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Abstract. We prove a Korovkin-type approximation theorem using the rel-
ative uniform convergence of a sequence of functions at a point, which is a

method stronger than the classical ones. We give some examples on this new

convergence method and we study also rates of convergence.

1. Introduction

Since their discovery, the simplicity and the power of the classical theorems of
Korovkin (see [33]) have impressed several mathematicians. Starting with these
results, many authors have extended the Korovkin theorem to several contexts
using different, new and strong convergence methods (for an overview, see e.g.,
[1, 2, 8] and their bibliographies).

The Korovkin-type theorems give conditions for uniform approximation of con-
tinuous functions on a compact space using sequences or nets of positive linear oper-
ators on the space of continuous functions. The classical Bohman-Korovkin theorem
gives uniform convergence in the space C([a, b]) of all continuous real-valued func-
tions defined on the compact subinterval [a, b] of the real line, with the only hypoth-
esis of convergence on the test functions 1, x, x2 (see e.g., [13, 23, 32, 33]). There
have been several extensions of the Korovkin theorem to abstract functional spaces,
like for instance Lp spaces (see e.g., [25, 30, 37, 40]), Orlicz spaces (see e.g., [34, 38]),
general modular spaces (see e.g., [6, 7, 9]). There have been also several studies
about Korovkin-type theorems with respect to convergence generated by summabil-
ity matrices, statistical and filter convergence (see e.g., [2, 4, 22, 26, 27, 28, 29, 41]),
and “triangular A-statistical convergence”, which is an extension of statistical con-
vergence, associated with a suitable non-negative regular matrix A (see e.g., [4, 5]).
In [11] it is dealt with Korovkin-type results about convergence and estimates of
rates of approximation with respect to abstract convergences for nets of operators
acting on an abstract modular function space and satisfying suitable axioms (see
e.g., [6]), including as particular cases convergence generated by summability ma-
trices, filter convergence and almost convergence, which is not generated by any
filter (see [12]). Moreover, in [11] the general case of a net of operators, acting
on an abstract modular function space, is treated, and earlier results proved in
[4, 5, 6, 10, 19, 26] are extended, unifing different previous theories. Furthermore,
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these topics have several recent meaningful applications to signal processes, image
reconstruction, neural networks, thermography and seismic engineering (see e.g.,
[17, 18, 20, 21, 39] and their bibliographies).

From now on, we assume that I ⊂ R is a compact interval.
The classical notion of uniform convergence of function sequences is formulated

as follows:

Definition 1.1. The function sequence (fn)n, defined on I and with values in R,
converges uniformly on I to f : I → R iff for every ε > 0 there exists an integer N
such that, if n ≥ N and x ∈ I, then |fn (x)− f (x)| ≤ ε.

Observe that, in general, the notions of “uniform convergence on each closed
subinterval of an open interval” and “uniform convergence on the open interval”
are not equivalent. For example, the sequence (fn)n given by fn (x) = xn converges
uniformly to 0 on any interval [0, a] with 0 < a < 1, but neither on [0, 1] nor on
[0, 1).

Recently, the idea of uniform convergence of a sequence of functions at a point
was formerly defined by J. Klippert and G. Williams (see for details [31]).

Definition 1.2. Suppose that (fn)n is a sequence of real functions defined on I.
Let x0 ∈ I. We say that (fn)n converges uniformly at the point x0 to f : I → R iff
for every ε > 0 there are δ > 0 and N ∈ N such that

|fn (x)− f (x)| ≤ ε
whenever n ≥ N and |x− x0| ≤ δ.

Example 1.1. Define gn : [0, 1]→ [0, 1] by

gn (x) =

{
x, if n is a square
0, otherwise

.(1.1)

It is readily seen that the sequence (gn)n converges to 0 at the point 0 and does
not converge at any point x ∈]0, 1]. Now we claim that (gn)n converges uniformly
to 0 at x0 = 0. Indeed, let ε > 0 be given, and choose δ = ε and N = 1. Let n ≥ N
and x ∈ [0, 1] with |x| ≤ δ. Then,

|gn (x)| ≤ |x| ≤ δ = ε.

The notion of uniform convergence of a function sequence with respect to a scale
function was introduced by E. H. Moore in [36] and developed by E. W. Chittenden
in [14, 15, 16]. A scale function is any map σ : I → R \ {0}.

Definition 1.3. A sequence (fn)n of real-valued functions, defined on I, converges
relatively uniformly to a function f : I → R with respect to the scale function σ iff
for every ε > 0 there is an integer nε such that for every n ≥ nε and x ∈ I the
inequality

|fn (x)− f (x)| ≤ ε |σ (x)|
holds.

In this paper we introduce the notion of relative uniform convergence of a se-
quence of functions at a point. We apply our new kind of convergence to prove a
Korovkin-type approximation theorem. Furthermore, we study the rates of conver-
gence, extending earlier results proved in [3, 10, 11, 19].
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2. Relative uniform convergence at a point

We begin with the definition of our new convergence method.

Definition 2.1. Suppose that (fn)n is a sequence of real-valued functions defined
on I. Let x0 ∈ I. We say that (fn)n converges relatively uniformly at the point
x0 ∈ I to f : I → R with respect to the scale function σ, iff for every ε > 0 there
are δ > 0 and N ∈ N such that for every n ≥ N, if |x− x0| ≤ δ, then

|fm (x)− f (x)| ≤ ε |σ (x)| .

Now we give the following special cases to show the effectiveness of the new
proposed method.

Remark 2.1. Observe that uniform convergence of a sequence of functions at a
point is a special case of relative uniform convergence of a sequence of functions
at a point, in which the scale function is a non-zero constant. If σ(x) is bounded,
then relative uniform convergence at a point implies uniform convergence at a point.
However, in general, relative uniform convergence at a point does not imply uniform
convergence at a point, when σ(x) is unbounded.

Now we give the following example of a function sequence which converges rela-
tively uniformly at x0 = 0 with respect to a scale function, but does not converge
uniformly at x0 = 0.

Example 2.1. Define hn : [0, 1]→ [0, 1] by

hn (x) =

{
nx

1+nx , if n is a square

0, otherwise
.(2.1)

We claim that (hn)n converges relatively uniformly at x0 = 0 to 0 with respect to
the scale function

σ (x) =

{
1
x , if 0 < x ≤ 1
1, if x = 0

.

Indeed, let ε > 0 be given, and choose δ = ε and N = 1. Let n ≥ N and x ∈ [0, 1]
be with x ≤ δ. We get ∣∣∣∣hn (x)

σ (x)

∣∣∣∣ ≤ nx2

1 + nx
≤ x ≤ δ = ε.

However, (hn)n does not converge uniformly at x0 = 0. Indeed, choose arbitrarily

δ > 0 and N ∈ N, and let n ≥ N and x ∈ [0, 1] be with x ≤ δ. For ε =
1

2
,

x =
1

n
∈ [0, 1], we have

nx

1 + nx
=

1

2
. �

3. Korovkin Type Approximation Theorems

Let C (I) be the space of all continuous real-valued functions on I, and for every
x ∈ I, set e0(x) = 1, er(x) = xr, r ∈ N. We know that C (I) is a Banach space
with norm ‖f‖C(I) = sup

x∈I
|f (x)| . First, we give the well-known classical Korovkin

approximation theorem.
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Theorem 3.1. (see also [32, 33]) Suppose that (Ln)n is a sequence of positive
linear operators acting from C (I) into itself, satisfying the following conditions:

lim
n→∞

‖Ln (er)− er‖C(I) = 0, r = 0, 1, 2.

Then, for all f ∈ C (I),

lim
n→∞

‖Ln (f)− f‖C(I) = 0.

Now we present our following main theorem.

Theorem 3.2. Let (Ln)n be a sequence of positive linear operators acting from
C (I) into itself. Then (Ln (er))n, r = 0, 1, 2, converges relatively uniformly at x0
to er with respect to the (possibly unbounded) scale function σr if and only if for all
f ∈ C (I), (Ln (f))n converges relatively uniformly at x0 to f with respect to the
scale function σ defined by

σ (x) = max {|σr (x)| : r = 0, 1, 2} .(3.1)

Proof. Let I = [a, b], with a < b ∈ R, and let x0 ∈ I be fixed. Since each er ∈ C (I),
the sufficient condition is obvious. Now, let f ∈ C (I) and x ∈ I be fixed. Let
Q = max{−a, b}, R = max{Q,Q2}. Of course, |x| ≤ R and x2 ≤ R for every x ∈ I.
By the continuity of f on I, there is a positive real number S with |f (x)| ≤ S for
every x ∈ I. Therefore, we get

|f (t)− f (x)| ≤ |f (t)|+ |f (x)| ≤ 2S.

Moreover, since f is uniformly continuous on I, for every ε > 0 there exists η > 0
with |f (t)− f (x)| ≤ ε/4 for all t ∈ I satisfying |t− x| ≤ η. Hence, for each x,
t ∈ I we have

|f (t)− f (x)| ≤ ε

4
+

2S

η2
(t− x)

2
,

that is

−ε
4
− 2S

η2
(t− x)

2 ≤ f (t)− f (x) ≤ ε

4
+

2S

η2
(t− x)

2
.

Without loss of generality, ε can be chosen such that 0 < ε ≤ 1, so that ε2 ≤ ε. By

hypothesis, in correspondence with min
{ε

4
,
ε

4S
,
ε η2

32RS

}
and r = 0, 1, 2 there are

δr > 0 and Nr ∈ N with

|Ln(er;x)− er(x)| ≤ min
{ε

4
,
ε

4S
,
ε η2

32RS

}
|σr(x)|(3.2)

whenever n ≥ Nr and |x− x0| ≤ δr. From (3.2) we get

|Ln(er;x)− er(x)| ≤ min
{ε

4
,
ε

4S
,
ε η2

32RS

}
σ(x)(3.3)
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for every n ≥ N and x ∈ I with |x − x0| ≤ δ, where δ = min {δr : r = 0, 1, 2} and
N = max {Nr : r = 0, 1, 2}. We have

Ln((· − x)2;x)

= |Ln(e2 − 2x e1 + x2;x)− x2 + 2x2 − x2|
≤ |Ln(e2;x)− x2|+ 2 |x| |Ln(e1;x)− x|+ x2 |Ln(e0;x)− 1|
= |Ln(e2;x)− x2|+ 2 |x| |Ln(e1;x)− e1(x)|+ x2 |Ln(e0;x)− e0(x)|

≤ ε η2

8S
σ(x)

for each n ≥ N and x ∈ I with |x − x0| ≤ δ. As the operators Ln are linear and
positive, taking into acount (3.3), we have

|Ln (f ;x)− f(x)|
≤ |Ln (f ;x)− f(x)Ln (e0;x)|+ |f(x)Ln (e0;x)− f(x)|

≤ ε

4
Ln(e0;x) +

2S

η2
Ln((· − x)2;x)

+S |Ln (e0;x)− e0(x)|

≤ ε

4
|Ln (e0;x)− e0(x)|+ ε

4
e0(x) +

2S

η2
Ln((· − x)2;x)

+S |Ln (e0;x)− e0(x)|

≤ ε2

4
σ(x) +

ε

4
σ(x) +

ε

4
σ(x) +

ε

4
σ(x) ≤ ε σ(x).

whenever n ≥ N and |x− x0| ≤ δ. This ends the proof. �

When the involved scale functions are non-zero constants, the next result follows
immediately from our main Korovkin-type approximation theorem.

Corollary 3.3. Let (Ln)n be a sequence of positive linear operators acting from
C (I) into itself. Then (Ln (er))n, r = 0, 1, 2, converges uniformly at x0 to er if
and only if for all f ∈ C (I) , (Ln (f))n converges uniformly at x0 to f .

In the next example we will show that our main Korovkin-type approximation
theorem is stronger.

Example 3.1. Let I = [0, 1] and consider the following Meyer-König and Zeller
polynomials introduced by W. Meyer-König and K. Zeller in [35]:

Mn (f ;x) = (1− x)
n+1

∞∑
k=0

f

(
k

n+ k

)(
n+ k

k

)
xk, f ∈ C [0, 1] .

It is well-known that Mn (1;x) = 1, Mn (t;x) = x and

Mn

(
t2;x

)
= x2 + ηn (x) ≤ x2 +

x (1− x)

n+ 1
,

where

ηn (x) = x (1− x)
n+1

∞∑
k=0

(
n+ k − 1

k

)
xk

n+ k + 1
.

Using these polynomials, we define the following positive linear operators on C [0, 1] :

Tn (f ;x) = (1 + hn (x))Mn (f ;x) ,(3.4)
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where hn is given by (2.1), and we choose σr (x) = σ (x), r = 0, 1, 2, where

σ (x) =

{
1
x , if 0 < x ≤ 1
1, if x = 0

.

Now we claim that (Tn (er))n r = 0, 1, 2, converges uniformly at x0 = 0 to er with
respect to the scale function σr. Let ε > 0 be given. Choose δ0 = ε and N0 = 1.
Let n ≥ N0 and x ∈ [0, 1] with |x| ≤ δ0. Then,∣∣∣∣Tn (1;x)− 1

σ0 (x)

∣∣∣∣ =

∣∣∣∣hn (x)

σ (x)

∣∣∣∣ ≤ |x| ≤ δ0 = ε.

Also, choose δ1 =
√
ε and N1 = 1. Let n ≥ N1 and x ∈ [0, 1] with |x| ≤ δ1. Then,∣∣∣∣Tn (t;x)− x
σ1 (x)

∣∣∣∣ =

∣∣∣∣xhn (x)

σ (x)

∣∣∣∣
= |x|

∣∣∣∣hn (x)

σ (x)

∣∣∣∣ ≤ |x| |x| ≤ δ21 = ε.

Finally, choose δ2 =
2ε

7
and N2 = 1. Let n ≥ N2 and x ∈ [0, 1] with |x| ≤ δ2. Then,

we obtain∣∣∣∣∣Tn
(
t2;x

)
− x2

σ2 (x)

∣∣∣∣∣ ≤
∣∣∣∣∣∣
(1 + hn (x))

(
x2 + x(1−x)

n+1

)
− x2

σ (x)

∣∣∣∣∣∣
≤

∣∣∣∣ x (1− x)

(n+ 1)σ (x)

∣∣∣∣+

∣∣∣∣hn (x)

σ (x)

∣∣∣∣ ∣∣∣∣x2 +
x (1− x)

n+ 1

∣∣∣∣ ≤ 7

2
|x| ≤ 7

2
δ = ε.

Hence, by Theorem 3.2, for ε > 0 there

are δ = min

{
ε,
√
ε,

2ε

7

}
and N = 1 such that for every n ≥ N ,∣∣∣∣Tn (f ;x)− f (x)

σ (x)

∣∣∣∣ ≤ ε
holds for all x ∈ I = [0, 1] satisfying |x| ≤ δ. However, since |Tn (1;x)− 1| =

|(1 + hn (x))− 1| =
{

nx
1+nx , n is square

0, otherwise
, the sequence (Tn (e0)) is not uniformly

convergent to e0 (x) = 1 and also, (Tn (e0)) is not converges uniformly at x0 = 0
to e0. Hence, we can say that Theorem 3.1 (classical Korovkin type theorem) and
Corollary 3.3 do not work for our operators defined by (3.4). �

Example 3.2. Let I = [0, 1], and consider the classical Bernstein polynomials

Bn (f ;x) =

n∑
k=0

f

(
k

n

)(
n

k

)
xk (1− x)

n−k

on C [0, 1]. It is well-known that Bn (1;x) = 1, Bn (t;x) = x and

Bn
(
t2;x

)
= x2 +

x (1− x)

n
.

Using these polynomials, we define the following positive linear operators on C [0, 1] :

T ∗n (f ;x) = (1 + hn (x))Bn (f ;x) ,(3.5)
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where hn is given by (2.1), and we choose σr (x) = σ (x), r = 0, 1, 2, where

σ (x) =

{
1
x , if 0 < x ≤ 1
1, if x = 0

Then it is not difficult to see that the sequence of the operators defined in (3.5)
converges relatively uniformly at x0 = 0 with respect to the scale function σ, but
does not converge uniformly at x0 = 0.

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

Exact f(x)
n=4
n=9
n=16
n=36
n=64

Figure 1. The opera-
tors Bn (f ;x) and the
function f (x) = x3.

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

Exact f(x)/<
n=4
n=9
n=16
n=36
n=64

Figure 2. The oper-

ators Bn(f ;x)
σ(x) and the

function f(x)
σ(x) .

Figure 3. The
operators
(1 + hn (x))Bn (f ;x)
and the function f (x) .

Figure 4. The opera-

tors (1+hn(x))Bn(f ;x)
σ(x) and

the function f(x)
σ(x) .

F igure 1 : We can see the Bernstein operators, which converge uniformly, and also
converge uniformly at the point x0 = 0.

Figure 2 : We can see the Bernstein operators, divided by the scale function, that
converge uniformly with respect to the scale function σ, and also converge
uniformly at the point x0 = 0 with respect to the scale function σ.
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Figure 3 : We can see the new operators given via the Bernstein operators with the
function sequence (hn)n, which do not converge uniformly at the point
x0 = 0.

Figure 4 : We can see the new operators, divided by the scale function, given via
the Bernstein operators with the function sequence (hn)n, that converge
uniformly at the point x0 = 0 with respect to the scale function σ.

4. Rates of Convergence

In this section we study the rate of convergence with the aid of the modulus of
continuity, which is defined by

ω(f, δ) = sup
t,x∈I,|t−x|≤δ

|f(t)− f(x)| , f ∈ C(I), δ > 0.

It is readily seen that, for any λ > 0 and f ∈ C(I),

ω(f, λ δ) ≤ (1 + [λ])ω(f, δ),

where [λ] denotes the greatest integer less than or equal to λ.

Theorem 4.1. Let (Ln)n be a sequence of positive linear operators acting from
C (I) into itself. Assume that the following conditions hold:

(i) (Ln (e0))n converges relatively uniformly at x0 to e0 with respect to the scale
function σ0;

(ii) lim
n→∞

ω (f, δn)

|σ1 (x)|
= 0 for each x ∈ I, where

δn =

√
Ln

(
(· − x)

2
;x
)
, n ∈ N.(4.1)

Then, for every f ∈ C (I), (Ln (f))n converges relatively uniformly at x0 to f with
respect to the scale function σ, where

σ (x) = max {|σr (x)| : r = 0, 1} .

Proof. Let x ∈ I and f ∈ C (I) be fixed. Since the operators Ln are linear and
positive, then for every n ∈ N and δ > 0 we have

|Ln (f ;x)− f(x)|
≤ Ln (|f (·)− f (x)| ;x) + |f (x)|Ln (1;x)

≤ Ln

((
1 +

(· − x)
2

δ2

)
ω (f, δ) ;x

)
+ |f (x)|Ln (1;x)

= ω (f, δ) Ln (1;x)

+
ω (f, δ)

δ2

[
Ln

(
(· − x)

2
;x
)]

+ |f (x)|Ln (1;x) .

Now, let δ = δn be as in (4.1). We get

|Ln (f ;x)− f(x))|
σ (x)

≤ [ω (f, δn) + |f (x)| ] Ln (1;x)

|σ0(x)|

+2
ω (f, δn)

|σ1 (x)|
[Ln (1;x) + 1] .

The assertion follows by using (i) and (ii). �
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