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Introduction 

Is there a connection between the so-called "bounce" of the Universe and black 
holes? At the end of a cycle, the final giant black hole that is formed by the fusion of 
all the remaining black holes, which has absorbed all the mass and energy of the 
cosmos, in an immeasurable, though ultra-massive, span of time, like any other black 
hole is subject to evaporation process. Eventually, when the black hole undergoes the 
final explosion, as a sort of "mirror symmetry", all the energy and mass that has been 
absorbed by the black hole, now reduced to quantum dimensions, is emitted from the 
opposite side. So there is a process of absorption-contraction / expansion-emission 
which can be compared to a sort of "bounce". Hence, the counterpart to the final 
black hole is an initial white hole, from which a new universe cycle originates. 
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We want to highlight that the development of the various equations was carried 
out according an our possible logical and original interpretation 

 

 

 

From  

George E. Andrews Bruce C. Berndt 
Ramanujan’s Lost Notebook Part I -  2005 Springer Science+Business Media, Inc. 
 

We have that: 

 

(1/81-81)-7(1/27+27)+7(1/9-9)+14(1/3+3) = x^3+125/(x^3) 

Input: 

 
 
Exact result: 

 
 
Alternate forms: 

 

 

 
 

Real solutions: 
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Real solutions: 

 

 
-6.5836;   -0.75946 

 

 
Complex solutions: 

 

 

 

 
 

From 

 

(1/81-81)-7(1/27+27)+7(1/9-9)+14(1/3+3) 

For v = 3 

Input: 

 
 
Exact result: 

 
 
Decimal approximation: 

 
-285.802469135… 
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-6.5836^3-125/(6.5836^3) 

for PQ = - 6.5836  

Input interpretation: 

 
 
Result: 

 
-285.79621498129... 

 

or, for PQ = - 0.75946 

-0.75946^3-125/(0.75946^3) 

Input: 

 
 
Result: 

 
-285.7994877129... 

 

From which: 

6[-((((1/81-81)-7(1/27+27)+7(1/9-9)+14(1/3+3))))]+18-(11/7-1/(1 + sqrt(2)))-e 

Input: 

 

 
Result: 

 

Decimal approximation: 

 

1728.939317977… 
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Property: 

 

 
Alternate forms: 

 

 

 

 
Series representations: 

 

 

 

 

 

Now, we have: 
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thence: 

2(((125x(exp((-2Pi)/5))+22+1/x*(exp((-2Pi)/5))))^0.5 = 6*5^(1/4) (3+sqrt5) 

 Input: 

 

 
Exact result: 
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Plot: 

 

 
Alternate form assuming x is real: 

 

 
Alternate forms: 

 

 

 

 
Solutions: 

 

 

 
 
Solutions: 

 

 
14.8899 
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we obtain: 

[2((125*14.8899(exp((-2Pi)/5))+22+1/(14.8899)*(exp((-2Pi)/5))))^0.5] 

Input interpretation: 

 
 
Result: 

 
46.9785... 

 

and: 

6*5^(1/4) (3+sqrt5) 

Input: 

 
 
 
Decimal approximation: 

 
46.978487211… 

 

Alternate forms: 

 

 

 
 
Minimal polynomial: 
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Thence, from 

 

For G(q0) = 46.9785 , we obtain: 

 

G(q) =  

⎝

⎜
⎛

⎠

⎟
⎞

  + 46.9785  

Now, we have: 

   (15.6.5) 

From: 

,     where λ = (1+√5)/2 ,  we obtain: 

 

2sqrt(270+126*5^0.5) = 125*x + 46.9785 

Input interpretation: 

 

 
Result: 

 

 
Alternate forms: 
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Solution: 

 

-1.0231*10-7 

 

In conclusion, we have: 

125*(-1.0231e-7) + 46.9785 

Input interpretation: 
 

 
Result: 

 
46.97848721125 

 

and: 

2sqrt(270+126*5^0.5) 

Input: 

 
 
Decimal approximation: 

 
46.97848721127… 

 

Alternate forms: 
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Minimal polynomial: 
 

 

Thence: 

 

and 

  =   

 

 46.97848721125  ≈  47 

 

 

We have that: 

    

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

 =   

 

Furthermore, we note that: 

76/ (((125*(-1.0231e-7) + 46.9785))) 

Input interpretation: 

 
 
Result: 

 
1.6177617567429....... 
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Now, we have that:  

 

 

For  P = 1;  Q = 2;  R = 3,  we obtain: 

3 – 4 / 2 = - 1/2    and  2 – 3 / 3 = - 1/3 ;   9 – 8 / 3 * 2 = 1/6 .  We note that   

- 1/2 * - 1/ 3 = 1/6 

Thence: 

 

ln(((2^1.5 – 3)/(2^1.5 + 3)))   

Input: 

 

 

Result: 

 

 
Polar coordinates: 

 

4.72215 
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Alternative representations: 

 

 

 

 
Series representations: 

 

 

 

 
Integral representation: 

 

 

Now, we have the following cubic equation: 

x^3 + x^2 + 10 x – 27 

Input: 
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Plots: 

 

 

Alternate forms: 
 

 

 

Real root: 

 

1.7969 

Complex roots: 
 

 

 
Polynomial discriminant: 

 

Properties as a real function: 
Domain 

 

Range 
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Bijectivity 

 

 

Derivative: 

 

 
Indefinite integral: 

 

 

 

We take the real root 1.7969 and performing the following calculation 

 

1.7969 * 1/6 * ln(((2^1.5 – 3)/(2^1.5 + 3))) 

Input interpretation: 

 

 

Result: 

 

Polar coordinates: 
 

1.41421 ≈ √2 
 
Alternative representations: 
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Series representations: 

 

 

 

 
Integral representation: 
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We have that: 

   

 

With regard √Q = √2 = 1.414213562373....  , while 
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is equal to 

  

൦ ൪  =  1.41421 ≈ √2  

Possible closed forms: 

 

 

 
 

Thence, in conclusion: 

 

For  

 

We obtain: 

ln(((2^1.5 – 3)/(2^1.5+3))) – ln[(((2^1.5(exp(-2*Pi)))))/((2^1.5(exp(-2*Pi))))] 

Input: 
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Result: 

 

Polar coordinates: 
 

4.72215  as the previous result 

 
Alternative representations: 

 

 

 
Series representations: 
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Integral representation: 

 

 

We have also: 

1/(((((1/((((1/3((((ln(((2^1.5 – 3)/(2^1.5+3))) – ln[(((2^1.5(exp(-
2*Pi)))))/((2^1.5(exp(-2*Pi))))]))))))))+0.026i))))) 

Input: 

 

 

 

Result: 

 

Polar coordinates: 
 

1.61731 
 
Alternative representations: 
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Series representations: 

 

 

 

 
Integral representation: 

 

 

and: 

(144+21+5)-Pi*((((ln(((2^1.5 – 3)/(2^1.5+3))) – ln[(((2^1.5(exp(-
2*Pi)))))/((2^1.5(exp(-2*Pi))))]))))^4 

Input: 
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Result: 

 

Polar coordinates: 
 

1728.06 
 
Alternative representations: 

 

 

 
Series representations: 
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Integral representation: 

 

 

 

18+golden ratio+1/Pi*((((ln(((2^1.5 – 3)/(2^1.5+3))) – ln[(((2^1.5(exp(-
2*Pi)))))/((2^1.5(exp(-2*Pi))))]))))^4 

Input: 

 

 

 

Result: 

 

Polar coordinates: 
 

139.245 
 
Alternative representations: 
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Series representations: 

 

 

 

 
Integral representation: 
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29+2+golden ratio^2+1/Pi*((((ln(((2^1.5 – 3)/(2^1.5+3))) – ln[(((2^1.5(exp(-
2*Pi)))))/((2^1.5(exp(-2*Pi))))]))))^4 

Input: 

 

 

 

Result: 

 

Polar coordinates: 
 

125.776 
 
Alternative representations: 

 

 

 
Series representations: 
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Integral representation: 

 

 

 

 

Now: 

Gravitational Collapse in Einstein Dilaton Gauss-Bonnet Gravity 
Justin L Ripley and Frans Pretorius - Department of Physics, Princeton University, 
Princeton, New Jersey 08544, USA. - E-mail: jripley@princeton.edu and 
fpretori@princeton.edu -February 2019 
 

 

 

We have that: 



28 
 

 

 

From: 

Modular equations and approximations to π – Srinivasa Ramanujan 
Quarterly Journal of Mathematics, XLV, 1914, 350 – 372 

We have: 

 

From which: 

exp((Pi/2)*sqrt46) 

Input: 

 

Exact result: 

 

Decimal approximation: 

 

42347.2610821… 

 
Property: 

 

 
Series representations: 
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Integral representation: 

 

 

exp -((Pi/2)*sqrt46) 

Input: 

 

Exact result: 

 

Decimal approximation: 

 

0.0000236142781… 

Property: 

 

 
Series representations: 
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Integral representation: 

 

 

144(147+104sqrt2) 

Input: 

 
 
Decimal approximation: 

 
42347.26231… 

 

Alternate form: 

 
 
Minimal polynomial: 

 
 

 

1 / ((144(147+104sqrt2))) 

Input: 

 
 
Decimal approximation: 

 
0.000023614277… 
 
Alternate forms: 
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Minimal polynomial: 

 
 

Thence: 

((Pi/2)*sqrt46) 

Input: 

 
 
Exact result: 

 
 
Decimal approximation: 

 
10.653659.... = 2B 

-10.653659.... = -2B 

 

For: 

  
 

 

𝜕௥ = 𝜕௧ = 2 ;   A = B = 5.3268295 ;  e2B = 42347.261 ;  e-2B = 0.00002361427 ;   

10.653659.... = 2B ;     -10.653659.... = -2B ;  𝜙 is the dilaton field = 0.9991104684  

 

 (with regard the dilaton field see: “On some new possible mathematical connections 
between some equations of the Ramanujan’s manuscripts, the Rogers-Ramanujan 
continued fractions and some sectors of Particle Physics, String Theory and D-
branes”). 
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We note that 0.9991104684 is equal to the value of the following Rogers-Ramanujan 
continued fraction: 
 

  
  

 

Thence, from 

 

 

𝜕௥ = 𝜕௧ = 2 ;   A = B = 5.3268295 ;  e2B = 42347.261 ;  e-2B = 0.00002361427 ;   

10.653659.... = 2B ;     -10.653659.... = -2B ;  𝜙 is the dilaton field = 0.9991104684  

Q = P = 2*0.9991104684 

we obtain: 

4*0.9991104684 – 1/(100^2)*(100^2*4*0.9991104684)-
8*50*(0.00002361427)*1/(100^2)*(1+42347.261)*(10.653659)^2+8*50*(0.0000236
1427)*1/(100^2)*(3-42347.261)*(10.653659)^2 

 

Input interpretation: 
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Result: 

 
-9.0798184561595651891570044856 
 
 
 

 
 
8*50*(0.00002361427)*1/(100^2)*(1-42347.261)* [(((4*5.3268295-
4*5.3268295^2-0.00002361427*10.653659-0.00002361427(10.653659)^2)))] 
 
Input interpretation: 

 
 
Result: 

 
3.687754197915234130288907144786841084756 
 
 
Thence, in conclusion, we have: 
 
 
4*0.9991104684 – 1/(100^2)*(100^2*4*0.9991104684)-
8*50*(0.00002361427)*1/(100^2)*(1+42347.261)*(10.653659)^2+8*50*(0.00002
361427)*1/(100^2)*(3-42347.261)*(10.653659)^2 + 
3.687754197915234130288907 
 
Input interpretation: 

 
 
Result: 

 
-5.3920642582443310588680974856 
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From which: 
 
1+1/(((-(4*0.9991104684 – 1/(100^2)*(100^2*4*0.9991104684)-
8*50*(0.00002361427)*1/(100^2)*(1+42347.261)*(10.653659)^2+8*50*(0.00002
361427)*1/(100^2)*(3-42347.261)*(10.653659)^2 + 3.68775419791))))^1/4 
 
Input interpretation: 

 
 
Result: 

 
1.656237788849… result very near to the 14th root of the following Ramanujan’s 

class invariant 𝑄 = ൫𝐺ହ଴ହ/𝐺ଵ଴ଵ/ହ൯
ଷ
 = 1164.2696  i.e. 1.65578... 

 

and: 

 

1+1/(((-(4*0.99911046 -1/(100^2)(100^2*4*0.99911046)-
8*50(0.00002361427)1/(100^2)(1+42347.261)(10.653659)^2+8*50(0.0000236142
7)1/(100^2)(3-42347.261)(10.653659)^2 +3.68775411))))^1/4 - (47-7-2)1/10^3 
 
Input interpretation: 

 
 
Result: 

 
1.61823778617… 
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e*((((4*0.99911046-1/(100^2)*(100^2*4*0.99911046)-
8*50*(0.00002361427)1/(100^2)(1+42347.261)(10.653659)^2+8*50(0.000023614
27)1/(100^2)(3-42347.261)(10.653659)^2 + 3.6877541979))))^4-521-47-
0.61803398 
 
Input interpretation: 

 

 
Result: 

 

1729.20… 
 
 
Alternative representation: 
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Series representations: 

 

 

 

 
 
We have that: 
 
 
With regard the Einstein dilaton Gauss Bonnet (EdGB) gravity 
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Now: 

 

For 

 

𝜕௥ = 𝜕௧ = 2 ;   A = B = 5.3268295 ;  e2B = 42347.261 ;  e-2B = 0.00002361427 ;   

10.653659.... = 2B ;     -10.653659.... = -2B ;  𝜙 is the dilaton field = 0.9991104684  

Q = P = 2*0.9991104684 

 

From 
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we obtain: 

((1+200(1-3*0.00002361427)(2*0.9991104684)/100))10.653659+(42347.261-
1)/200-50(((2*0.9991104684)^2+(2*0.9991104684)^2)) 

Input interpretation: 

 
 
Result: 

 
 

 

-134.330014547049796326171977744+200*((-
1+0.00002361427)/100)(4*0.9991104684+0.00002361427*10.653659*2*0.9991104
684) 

Input interpretation: 

 
 
 
Result: 

 
-142.3237149427...... 

 

From 

 

 

 

𝜕௥ = 𝜕௧ = 2 ;   A = B = 5.3268295 ;  e2B = 42347.261 ;  e-2B = 0.00002361427 ;   

10.653659.... = 2B ;     -10.653659.... = -2B ;  𝜙 is the dilaton field = 0.9991104684  
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Q = P = 2*0.9991104684 

 

(1+200(1-3*0.00002361427)(2*0.9991104684)/100)10.653659-
50*(2*0.9991104684)^2+200*((1-
0.00002361427)/100)*(10.653659*2*0.9991104684-4*0.9991104684) 

Input interpretation: 

 
 
Result: 

 
-111.833945418... 

 

From 

 

 

 

𝜕௥ = 𝜕௧ = 2 ;   A = B = 5.3268295 ;  e2B = 42347.261 ;  e-2B = 0.00002361427 ;   

10.653659.... = 2B ;     -10.653659.... = -2B ;  𝜙 is the dilaton field = 0.9991104684  

Q = P = 2*0.9991104684 

 

(((1+200(1-3*0.00002361427)(2*0.99911046)/100)))10.653659+(1-42347.261)/200-
50(((2*0.99911046)^2+(2*0.99911046)^2))+200*((0.00002361427*42347.261-
1)/100)(10.653659*2*0.99911046-4*0.99911046) 
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Input interpretation: 

 
 
Result: 

 
-557.79263.... 

 

From 

 

 

 (-1+400*0.00002361427*0.9991104684/50)(4*5.3268295-
4*5.3268295+10.653659^2+4*5.3268295^2)-
(1+400*0.00002361427*0.9991104684/50)(10.653659)^2 

Input interpretation: 

 
 
Result: 

 
 
 
 
Input interpretation: 
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Result: 

 
-340.4638551115... 

 

From 

 
     

 
 

 

𝜕௥ = 𝜕௧ = 2 ;   A = B = 5.3268295 ;  e2B = 42347.261 ;  e-2B = 0.00002361427 ;   

10.653659.... = 2B ;     -10.653659.... = -2B ;  𝜙 is the dilaton field = 0.9991104684  

Q = P = 2*0.9991104684 

 

((((((1-exp(-
4*5.3268))/100)+1200*0.000023614(0.02*0.9991104*10.6536)))))10.653659+0.1
0653659+(32*0.000023614*0.9991104*5.3268)+(32*0.000023614*0.9991104*5.
3268)+1/2(((2*0.9991104)^2-(2*0.9991104)^2)) 
 
Input interpretation: 

 
 
Result: 

 
 

Result: 
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Final result:  

-340.17847150981333859.... 

 

In conclusion, we obtain the following expressions: 

(-(-340.1784715 -557.79263  -111.833945418 -142.3237149427)) 

Input interpretation: 
 

 
Result: 

 
1152.1287618607 

 

From which: 

(-(-340.1784715 -557.79263  -111.833945418 -142.3237149427))+34+Pi 

Input interpretation: 
 

 
Result: 

 
1189.2704... result practically equal to the rest mass of Sigma baryon 1189.37  

 

((-340.1784715  * -557.79263 * -111.833945418 * -142.3237149427))^1/44 

Input interpretation: 

 
 
Result: 

 
1.642310384... 
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((-340.1784715  * -557.79263 * -111.833945418 * -142.3237149427))^1/44 - 
24/10^3 

Input interpretation: 

 
 
Result: 

 
1.618310384… 

 

((-340.1784715  * -557.79263 * -111.833945418 * -142.3237149427))^1/3 +233+55-
5+1/golden ratio 

Input interpretation: 

 

 

Result: 

 

1729.09166… 

 
Alternative representations: 
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((-340.1784715  * -557.79263 * -111.833945418 * -142.3237149427))^1/4-89-8 

Input interpretation: 

 
 
Result: 

 
137.427...  

This result is very near to the inverse of fine-structure constant 137.035 

 

 

((-340.1784715  * -557.79263 * -111.833945418 * -142.3237149427))^1/4-76-18-
1/golden ratio 

Input interpretation: 

 

 

 
Result: 

 

139.80897…  

 
Alternative representations: 
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From: 

White Holes as Remnants: A Surprising Scenario for the End of a Black Hole 
Eugenio Bianchi, Marios Christodoulou, Fabio D'Ambrosio  and Carlo Rovelli, Hal 
M. Haggard - arXiv:1802.04264v2 [gr-qc] 17 Mar 2018 
 
 

 

For 

 

((1-
(7/3*13.12806e+39)/(2*13.12806e+39)))*exp(((7/3*13.12806e+39)/(2*13.12806e+3
9))) 

Input interpretation: 

 
 
Result: 

 
-0.5352117571922... 

 

From which: 

sqrt[-sqrt2/(((((1-
(7/3*13.12806e+39)/(2*13.12806e+39)))*exp(((7/3*13.12806e+39)/(2*13.12806e+3
9))))))]-8/10^3 

Input interpretation: 

 
 
Result: 

 
1.6175288295691… 
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For 

 

 

 

 

We know that  

ℏ = 1.054571817 * 10^-34   and   m = 13.12806e+39 , thence: 

l = (13.12806e+39 * 1.054571817e-34)^1/3 

Input interpretation: 

 
 
Result: 

 
111.4531218..... 

 

τ2 = rs = 1.94973e+13  

thence, from 

 

We obtain: 

((((9*(111.4531218)^2-
24(111.4531218*1.94973e+13)+48(1.94973e+13)^2*(13.12806e+39)^2)))) / 
((((111.4531218+1.94973e+13)^8))) 
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Input interpretation: 

 
 
Result: 

 
150.58977989523... 

 

((((9*(111.4531218)^2-
24(111.4531218*1.94973e+13)+48(1.94973e+13)^2*(13.12806e+39)^2)))) / 
((((111.4531218+1.94973e+13)^8)))+111.4531218-2Pi+(sqrt2/2)^4 

Input interpretation: 

 
 
Result: 

 
256.010… 

 

From which: 

27/4*(((((((9*(111.4531218)^2-
24(111.4531218*1.94973e+13)+48(1.94973e+13)^2*(13.12806e+39)^2)))) / 
((((111.4531218+1.94973e+13)^8)))+111.4531218-2Pi+(sqrt2/2)^4)))+1 

Input interpretation: 

 
 
Result: 

 
1729.07… 
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Now, from 

 

 

 

For    ℏ = 1.054571817 * 10^-34   and   m = 13.12806e+39 , thence: 

 

we obtain: 

4*Pi*111.4531218^2*sqrt[((2*13.12806e+39)/(111.4531218))] * 
(((13.12806e+39)^3)) / (((1.054571817 * 10^-34)))    

Input interpretation: 

 
 
Result: 

 
5.14031…*10178 

 

(((((4*Pi*111.4531218^2*sqrt[((2*13.12806e+39)/(111.4531218))] * 
(((13.12806e+39)^3)) / (((1.054571817 * 10^-34))))))))^1/856 

where 856 = 107*8  

Input interpretation: 

 
 
Result: 

 
1.61724016919... 
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(((((4*Pi*111.4531218^2*sqrt[((2*13.12806e+39)/(111.4531218))] * 
(((13.12806e+39)^3)) / (((1.054571817 * 10^-34))))))))^1/55-34-13+(sqrt2)/2) 

Input interpretation: 

 
 
 
 
Result: 

 
1729.085… 

 

(((((((((4*Pi*111.4531218^2*sqrt[((2*13.12806e+39)/(111.4531218))] * 
(((13.12806e+39)^3)) / (((1.054571817 * 10^-34))))))))^1/55-34-
13+(sqrt2)/2)))))^1/15 

Input interpretation: 

 
 
Result: 

 
1.6438206… 
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Observations  

 

From: 
https://www.scientificamerican.com/article/mathematics-
ramanujan/?fbclid=IwAR2caRXrn_RpOSvJ1QxWsVLBcJ6KVgd_Af_hrmDYBNyU8m
pSjRs1BDeremA 
 
Ramanujan's statement concerned the deceptively simple concept of partitions—the 
different ways in which a whole number can be subdivided into smaller numbers. 
Ramanujan's original statement, in fact, stemmed from the observation of patterns, 
such as the fact that p(9) = 30, p(9 + 5) = 135, p(9 + 10) = 490, p(9 + 15) = 1,575 
and so on are all divisible by 5. Note that here the n's come at intervals of five units. 
 
Ramanujan posited that this pattern should go on forever, and that similar patterns 
exist when 5 is replaced by 7 or 11—there are infinite sequences of p(n) that are all 
divisible by 7 or 11, or, as mathematicians say, in which the "moduli" are 7 or 11. 
 
Then, in nearly oracular tone Ramanujan went on: "There appear to be 
corresponding properties," he wrote in his 1919 paper, "in which the moduli are 
powers of 5, 7 or 11...and no simple properties for any moduli involving primes other 
than these three." (Primes are whole numbers that are only divisible by themselves or 
by 1.) Thus, for instance, there should be formulas for an infinity of n's separated by 
5^3 = 125 units, saying that the corresponding p(n)'s should all be divisible by 125. 
In the past methods developed to understand partitions have later been applied to 
physics problems such as the theory of the strong nuclear force or the entropy of 
black holes. 
 
From Wikipedia 
 
In particle physics, Yukawa's interaction or Yukawa coupling, named after Hideki 
Yukawa, is an interaction between a scalar field ϕ and a Dirac field ψ. The Yukawa 
interaction can be used to describe the nuclear force between nucleons (which 
are fermions), mediated by pions (which are pseudoscalar mesons). The Yukawa 
interaction is also used in the Standard Model to describe the coupling between 
the Higgs field and massless quark and lepton fields (i.e., the fundamental fermion 
particles). Through spontaneous symmetry breaking, these fermions acquire a mass 
proportional to the vacuum expectation value of the Higgs field.  
 
 

Can be this the motivation that from the development of the Ramanujan’s equations 
we obtain results very near to the dilaton mass calculated as a type of Higgs boson: 
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125 GeV for T = 0 and to the Higgs boson mass 125.18 GeV and practically equal to 
the rest mass of  Pion meson 139.57 MeV 

 

 

Note that: 

 

Thence: 

 

And 

 

That are connected with 64, 128, 256, 512, 1024 and 4096 = 642 

 
(Modular equations and approximations to π - S. Ramanujan - Quarterly Journal of 
Mathematics, XLV, 1914, 350 – 372) 
 
 
All the results of the most important connections are signed in blue throughout the 
drafting of the paper. We highlight as in the development of the various equations we 
use always the constants π, ϕ, 1/ϕ, the Fibonacci and Lucas numbers, linked to the 
golden ratio, that play a fundamental role in the development, and therefore, in the 
final results of the analyzed expressions. 
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In mathematics, the Fibonacci numbers, commonly denoted Fn, form a sequence, 
called the Fibonacci sequence, such that each number is the sum of the two preceding 
ones, starting from 0 and 1. Fibonacci numbers are strongly related to the golden 
ratio: Binet's formula expresses the nth Fibonacci number in terms of n and the 
golden ratio, and implies that the ratio of two consecutive Fibonacci numbers tends 
to the golden ratio as n increases. 
Fibonacci numbers are also closely related to Lucas numbers ,in that the Fibonacci 
and Lucas numbers form a complementary pair of Lucas sequences  

The beginning of the sequence is thus: 

 
 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 
10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 
1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 
63245986, 102334155...  

 

The Lucas numbers or Lucas series are an integer sequence named after the 
mathematician François Édouard Anatole Lucas (1842–91), who studied both that 
sequence and the closely related Fibonacci numbers. Lucas numbers and Fibonacci 
numbers form complementary instances of Lucas sequences. 

The Lucas sequence has the same recursive relationship as the Fibonacci sequence, 
where each term is the sum of the two previous terms, but with different starting 
values. This produces a sequence where the ratios of successive terms approach 
the golden ratio, and in fact the terms themselves are roundings of integer powers of 
the golden ratio.[1] The sequence also has a variety of relationships with the 
Fibonacci numbers, like the fact that adding any two Fibonacci numbers two terms 
apart in the Fibonacci sequence results in the Lucas number in between. 

The sequence of Lucas numbers is: 

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 
9349, 15127, 24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 
1149851, 1860498, 3010349, 4870847, 7881196, 12752043, 20633239, 33385282, 
54018521, 87403803…… 

All Fibonacci-like integer sequences appear in shifted form as a row of the Wythoff 
array; the Fibonacci sequence itself is the first row and the Lucas sequence is the 
second row. Also like all Fibonacci-like integer sequences, the ratio between two 
consecutive Lucas numbers converges to the golden ratio. 

 

A Lucas prime is a Lucas number that is prime. The first few Lucas primes are: 
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2, 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 
6643838879, ... (sequence A005479 in the OEIS). 

 
In geometry, a golden spiral is a logarithmic spiral whose growth factor is φ, 
the golden ratio.[1] That is, a golden spiral gets wider (or further from its origin) by a 
factor of φ for every quarter turn it makes. Approximate logarithmic spirals can 
occur in nature, for example the arms of spiral galaxies[3] - golden spirals are one 
special case of these logarithmic spirals 

 

We observe that 1728 and 1729 are results very near to the mass of candidate glueball 
f0(1710) scalar meson. Furthermore, 1728 occurs in the algebraic formula for the j-
invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a 
pun on the Gross–Zagier theorem. The number 1728 is one less than the Hardy–
Ramanujan number 1729  (taxicab number). 

 

Furthermore, we obtain as results of our computations, always values very near to the 
Higgs boson mass 125.18 GeV and practically equals to the rest mass of  Pion meson 
139.57 MeV. In conclusion we obtain also many results that are very good 
approximations to the value of the golden ratio 1.618033988749... and to ζ(2) = 
గమ

଺
= 1.644934… 

 

 

We note how the following three values: 137.508 (golden angle), 139.57 (mass of 
the Pion - meson Pi) and 125.18 (mass of the Higgs boson), are connected to each 
other. In fact, just add 2 to 137.508 to obtain a result very close to the mass of 
the Pion and subtract 12 to 137.508 to obtain a result that is also very close to 
the mass of the Higgs boson. We can therefore hypothesize that it is the golden 
angle (and the related golden ratio inherent in it) to be a fundamental ingredient 
both in the structures of the microcosm and in those of the macrocosm. 
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