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Abstract

We introduce a concept of convergence of order α, with 0 < α ≤ 1, with respect to

a summability matrix method A for sequences, taking values in (`)-groups. Some main

properties and differences with the classical A-convergence are investigated. A Cauchy-

type criterion and a closedness result for the space of convergent sequences according our

notion is proved.

1 Introduction

The notion of statistical convergence was introduced in [19, 32]. In the literature there are

several extensions of this concept: indeed, statistical convergence can be viewed as a particular

case of convergence with respect to a summability matrix method (see also [13, 26]) as well as

ideal and filter convergence (see also [2, 21, 23, 24, 28, 29]).

In [13, 22, 26] several properties of summability matrices are investigated, while in [1]

and its bibliography several applications to matrix convergence to approximation theory, in

particular to Korovkin-type theorems and to approximation in statistical sense of a function

by means of a sequence of linear operators, even when the limit in the classical sense does not

exist (see also [3, 6, 7, 17]).

The statistical and ideal convergences were investigated in normed spaces in [30] and in

topological spaces in [14, 16, 15, 25]. Recently, there are several studies and applications of

ideal convergence in the setting of Riesz spaces and lattice groups. In [11] the notion of ideal

convergence in (`)-groups was introduced and the main properties were examined, while in
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[8, 9, 10, 11] there are some versions of basic matrix theorems and limit theorems for ideal

pointwise convergent measures taking values in an (`)-group R.

In [4] a natural extension of statistical convergence is presented, by replacing n with nα,

0 < α < 1, in the definition of asymptotic density. This is motivated by the investigation of

different kinds of densities, and by the problem of comparing them with the natural density.

In this paper we extend the statistical convergence of order α to convergence of order α with

respect to matrix methods, and we deal with the (`)-group setting. We prove a Cauchy-type

criterion, some main properties and some fundamental differences of the behavior of this kind

of convergence between the cases α = 1 and 0 < α < 1. Furthermore we present a property of

closedness for the space of sequences, converging according our definition.

2 Preliminaries

We begin with recalling and introducing some notions about densities and summability matrix

methods, which will be useful in the sequel.

Definitions 2.1. (a) Let N be the set of all natural numbers and B ⊂ N. If m, n ∈ N, m < n,

we denote by B(m,n) the cardinality of the set B ∩ {m,m+ 1, . . . , n}.
(b) Let 0 < α ≤ 1 be a real number. The lower and upper asymptotic density of order α

of the set B are defined by

dα(B) = lim inf
n

B(1, n)

nα
, d

α
(B) = lim sup

n

B(1, n)

nα
. (1)

If the limit lim
n

B(1, n)

nα
exists in R, then the common value in (1) is said to be the asymptotic

density of the set B of order α and is denoted by dα(B).

(c) If (xk)k is a sequence of real numbers, we say that (xk)k converges α-statistically to

x0 ∈ R (shortly, Sα limk xk = x0) iff for each ε > 0 we have dα(A(ε)) = 0, where A(ε) := {k ∈
N : |xk − x0| > ε}.

(d) Let A := (aj,k)j,k be an infinite summability matrix. For a given sequence x = (xk)k in

R, the A-transform of x, denoted by (Ax)j, is given by

(Ax)j :=
∞∑
k=1

aj,k xk, (2)

provided that the series in (2) converges for each j ∈ N (see [1]).

We say that A is regular iff limj(Ax)j = L whenever limk xk = L with L ∈ R.

The following characterization of regularity of a matrix A is known in the literature as the

Silverman-Toeplitz conditions (see also [1, Theorem 1.6]).
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Theorem 2.2. An infinite summability matrix A = (aj,k)j,k is regular if and only if the fol-

lowing conditions are satisfied:

(i) sup
j

( ∞∑
k=1

|aj,k|
)
< +∞,

(ii) lim
j
aj,k = 0 for each k ∈ N,

(iii) lim
j

( ∞∑
k=1

aj,k

)
= 1.

Using regular matrices, Freedman and Sember ([20]) extend the idea of the statistical

convergence to A-statistical convergence as follows.

Definitions 2.3. (a) Let A = (aj,k)j,k be a non-negative regular summability matrix. The

A-density of a subset K ⊂ N is defined by

δA(K) := lim
j

∑
k∈K

aj,k, (3)

provided that the limit in (3) exists in R. Similarly it is possible to define the concepts of

A-upper density and A-lower density of K ⊂ N as follows:

δA(K) := lim sup
j

∑
k∈K

aj,k, δA(K) := lim inf
j

∑
k∈K

aj,k

respectively.

(b) A sequence (xk)k of real numbers is said to be A-convergent to x0 ∈ R if δA(A(ε)) = 0

or equivalently

lim
j

∑
k∈A(ε)

aj,k = 0,

where A(ε) is as in Definitions 2.1 (c). Note that, when A := C1 = (cj,k)j,k is the Cesàro

matrix, defined by

cj,k :=

{
1
j

if 1 ≤ k ≤ j,

0 otherwise,

the A-density and A-convergence become the usual asymptotic density and statistical conver-

gence respectively.

We now recall some concepts about (`)-groups (see also [27, 31]).

An (`)-group R is said to be Dedekind complete if every nonempty subset A ⊂ R, bounded

from above, has a supremum in R. A Dedekind complete (`)-group R is said to be super

Dedekind complete if for any nonempty set A ⊂ R, bounded from above, there exists a count-

able subset A∗ ⊂ A, such that supA = supA∗.

From now on, we always suppose that R is a Dedekind complete (`)-group.
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An (O)-sequence (σp)p in R is a monotone decreasing sequence, such that
∧
p

σp = 0.

A (D)-sequence or regulator in R is a bounded double sequence (ai,j)i,j, such that for every

i ∈ N the sequence (ai,j)j is an (O)-sequence.

An (`)-group R is weakly σ-distributive if∧
ϕ∈NN

(
∞∨
i=1

ai,ϕ(i)

)
= 0 (4)

for every (D)-sequence (ai,j)i,j.

A sequence (xk)k in R is (O)-convergent to x ∈ R (and we write (O) limk xk = x) if there

is an (O)-sequence (σp)p such that for each p ∈ N there exists k ∈ N with

|xk − x| ≤ σp for all k ≥ k.

A sequence (xk)k in R is (O)-Cauchy if there exists an (O)-sequence (τp)p with the property

that for every p ∈ N there is k ∈ N such that

|xh − xk| ≤ τp whenever h, k ≥ k.

An (`)-group R is (O)-complete if every (O)-Cauchy sequence in R is (O)-convergent in R.

Note that every Dedekind complete (`)-group is (O)-complete (see also [12]).

We now fix an exponent 0 < α ≤ 1, and introduce the concepts of A-density and A-

convergence of order α for a summability matrix A = (aj,k)j,k.

Definition 2.4. The A-density of order α of a subset K ⊂ N is defined by

δαA(K) := lim
j

1

jα−1

∑
k∈K

aj,k, (5)

provided that the limit in (5) exists in R. Analogously we define the upper A-density of order

α and lower A-density of order α as follows:

δ
α

A(K) := lim sup
j

1

jα−1

∑
k∈K

aj,k, δαA(K) := lim inf
j

1

jα−1

∑
k∈K

aj,k,

respectively. Note that for A = C1, A-density of order α reduces to density of order α (see

Definition 2.1 (b) ).

Remark 2.5. Observe that, if 0 < α < 1 and E ⊂ N is such that δαA(E) = 0, then δαA(N\E) =

+∞. Indeed we get

lim
j

1

jα−1

∞∑
k=1

aj,k = lim
j

1

jα−1

∑
k∈E

aj,k + (6)

+ lim
j

1

jα−1

∑
k∈N\E

aj,k = δαA(E) + δαA(N \ E),
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provided that the limits involved exist in [0,+∞]. Since δαA(E) = 0, from (6) and regularity of

A we obtain

δαA(N \ E) = lim
j

1

jα−1

∞∑
k=1

aj,k = +∞. (7)

Definitions 2.6. (a) A sequence (xk)k in an (`)-group R is A-convergent of order α or Aα-

convergent to x0 ∈ R (shortly, Aα limk xk = x0) if there exists an (O)-sequence (σp)p such that,

for every p ∈ N, δαA(Bp) = 0, where

Bp := {k ∈ N : |xk − x0| 6≤ σp}, (8)

or equivalently

lim
j

1

jα−1

∑
k∈Bp

aj,k = 0.

In this case we write Aα limn xn = x0.

(b) A sequence (xk)k in R is Aα-Cauchy if there is an (O)-sequence (τp)p such that for every

p ∈ N there exists n ∈ N with

δαA({k ∈ N : |xk − xn| 6≤ τp}) = 0.

Remark 2.7. For A = C1, the Cesàro matrix, Aα-convergence reduces to statistical conver-

gence of order α (see [4]). Furthermore, if (xk)k is A-convergent of order α when α = 1, we see

simply that (xk)k is A-convergent. The collection of all sequences in an (`)-group R which are

A-convergent and Aα-convergent are denoted by Am0 and Amα
0 respectively.

3 The main results

We begin with a Cauchy-type criterion, which extends [11, Proposition 2.13] to Aα-convergence

in the (`)-group setting.

Proposition 3.1. A sequence (xk)k in R is Aα-convergent if and only if it is Aα-Cauchy.

Proof. We begin with the sufficient part. Let (σp)p be an (O)-sequence, related with the

Cauchy condition. There is a sequence (np)p in N with δαA(N \ Fp) = 0 for all p ∈ N, where

Fp := {k ∈ N : |xk − xnp | ≤ σp}. (9)

We now claim that Fp ∩ Fq 6= ∅ whenever p 6= q. Otherwise we have Fp ⊂ N \ Fq. But

δαA(N \ Fq) = 0, while δαA(Fp) = +∞ or 1 according as 0 < α < 1 or α = 1 (see also (7) ). This

is a contradiction, which proves the claim.
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Let now p 6= q. There exists kp,q ∈ N with |xkp,q − xnp| ≤ σp and |xkp,q − xnq | ≤ σq. So we

get |xnp − xnq | ≤ σp + σq, and hence (xnp)p is an (O)-Cauchy sequence. As every Dedekind

complete (`)-group is (O)-complete (see [12]), there is y ∈ R with (O) lim
p
xnp = y. So for each

p ∈ N we get

{k ∈ N : |xk − y| 6≤ 2σp} ⊂ {k ∈ N : |xk − xnp|+ |xnp − y| 6≤ 2σp}

⊂ {k ∈ N : |xnp − y| 6≤ σp} ∪ {k ∈ N : |xk − xnp| 6≤ σp},

and hence

δαA({k ∈ N : |xk − y| 6≤ 2σp}) = 0.

So, Aα lim
k
xk = y, which proves the sufficient part.

We now turn to the necessary part. We know that there exist an (O)-sequence (σp)p and

y ∈ R with dαA(Bp) = 0 for every p ∈ N, where

Bp := {k ∈ N : |xk − y| 6≤ σp}.

Observe that N \ Bp 6= ∅ for all p ∈ N, because dαA(Bp) = +∞ or 1 according as 0 < α < 1 or

α = 1 (see also (7) ). If k, n ∈ N \Bp, then

|xk − xn| ≤ |xk − y|+ |xn − y| ≤ 2σp. (10)

Let Vp := {k ∈ N : |xk − xn| 6≤ 2σp}, p ∈ N. From (10), for any p ∈ N we get Vp ⊂ Bp, and

thus dαA(Vp) = 0, since dαA(Bp) = 0. Thus the assertion of the necessary part follows. This

concludes the proof.

We now prove uniqueness of the Aα-limit in the (`)-group setting.

Theorem 3.2. Let (xk)k be an Aα-convergent sequence. Then, its Aα-limit is unique.

Proof. Let (xk)k be a sequence in R, with Aα lim
k
xk = x0 and Aα lim

k
xk = y0. Then there are

two (O)-sequences (σp)p, (τp)p such that

δαA({k ∈ N : |xk − x0| 6≤ σp}) = δαA({k ∈ N : |xk − y0| 6≤ τp}) = 0 for all p ∈ N.

Fix now p ∈ N, and let

D1 := {k ∈ N : |xk − x0| ≤ σp}, D2 := {k ∈ N : |xk − x0| ≤ τp}.

If D1 ∩D2 = ∅, then D1 ⊂ N \D2, and hence δ
α

A(D1) ≤ δ
α

A(N \D2), but δ
α

A(N \D2) = 0, while

δ
α

A(D1) = +∞ or 1 according as 0 < α < 1 or α = 1 (see also (7) ), a contradiction. Hence,

D1 ∩D2 6= ∅. Let k ∈ D1 ∩D2, then

|x0 − y0| ≤ |x0 − xk|+ |xk − y0| ≤ σp + τp.

Since (σp)p, (τp)p are (O)-sequences, by arbitrariness of p we get x0 = y0.
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The next result is a fundamental property of Aα-convergence in the case 0 < α < 1, and

extends [4, Theorem 1] to the (`)-group context.

Theorem 3.3. Let A be a regular and lower triangular summability matrix. If a sequence

(xk)k in R is Aα-convergent to x0 (with 0 < α < 1), then there is a set C := {k1 < k2 < . . . <

kn < . . .} ⊂ N with δ
α

A(C) = +∞ and (O) lim
n
xkn = x0.

Proof. Suppose that (xn)n is Aα-convergent to x0. Then there exists an (O)-sequence (σp)p

with δαA(Bp) = 0 for each p ∈ N, where Bp is as in (8). Set Cp = N\Bp. Since δαA(Bp) = 0, then

δαA(Cp) = +∞ (see also 7) ). Moreover, it is easy to see that the sequence (Cp)p is decreasing.

Let now (Gi)i be a strictly increasing sequence of positive real numbers. Choose arbitrarily

v1 ∈ C1. Since δαA(C2) = +∞, there is v2 ∈ C2, v2 > v1, with∑
k∈C2

aj,k > G2 · jα−1 for each j ≥ v2

In particular, we get ∑
k∈C2

av2,k > G2 · v2α−1.

At the next step, since δαA(C3) = +∞, we can find an element v3 ∈ C3, v3 > v2, with∑
k∈C3

av3,k > G3 · v3α−1.

Proceeding by induction, we construct a strictly increasing sequence (vj)j of positive integers,

with vj ∈ Cj and ∑
k∈Cj

avj ,k > Gj · vjα−1 for all j ∈ N.

Put now

C := [1, v1] ∪

(
∞⋃
j=2

([vj−1, vj] ∩ Cj)

)
.

Since A is lower triangular, we get

avj ,k = 0 for all j ∈ N and k > vj. (11)

As C ∩ [1, vj] ⊃ Cj ∩ [1, vj] for every j ∈ N, from (11) we get∑
k∈C

avj ,k ≥
∑
k∈Cj

avj ,k > Gj · vjα−1,

that is

1

vjα−1

∑
k∈C

avj ,k > Gj, for all j ∈ N. (12)
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From (12) it follows that

lim sup
j

1

vjα−1

∑
k∈C

avj ,k = +∞,

namely δ
α

A(C) = +∞.

Now, to show that the sequence (xk)k∈C (O)-converges to x0, it is sufficient to observe that

for all j ∈ N and k ≥ vj we have |xk−x0| ≤ σj, where (σj)j is an (O)-sequence. This completes

the proof.

Remarks 3.4. (a) Some examples of lower triangular non-negative regular matrices, whose C1
is a particular case, are the matrices which generate the Erdős-Ulam ideals (see [18, Example

1.2.3 (d)]).

(b) Observe that, for α = 1, Aα-convergence reduces to A-convergence, that is the con-

vergence generated by the ideal of those subsets of N having A-density zero. From this (see

also [23, Lemma 4] and [11, Proposition 2.8]) it follows that in a Dedekind complete (`)-

group R, a sequence (xk)k is A-convergent to x0 if and only if there is a subset C ⊂ N,

C = {k1 < . . . < kn < . . .}, with δA(C) = 1 and (O) lim
n
xkn = x0.

(c) For 0 < α < 1, the converse of Theorem 3.3 is in general not true, as can be seen by

taking

xk :=

{
(4, 4), if k = n2, n ∈ N.
(0, 0), otherwise.

(13)

Indeed, for α =
1

4
, δ

α

A(C) = +∞, where C = {n2 : n ∈ N}, but it is not true that Aα limk xk =

(4, 4).

From now on we do not require lower triangularity of the summability matrix involved, but

only non-negativity and regularity.

We now check the following inclusion, extending [4, Theorem 2].

Theorem 3.5. Let 0 < α ≤ β ≤ 1. Then Amα
0 ⊂ Amβ

0 .

Proof. Let (xk)k ∈ Amα
0 and with Aα lim

k
xk = x0. Then there is an (O)-sequence (σp)p such

that for all p ∈ N we get δαA(Bp) = 0, namely

lim
j

1

jα−1

∑
k∈Bp

aj,k,

where Bp := {k ∈ N : |xk − x0| 6≤ σp}. Since

0 ≤ lim sup
j

1

jβ−1

∑
k∈Bp

aj,k ≤ lim sup
j

1

jα−1

∑
k∈Bp

aj,k = 0,

then we get δβA(Bp) = 0, which shows that (xk)k ∈ Amβ
0 .
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If we take β = 1 in Theorem 3.5, then we obtain the following result.

Corollary 3.6. If a sequence (xk)k in R is Aα-convergent to x0 for some 0 < α ≤ 1, then it

is A-convergent to x0, that is Amα
0 ⊂ Am0.

We now prove a closedness property for the space of Aα-convergent sequences, extending

[4, Theorem 3] to the (`)-group setting.

Theorem 3.7. Let α ∈ (0, 1], (x(k))k be a sequence in Amα
0 , where x(k) = (x

(k)
j )j and for every

k ∈ N (x
(k)
j )j is Aα-convergent with respect to a common (O)-sequence (σp)p, independent of

k. If x = (xj)j is such that

(O) lim
k

(∨
j

|x(k)j − xj|

)
= 0, (14)

then x ∈ Amα
0 .

Proof. Let (x(k))k satisfy (14), where x(k) ∈ Am0 for all k ∈ N. Suppose that

Aα lim
j
x
(k)
j = yk for all k ∈ N. (15)

By (15) there is an (O)-sequence (σp)p with

δαA({n ∈ N : |x(k)n − yk| 6≤ σp}) = 0 for all k, p ∈ N.

Fix now p ∈ N, and put

Ek := {n ∈ N : |x(k)n − yk| ≤ σp} (16)

for all k ∈ N. If Ek ∩ Er = ∅, then Ek ⊂ N \ Er and hence δ
α

A(Ek) ≤ δ
α

A(N \ Er) = 0. But

δ
α

A(Ek) = +∞ or 1 according as 0 < α < 1 or α = 1 (see also (7) ), and so we obtain a

contradiction. Thus for every k, r ∈ N there exists n ∈ Ek ∩ Er.
By (14) there is an (O)-sequence (τp)p such that for all p ∈ N there is n0 = n0(p) ∈ N with

∞∨
j=1

|x(k)j − xj| ≤ τp for all k ≥ n0.

Then

|x(k)j − x
(r)
j | ≤ |x

(k)
j − xj|+ |x

(r)
j − xj|

≤
∞∨
j=1

|x(k)j − xj|+
∞∨
j=1

|x(r)j − xj| ≤ 2 τp
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for every j ∈ N and k, r ≥ n0. Thus we get

|yk − yr| ≤ |yk − x(k)n |+ |x
(k)
n − x

(r)
n |+ |yk − x

(k)
n |

≤ 2σp +
∞∨
j=1

|x(k)j − xj|+
∞∨
j=1

|x(r)j − xj| ≤ 2σp + 2 τp

whenever k, r ≥ n0. This shows that (yk)k is an (O)-Cauchy sequence in R. Since R is

Dedekind complete, then R is (O)-complete too (see also [12]), and so the sequence (yk)k is

(O)-convergent to some element y ∈ R. Hence there is an (O)-net (ηp)p such that for each

p ∈ N there exists n∗ = n∗(p) with

|yk − y| ≤ ηp for all k ≥ n∗.

Choose k ≥ max{n0, n
∗}. Then for all j ∈ N we have

|xj − y| ≤ |xj − x(k)j |+ |x
(k)
j − yk|+ |yk − y|

≤ τp + ηp + |x(k)j − yk|. (17)

Observe that, if Ek is as in (16) and j ∈ Ek, then |xj − y| ≤ wp, where wp = σp + τp + ηp. So

(wp)p is an (O)-sequence, and

E := {j ∈ N : |xj − y| 6≤ wp} ⊂ N \ Ek.

Since by hypothesis δαA(N \ Ek) = 0, we get also δαA(E) = 0, which completes the proof.

We now recall a condition, under which it is possible to replace a countable family of

(O)-sequences with one (O)-sequence ([5, Lemma 2.8]).

Lemma 3.8. Let R be a super Dedekind complete and weakly σ-distributive (`)-group. If

(σ
(k)
p )p is an equibounded family of (O)-sequences, then there is an (O)-sequence (br)r with the

property that for every k, r ∈ N there exists p = p(k, r), with σ
(k)
p ≤ br.

Remark 3.9. Observe that, if R is a super Dedekind complete and weakly σ-distributive

(`)-group and (x
(k)
j )j, k ∈ N, are as in Theorem 3.7, Aα-convergent for every k and order

equibounded in R (namely with a positive element u ∈ R with |x(k)j | ≤ u for all j, k ∈ N),

then the (x
(k)
j )j’s are Aα-convergent with respect to a same (O)-sequence (br)r, independent

of k. Indeed, let (yk)k be a sequence in R such that for all k ∈ N there exists an (O)-sequence

(σ
(k)
p )p with δαA(B

(k)
p ) = 0 for all k, p ∈ N, where

B(k)
p := {j ∈ N : |x(k)j − yk| 6≤ σ(k)

p }. (18)
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Note that order equiboundedness of the double sequence (x
(k)
j −yk)j,k is a consequence of order

equiboundedness of (x
(k)
j )j,k. So, without loss of generality, we can assume that σ

(k)
p ≤ 2u for

each k, p ∈ N.

By Lemma 3.8 there exists an (O)-sequence (br)r such that for every k, r ∈ N there exists

p ∈ N with σ
(k)
p ≤ br. From this and (18) it follows that D

(k)
r ⊂ B

(k)
p , where D

(k)
r := {j ∈ N :

|x(k)j − yk| 6≤ br}. Hence we get δαA(D
(k)
r ) = 0, since δαA(B

(k)
p ) = 0. This proves the claim, by

virtue of arbitrariness of r.
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