ramanujan function that 

has 24 “modes” that correspond to the physical vibrations of a bosonic string. Thence, we obtain: 
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The equation of motion is: 
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Its weak field approximation is: 
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which implies condition on the mass spectrum 
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From (161) it follows one solution for 02 >M  at 
22 79.2 mM ≈  and many tachyon solutions when 

22 38mM −< . 
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We note that the number 2.79 is connected with 2

15 −=φ
 and 2

15 +=Φ
, i.e. the “aurea” 

section and the “aurea” ratio. Indeed, we have that: 
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Furthermore, we have also that: 
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With regard the extension by ordinary Lagrangian, we have the Lagrangian, potential, equation of 

motion and mass spectrum condition that, when 
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In addition to many tachyon solutions, equation (165) has two solutions with positive mass: 
22 67.2 mM ≈  and 

22 66.4 mM ≈ . 

We note also here, that the numbers 2.67 and 4.66 are related to the “aureo” numbers. Indeed, 

we have that: 
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Furthermore, we have also that: 
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; 
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Now, we describe the case of  
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.  Here ( )nµ  is the Mobius function, which is defined 
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The corresponding Lagrangian is 
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Recall that the inverse Riemann zeta function can be defined by 
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Now (167) can be rewritten as 
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where 
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 The corresponding potential, 

equation of motion and mass spectrum formula, respectively, are: 
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where usual relativistic kinematic relation  
222

0
2 Mkkk −=+−=

r

  is used. 

Now, we take the pure numbers concerning the eqs. (161) and (165). They are:  2.79, 2.67 and 

4.66. We note that all the numbers are related with 2
15 +=Φ

, thence with the aurea ratio, by 

the following expressions: 

 

                ( ) 7/1579,2 Φ≅ ;      ( ) ( ) 7/217/1367,2 −Φ+Φ≅ ;      ( ) ( ) 7/307/2266,4 −Φ+Φ≅ .    (173) 
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                                                            5. Mathematical connections 

We take the eqs. (7) and (10b). We have the following expression: 

 
1

( )1
( )

2

k
N

k n

f z dz
r n

i zπ += ∫� ⇒

221 1

2

0

1 sin( ( 1) ) sin( ( 1) )
( ) 2

2 sin( ) sin( )

N N
r n d d

i

δ

δ

π α π αα α
π πα πα

−   + += =   
   
∫ ∫ .    (174) 

We have the following possible mathematical connection with the eq. (126b) concerning the adelic strings: 
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We note that also the eqs. (22), (39) and (50) can be connected with the (126b), as follows: 
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While the eq. (59b) can be related further that with the eq. (126b) also with the Ramanujan 

modular identity concerning the physical vibrations of the superstrings, i.e. the number 8, that is 

also a Fibonacci’s number. Thence, we have that 
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Also the eq. (73) can be related with the eq. (126b), thence we obtain the following expression: 
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Now, with regards the mathematical connections with the zeta strings, we have that the eq. (78b) 

can be related with the eq. (136), that is the equation of motion for the zeta string concerning the 

case of time dependent spatially homogeneous solutions. Thence, we obtain: 
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With regard the eq. (80b), it can be related with the eq. (138) i.e. the equation of motion 

concerning the closed scalar zeta strings: 
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With regard the eq. (91), it can be related with the eq. (138) and with the eq. (156), thence we 

obtain the following expressions: 
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In conclusion, the eq. (100b) can be related with the eq. (156) and we obtain the following 

mathematical connection: 
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We want to evidence, also in this paper, the fundamental connection between  π  and  

2
15 −=φ  , i.e. the Aurea ratio by the simple formula 

 

                                                              πφ 2879,0arccos = .    (186) 
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