Filter exhaustiveness and filter limit theorems for k-triangular lattice group-valued set functions

Antonio Boccuto * Xenofon Dimitriou

Department of Mathematics and Computer Sciences, University of Perugia, 1, Via Vanvitelli – 06123, Perugia (Italy)

Department of Mathematics, University of Athens, Panepistimiopolis, 15784, Athens (Greece)

emails: antonio.boccuto@unipg.it, dxenof@math.uoa.gr

Abstract

We give some limit theorems for sequences of lattice group-valued k-triangular set functions, in the setting of filter convergence, and some results about their equivalence. We use the tool of filter exhaustiveness to get uniform (s)-boundedness, uniform continuity and uniform regularity of a suitable subsequence of the given sequence, whose indexes belong to the involved filter. Furthermore we pose some open problems.

Key Words: Lattice group, filter, filter order convergence, filter exhaustiveness, Fréchet-Nikodým topology, submeasure, k-triangular set function.

M.S.C.: 28B05, 28B20, 46B42, 46G10, 18B15

^{*(}corresponding author)

1 Introduction

Recently there have been many studies about limit theorems for lattice group-valued set functions. A comprehensive treatment, together with a historical survey, can be found in [4,5] (see also the references therein). In [18] it is dealt with limit theorems for k-triangular real-valued set functions, which have been extended to the lattice-group setting in [6,7]. Some examples of k-triangular functions are the Saeki measuroids (see also [19]), which are not necessarily monotone, the aggregation functions (see also [16,17]) and the M-measures, which are monotone continuous set functions, compatible with respect to finite suprema and infima (see also [1]).

Here we prove some Brooks-Jewett, Vitali-Hahn-Saks, Nikodým and Dieudonné-type theorems in the context of filter convergence and their equivalence, extending to k-triangular set functions earlier results proved in [3,5,7,9-11,13,14,16,17] in the setting of finitely and countably additive measures. We use the tool of filter exhaustiveness, showing that it is essential to prove our main results. We consider a P-filter \mathcal{F} of \mathbb{N} and a sequence of lattice group-valued measures m_n , $n \in \mathbb{N}$, defined on a σ -algebra Σ , separable with respect to a suitable Fréchet-Nikodým topology, and filter convergent pointwise on a countable dense subset of Σ with respect to a single order sequence. Using filter exhaustiveness, we obtain the existence of the order filter limit set function on Σ and uniform (s)-boundedness, uniform τ -continuity, uniform continuity from above at \emptyset and uniform regularity of a subsequence of the type m_n , $n \in M_0$, where M_0 is a suitable element of the involved filter. Finally we pose some open problems.

2 Preliminaries

Let R be a Dedekind complete lattice group. We begin with recalling the following basic concepts (see also [4,5]).

Definitions 2.1. (a) A sequence $(\sigma_p)_p$ of positive elements of R is said to be an (O)-sequence iff it is decreasing and $\bigwedge \sigma_p = 0$.

- (b) A bounded double sequence $(a_{t,l})_{t,l}$ in R is a (D)-sequence or a regulator iff $(a_{t,l})_l$ is an (O)-sequence for any $t \in \mathbb{N}$.
- (c) A Dedekind complete lattice group R is said to be *super Dedekind complete* iff for every nonempty set $A \subset R$, bounded from above, there is a finite or countable subset with the same supremum as A.

(d) A lattice group R is weakly σ -distributive iff

$$\bigwedge_{\varphi\in\mathbb{N}^{\mathbb{N}}}\Bigl(\bigvee_{t=1}^{\infty}a_{t,\varphi(t)}\Bigr)=0$$

for every (D)-sequence $(a_{t,l})_{t,l}$ in R.

- (e) A sequence $(x_n)_n$ in R is said to be order convergent (or (O)-convergent) to an element $x \in R$ iff there exists an (O)-sequence $(\sigma_p)_p$ in R such that for every $p \in \mathbb{N}$ there is a positive integer n_0 with $|x_n-x| \leq \sigma_p$ for each $n \geq n_0$, and in this case we write $(O) \lim_{n \to \infty} x_n = x$.
- (f) We say that a sequence $(x_n)_n$ in R is (O)-Cauchy iff there exists an (O)-sequence $(\tau_p)_p$ such that for every $p \in \mathbb{N}$ there is $n^* \in \mathbb{N}$ with $|x_n x_q| \leq \tau_p$ for every $n, q \geq n^*$.
- with $|x_n x_q| \le \tau_p$ for every $n, q \ge n^*$.

 (g) We call sum of a series $\sum_{n=1}^{\infty} x_n$ in R the limit $(O) \lim_{n} \sum_{l=1}^{n} x_l$, if it exists in R.

Some examples of super Dedekind complete and weakly σ -distributive lattice groups are the space $\mathbb{N}^{\mathbb{N}}$ of all permutations of \mathbb{N} endowed with the usual componentwise order and the space $L^0(X, \mathcal{B}, \nu)$ of all ν -measurable functions defined on a measure space (X, \mathcal{B}, ν) with the identification up to ν -null sets, where ν is a positive, σ -additive and σ -finite extended real-valued measure, endowed with almost everywhere convergence (see also [4]).

We now recall the following basic properties of filters and filter order convergence in the lattice group context (see also [2,4,8]).

Definitions 2.2. (a) A filter \mathcal{F} of \mathbb{N} is a nonempty collection of subsets of \mathbb{N} with $\emptyset \notin \mathcal{F}$, $A \cap B \in \mathcal{F}$ whenever $A, B \in \mathcal{F}$, and such that for each $A \in \mathcal{F}$ and $B \supset A$ we get $B \in \mathcal{F}$.

- (b) A filter of \mathbb{N} is said to be *free* iff it contains the filter \mathcal{F}_{cofin} of all cofinite subsets of \mathbb{N} .
- (c) A free filter \mathcal{F} of \mathbb{N} is a P-filter iff for every sequence $(A_n)_n$ in \mathcal{F} there is a sequence $(B_n)_n$ in \mathcal{F} , such that the symmetric difference

$$A_n \triangle B_n$$
 is finite for all $n \in \mathbb{N}$ and $\bigcap_{n=1}^{\infty} B_n \in \mathcal{F}$.
(d) Let R be a Dedekind complete lattice group and \mathcal{F} be any free

- (d) Let R be a Dedekind complete lattice group and \mathcal{F} be any free filter of \mathbb{N} . A sequence $(x_n)_n$ in R $(O\mathcal{F})$ -converges to $x \in R$ iff there exists an (O)-sequence $(\sigma_p)_p$ such that $\{n \in \mathbb{N} : |x_n x| \leq \sigma_p\} \in \mathcal{F}$ for any $p \in \mathbb{N}$.
- (e) We say that the sequence $(x_n)_n$ in R is $(O\mathcal{F})$ -Cauchy iff there exists an (O)-sequence $(\tau_p)_p$ such that for all $p \in \mathbb{N}$ there is a set $V_p \in \mathcal{F}$ with $|x_n x_q| \le \tau_p$ whenever $n, q \in A_p$.

Remark 2.3. (a) Observe that, when $R = \mathbb{R}$, the $(O\mathcal{F})$ -convergence coincide with the usual filter convergence. Moreover, when $\mathcal{F} = \mathcal{F}_{\text{cofin}}$, $(O\mathcal{F})$ -convergence is equivalent to (O)-convergence.

- (b) Note that, in any Dedekind complete lattice group, a sequence is $(O\mathcal{F})$ -convergent if and only if it is $(O\mathcal{F})$ -Cauchy.
- (c) Observe that both the filter $\mathcal{F}_{\text{cofin}}$ and the filter of all subsets of \mathbb{N} having asymptotic density one are P-filters (see also [4]).

We now recall some notions and properties of submeasures and Fréchet-Nikodým topologies. Let G be any infinite set and Σ be any σ -algebra of subsets of G.

Definitions 2.4. (a) A submeasure $\eta: \Sigma \to [0, +\infty]$ is a set function with $\eta(\emptyset) = 0$, $\eta(A) \leq \eta(B)$ whenever $A, B \in \Sigma, A \subset B$, and $\eta(A \cup B) \leq \eta(A) + \eta(B)$ whenever $A, B \in \Sigma$ and $A \cap B = \emptyset$. Note that, if η is a submeasure, then $\eta\left(\bigcup_{i=1}^n A_i\right) \leq \sum_{i=1}^n \eta(A_i)$ for all $n \in \mathbb{N}$ and $A_1, \ldots, A_n \in \Sigma$ (see also [13, §2]). It is well-known that, given a submeasure η on Σ , the function $d(A, B) = \eta(A \Delta B), A, B \in \Sigma$, is a pseudometric (see also [21, §1]).

(b) A topology τ on Σ is said to be a Fréchet-Nikodým topology iff the functions $(A,B)\mapsto A\Delta B$ (symmetric difference) and $(A,B)\mapsto A\cap B$ from $\Sigma\times\Sigma$ (endowed with the product topology) to Σ are continuous, and for each τ -neighborhood W of \emptyset in Σ there is a τ -neighborhood U of \emptyset in Σ such that, if $B\in\Sigma$ is contained in some suitable element of U, then $B\in W$ (see also [13,21]).

Remark 2.5. Observe that a topology τ on Σ is a Fréchet-Nikodým topology if and only if there exists a family of submeasures $\mathcal{Z} := \{\eta_i : i \in \Lambda\}$, with the property that a base of τ -neighborhoods of \emptyset in Σ is given by the sets of the type $U_{\varepsilon,J} := \{A \in \Sigma : \eta_i(A) < \varepsilon \text{ for all } i \in J\}$, where $\varepsilon \in \mathbb{R}^+$ and J varies in the class of all finite subsets of Λ (see also [13, Proposition 2.6 and Theorem 2.7]).

We now deal with some fundamental properties of lattice group-valued set functions (see also [5, 15, 18, 20]). Let $m: \Sigma \to R$ be a positive bounded set function and k be a fixed positive integer.

Definitions 2.6. (a) We say that m is k-subadditive on Σ iff $m(\emptyset) = 0$ and

$$m(A \cup B) \le m(A) + k m(B)$$
 whenever $A, B \in \Sigma, A \cap B = \emptyset$;

k-triangular on Σ , iff m is k-subadditive and

$$m(A) - k m(B) \le m(A \cup B)$$
 whenever $A, B \in \Sigma, A \cap B = \emptyset$.

(b) We call semivariation of m, shortly v(m), the set function defined by

$$v(m)(A) := \bigvee \{m(B) : B \in \Sigma, \ B \subset A\}, \quad A \in \Sigma.$$

- (c) Let $\mathcal{E} \subset \Sigma$ be a lattice. A set function $m: \Sigma \to R$ is said to be \mathcal{E} -(s)-bounded iff there exists an (O)-sequence $(\sigma_p)_p$ such that, for every disjoint sequence $(C_l)_l$ in \mathcal{E} , $(O)\lim_l v(m)(C_l) = 0$ with respect to $(\sigma_p)_p$. We say that m is (s)-bounded iff it is Σ -(s)-bounded.
- (d) We say that the set functions $m_n : \Sigma \to R$, $n \in \mathbb{N}$, are \mathcal{E} -uniformly (s)-bounded on Σ iff there exists an (O)-sequence $(\sigma_p)_p$ such that, for every disjoint sequence $(C_l)_l$ in \mathcal{E} ,

$$(O)\lim_{l} \left(\bigvee_{n} v(m_n)(C_l) \right) = 0$$

with respect to $(\sigma_p)_p$. The m_n 's are said to be uniformly (s)-bounded iff they are Σ -uniformly (s)-bounded.

- (e) We say that a set function $m: \Sigma \to R$ is continuous from above at \emptyset iff there is an (O)-sequence $(\sigma_p)_p$ with $(O) \lim_l v(m)(H_l) = 0$ with respect to $(\sigma_p)_p$, whenever $(H_l)_l$ is a decreasing sequence in Σ with $\bigcap_{l=1}^{\infty} H_l = \emptyset.$
- (f) The set functions $m_n : \Sigma \to R$, $n \in \mathbb{N}$, are said to be uniformly continuous from above at \emptyset iff there is an (O)-sequence $(\sigma_p)_p$ with

$$(O)\lim_{l} \left(\bigvee_{n} v(m_n)(H_l) \right) = 0$$

with respect to $(\sigma_p)_p$, for each decreasing sequence $(H_l)_l$ in Σ with $\bigcap_{l=1}^{\infty} H_l = \emptyset$.

- (g) We say that the set functions $m_n: \Sigma \to R$, $n \in \mathbb{N}$, are equibounded on Σ iff there is an element $u \in R$ with $|m_n(A)| \leq u$ for each $n \in \mathbb{N}$ and $A \subset \Sigma$.
- **Remark 2.7.** Observe that continuity from above at \emptyset of a k-triangular set function with respect to an (O)-sequence $(\sigma_p)_p$ implies its (s)-boundedness with respect to the (O)-sequence $((k+1)\sigma_p)_p$. Analogously it is possible to check that uniform continuity from above at \emptyset implies uniform (s)-boundedness (see also [6, Remark 2.12]).

Definitions 2.8. (a) Let τ be a Fréchet-Nikodým topology. A set function $m: \Sigma \to R$ is said to be τ -continuous on Σ iff it is (s)-bounded on Σ and for each decreasing sequence $(H_l)_l$ in Σ , with

 τ -lim $H_l = \emptyset$, we get $(O) \lim_l m(H_l) = 0$ with respect to a single (O)-sequence.

(b) The set functions $m_n: \Sigma \to R$, $n \in \mathbb{N}$, are uniformly τ -continuous on Σ iff they are uniformly (s)-bounded and for every decreasing sequence $(H_l)_l$ in Σ with τ -lim $H_l = \emptyset$, we get

$$(O)\lim_{l} \left(\bigvee_{n} m_{n}(H_{l}) \right) = 0$$

with respect to a single (O)-sequence.

- (c) Let \mathcal{G} , \mathcal{H} be two sublattices of Σ , such that \mathcal{G} is closed under countable unions, and the complement of every element of \mathcal{H} belongs to \mathcal{G} . A set function $m: \Sigma \to R$ is said to be regular iff there exists an (O)-sequence $(\sigma_p)_p$ such that for every $E \in \Sigma$ there are two sequences $(V_l)_l$ in \mathcal{G} and $(K_l)_l$ in \mathcal{H} with $V_l \supset E \supset K_l$ for every $l \in \mathbb{N}$ and such that for each $p \in \mathbb{N}$ there is $l_0 \in \mathbb{N}$ with $v(m)(V_l \setminus K_l) \leq \sigma_p$ whenever $l > l_0$.
- (d) The set functions $m_n: \Sigma \to R$, $n \in \mathbb{N}$, are uniformly regular iff there is an (O)-sequence $(\sigma_p)_p$ such that for any $E \in \Sigma$ and $n \in \mathbb{N}$ there exist two sequences $(F_l)_l$ in \mathcal{H} and $(G_l)_l$ in \mathcal{G} , with $V_l \supset E \supset K_l$ for each $l \in \mathbb{N}$ and such that for each $p \in \mathbb{N}$ there is $l_0 \in \mathbb{N}$ with $\bigvee_{n \in \mathbb{N}} v(m_n)(V_l \setminus K_l) \leq \sigma_p$ whenever $l \geq l_0$.

We now give the concept of (uniform) filter exhaustiveness, which plays a fundamental role in our results.

Definition 2.1. Let τ be a Fréchet-Nikodým topology on Σ and \mathcal{F} be a free filter of \mathbb{N} . A sequence of set functions $m_n : \Sigma \to R$, $n \in \mathbb{N}$ is said to be \mathcal{F} -exhaustive at \emptyset (resp. uniformly \mathcal{F} -exhaustive) with respect to τ iff there is an (O)-sequence $(\sigma_p)_p$ such that for each $p \in \mathbb{N}$ there are a τ -neighborhood U of \emptyset in Σ and a set $V \in \mathcal{F}$ with $|m_n(F)| \leq \sigma_p$ whenever $n \in V$ and for any $F \in \Sigma$ with $F \in U$ (resp. $|m_n(E) - m_n(F)| \leq \sigma_p$ whenever $E, F \in \Sigma$ with $E\Delta F \in U$ and for each $n \in V$).

3 The main results

From now on, let R be a super Dedekind complete and weakly σ -distributive lattice group. We begin with recalling the following results.

Proposition 3.1. (see also [4, Proposition II.2.19]) Let $(x_{n,j})_{n,j}$ be a double sequence in R, \mathcal{F} be a P-filter of \mathbb{N} , let $j \in \mathbb{N}$ and suppose

that

$$x_j = (O\mathcal{F}) \lim_n x_{n,j}. \tag{3.1.1}$$

Then there is a set $B_0 \in \mathcal{F}$ with

(O)
$$\lim_{n \in B_0} x_{n,j} = x_j,$$
 (3.1.2)

and in (3.1.2) it is possible to take the same (O)-sequence as in (3.1.1).

Theorem 3.2. (see also [6, Theorems 3.3, 3.5, 3.6 and 3.10]) Let $m_n : \Sigma \to R$, $n \in \mathbb{N}$, be a sequence of equibounded k-triangular set functions, such that the limit $m_0(E) := (O) \lim_n m_n(E)$ exists in R for every $E \in \Sigma$ with respect to a single (O)-sequence. Then, the following results are true and equivalent.

- 3.2.1) If the m_n 's are (s)-bounded on Σ , then they are uniformly (s)-bounded on Σ , and m_0 is k-triangular and (s)-bounded on Σ .
- 3.2.2) If the m_n 's are continuous from above at \emptyset , then they are uniformly continuous from above at \emptyset , and m_0 is k-triangular and continuous from above at \emptyset on Σ .
- 3.2.3) If τ is a Fréchet-Nikodým topology on Σ , and the m'_ns are τ continuous, then they are uniformly τ -continuous, and m_0 is k-triangular and τ -continuous on Σ .

Lemma 3.3. (see also [6, Lemma 3.4]) Let \mathcal{G} and \mathcal{H} be two sublattices of Σ , such that the complement of every element of \mathcal{H} belongs to \mathcal{G} , $m_n : \Sigma \to R$, $n \in \mathbb{N}$, be a sequence of k-triangular and \mathcal{G} -uniformly (s)-bounded set functions. Fix $W \in \mathcal{H}$ and a decreasing sequence $(H_l)_l$ in \mathcal{G} , with $W \subset H_l$ for each $l \in \mathbb{N}$. If

$$(O)\lim_{l} \left(\bigvee_{A \in \mathcal{G}, A \subset H_{l} \setminus W} m_{n}(A) \right) = \bigwedge_{l} \left(\bigvee_{A \in \mathcal{G}, A \subset H_{l} \setminus W} m_{n}(A) \right) = 0$$

for every $n \in \mathbb{N}$ with respect to a single (O)-sequence $(\sigma)_p$, then

$$(O)\lim_{l} \left(\bigvee_{n} \left(\bigvee_{A \in \mathcal{G}, A \subset H_{l} \setminus W} m_{n}(A) \right) \right) =$$

$$= \bigwedge_{l} \left(\bigvee_{n} \left(\bigvee_{A \in \mathcal{G}, A \subset H_{l} \setminus W} m_{n}(A) \right) \right) = 0$$

with respect to $(\sigma_p)_p$.

We recall the following Dieudonné-type theorem for k-triangular lattice group-valued set functions

Theorem 3.4. (see also [7, Theorem 3.3]) Let \mathcal{G} , \mathcal{H} be as in Lemma 3.3, $m_n : \Sigma \to R$, $n \in \mathbb{N}$, be a sequence of equibounded, regular, k-triangular and (s)-bounded set functions. Then the m_n 's are uniformly (s)-bounded and uniformly regular.

Now we prove the next result.

Theorem 3.5. Theorems 3.2 and 3.4 are equivalent.

Proof. Let $m_n: \Sigma \to R$, $n \in \mathbb{N}$, be a sequence of (s)-bounded and regular equibounded k-triangular set functions, with

$$(O)\lim_{n} m_n(E) = m(E)$$

for each $E \in \Sigma$. By Theorem 3.2, the m_n 's are uniformly (s)-bounded. Choose arbitrarily $E \in \Sigma$, let $(\sigma_p)_p$ be an (O)-sequence in R and $(V_l)_l$, $(K_l)_l$ be two sequences in \mathcal{G} and \mathcal{H} , respectively, with $V_l \supset E \supset K_l$ for each $l \in \mathbb{N}$, associated with regularity of the m_n 's (in [7] it is shown that $(V_l)_l$ and $(K_l)_l$ can be taken independently of n). There exists an (O)-sequence $(\sigma_p)_p$ with $(O)\lim_l v(m_n)(V_l \setminus K_l) = 0$ for every $n \in \mathbb{N}$ with respect to $(\sigma_p)_p$. By Lemma 3.3, we obtain $(O)\lim_l (\bigvee_n v(m_n)(V_l \setminus K_l)) = 0$ with respect to $(\sigma_p)_p$, and thus we get global regularity of the m_n 's. So, Theorem 3.2 implies Theorem 3.4.

We now prove the converse implication. Let $m_n: \Sigma \to R$, $n \in \mathbb{N}$, be a sequence of (s)-bounded and equibounded k-triangular set functions, with $(O) \lim_n m_n(E) = m(E)$ for each $E \in \Sigma$. Of course, if we take $\mathcal{G} = \mathcal{H} = \Sigma$, then the m_n 's are regular on Σ . Uniform (s)-boundedness of the m_n 's follows directly from Theorem 3.4. This concludes the proof.

The following result about filter exhaustive k-triangular set functions extends [12, Proposition VII.9] to lattice groups and the filter setting.

Proposition 3.6. Let Σ be endowed with a Fréchet-Nikodým topology τ . If $m_n : \Sigma \to R$, $n \in \mathbb{N}$, is a sequence of k-triangular set functions, then $(m_n)_n$ is \mathcal{F} -exhaustive if and only if $(m_n)_n$ is uniformly \mathcal{F} -exhaustive on Σ .

Proof. We prove only the "only if" part, since the "if" part is straightforward. Let $(\sigma_p)_p$ be an (O)-sequence and, in correspondence with $p \in \mathbb{N}$, pick U and V, associated with the \mathcal{F} -exhaustiveness of $(m_n)_n$ at \emptyset . Choose arbitrarily $n \in V$ and $E, F \in \Sigma$ with $E \triangle F \in U$. Since

 τ is a Fréchet-Nikodým topology on Σ , we can assume, without loss of generality, that $E \setminus F \in U$ and $F \setminus E \in U$. Taking into account k-triangularity of m_n , we get

$$|m_n(E) - m_n(F)| \leq |m_n(E) - m_n(E \cap F)| + + |m_n(F) - m_n(E \cap F)| \leq \leq k m_n(E \setminus F) + k m_n(F \setminus E) \leq 2 k \sigma_p.$$

From now on, we give the following

Assumption 3.7. Let Σ be a σ -algebra, separable with respect to a suitable Fréchet-Nikodým topology τ on Σ , and let $\mathcal{B} := \{F_j : j \in \mathbb{N}\}$ be a countable τ -dense subset of Σ .

We prove the following result on k-triangular extensions of filter limit set functions taking values in lattice groups, extending [3, Theorem 3.8].

Theorem 3.8. Under Assumption 3.7, let \mathcal{F} be any free filter of \mathbb{N} , $m_n: \Sigma \to R$, $n \in \mathbb{N}$, be a sequence of k-triangular set functions, uniformly \mathcal{F} -exhaustive on Σ (with respect to τ), and suppose that $m(F_j) := (O\mathcal{F}) \lim_n m_n(F_j)$, $j \in \mathbb{N}$, exists in R with respect to a single (O)-sequence. Then there is a k-triangular extension $m_0: \Sigma \to R$ of m, with $(O\mathcal{F}) \lim_n m_n(E) = m_0(E)$ for every $E \in \Sigma$ with respect to a single (O)-sequence.

Proof. Let $(\sigma_p)_p$ be an (O)-sequence associated with the uniform \mathcal{F} -exhaustiveness of the sequence $(m_n)_n$, and choose arbitrarily $E \in \Sigma$. For each $p \in \mathbb{N}$ there exist a τ -neighborhood U of \emptyset and a set $V \in \mathcal{F}$, with $|m_n(E) - m_n(F)| \leq \sigma_p$ for every $F \in \Sigma$ with $E\Delta F \in U$ and whenever $n \in V$. By separability of Σ , there is $\overline{j} \in \mathbb{N}$ with $E\Delta F_{\overline{j}} \in U$. By the Cauchy criterion, there is an (O)-sequence $(\zeta_p)_p$ such that for each $j, p \in \mathbb{N}$ there is a set $Z_p^{(j)} \in \mathcal{F}$ with $|m_k(F_j) - m_n(F_j)| \leq \zeta_p$ whenever $k, n \in Z_p^{(j)}$. In particular we get

$$\begin{split} |m_k(E)-m_n(E)| &\leq |m_k(E)-m_k(F_{\overline{j}})| + |m_k(F_{\overline{j}})-m_n(F_{\overline{j}})| + \\ &+ |m_n(F_{\overline{j}})-m_n(E)| \leq 2\sigma_p + \zeta_p \end{split}$$

for any $k, n \in V \cap Z_p^{(\overline{j})}$. Again by the Cauchy criterion, there exists a set function $m_0: \Sigma \to R$, extending m, with $(O\mathcal{F}) \lim_n m_n(E) = m_0(E)$ with respect to a single (O)-sequence. It is not difficult to see that m_0 is k-triangular on Σ .

Now we give our main limit theorems for lattice group-valued k-triangular set functions with respect to filter convergence, extending [3, Lemma 3.9], [6, Theorems 3.3, 3.5, 3.6 and 3.10] to k-triangular lattice group-valued set functions. Assume that \mathcal{F} is a P-filter.

Theorem 3.9.

- 3.9.1) Let $m_n: \Sigma \to R$, $n \in \mathbb{N}$, be a uniformly \mathcal{F} -exhaustive sequence of k-triangular set functions and assume that the limit $(O\mathcal{F})\lim_n m_n(F_j) =: m(F_j)$ exists in R for every $j \in \mathbb{N}$ with respect to a single (O)-sequence. Then there are a set $M_0 \in \mathcal{F}$ and a k-triangular extension m_0 of m, defined on Σ , with $(O)\lim_{n\in M_0} m_n(E) = m_0(E)$ for each $E \in \Sigma$ with respect to a single (O)-sequence.
- 3.9.2) (Brooks-Jewett (BJ)) If every m_n , $n \in \mathbb{N}$, is (s)-bounded, then there exists a set $M_0 \in \mathcal{F}$ such that the set functions m_n , $n \in M_0$, are uniformly (s)-bounded on Σ .
- 3.9.3) (Vitali-Hahn-Saks (VHS)) Under Assumption 3.7, if each m_n is τ -continuous, then there exists $M_0 \in \mathcal{F}$, such that the set functions m_n , $n \in M_0$, are uniformly τ -continuous on Σ .
- 3.9.4) (Nikodým (N)) If the m_n 's, $n \in \mathbb{N}$, are continuous from above at \emptyset , then there is $M_0 \in \mathcal{F}$, such that the set functions m_n , $n \in M_0$, are uniformly continuous from above at \emptyset .
- 3.9.5) (Dieudonné (D)) If each m_n is (s)-bounded and regular, then there is a set $M_0 \in \mathcal{F}$ such that the set functions m_n , $n \in M_0$, are uniformly (s)-bounded and uniformly regular on Σ .

Furthermore, the statements 3.9.j), j = 2, ..., 5 are equivalent.

Proof. We first prove 3.9.1). By the uniform \mathcal{F} -exhaustiveness of $(m_n)_n$, there is an (O)-sequence $(\sigma_p)_p$ such that for every $p \in \mathbb{N}$ there are a τ -neighborhood U_p of \emptyset in Σ and a set $M'_p \in \mathcal{F}$ with $|m_n(E) - m_n(F)| \leq \sigma_p$ whenever $E, F \in \Sigma$ with $E\Delta F \in U_p$ and $n \in M'_p$. As \mathcal{F} is a P-filter, in correspondence with the sequence $(M'_p)_p$ there is a sequence $(M_p)_p$ in \mathcal{F} such that $M_p\Delta M'_p$ is finite for

any
$$p \in \mathbb{N}$$
 and $\bigcap_{p=1}^{\infty} M_p \in \mathcal{F}$. Let $M := \bigcap_{p=1}^{\infty} M_p$ and $Z_p := M \setminus M_p'$ for all $p \in \mathbb{N}$. Note that Z_p is finite for every $p \in \mathbb{N}$, and so we

for all $p \in \mathbb{N}$. Note that Z_p is finite for every $p \in \mathbb{N}$, and so we get $|m_n(E) - m_n(F)| \leq \sigma_p$ whenever $E, F \in \Sigma$ with $E\Delta F \in U_p$ and $n \in M \setminus Z_p$. Moreover, thanks to Proposition 3.1, we find a set $B_0 \in \mathcal{F}$ such that for every $j, p \in \mathbb{N}$ there is $\overline{n} \in B_0$ with

$$|m_n(F_i) - m(F_i)| \le \sigma_p$$

whenever $n \geq \overline{n}$, $n \in B_0$. Without loss of generality, we can take $\overline{n} \in B_0 \cap M$. Set $M_0 := B_0 \cap M$: we get $M_0 \in \mathcal{F}$. Moreover the sequence m_n , $n \in M_0$, is uniformly $\mathcal{F}_{\text{cofin}}$ -exhaustive and

$$(O)\lim_{n\in M_0} m_n(F_j) = m(F_j)$$

with respect to a single (O)-sequence. From this and Theorem 3.8 applied to m_n , $n \in M_0$ and $\mathcal{F}_{\text{cofin}}$ we get the existence of a k-triangular extension m_0 of m, defined on Σ , with $(O) \lim_{n \in M_0} m_n(E) = m_0(E)$ for each $E \in \Sigma$ and with respect to a single (O)-sequence. Thus, M_0 is the requested set, and 3.9.1) is proved.

The assertions 3.9.j), j = 2, ..., 5 and their equivalence follow by observing that there exists a set $M_0 \in \mathcal{F}$, satisfying 3.9.1), and by applying 3.2.1), 3.2.2), 3.2.3) and Theorems 3.4, 3.5 to the sequence m_n , $n \in M_0$, respectively.

The following example shows that in general the hypothesis of uniform \mathcal{F} -exhaustiveness cannot be dropped.

Example 3.10. (see also [3, Example 3.11]) Let $\Sigma = \mathcal{P}(\mathbb{N}), R = \mathbb{R}, \mathcal{F}$ be the filter of all subsets of \mathbb{N} of asymptotic density one, and define $\lambda: \Sigma \to \mathbb{R}$ by $\lambda(A) = \sum_{n \in A} \frac{1}{2^n}, \ A \in \Sigma$. It is easy to see that Σ is separable with respect to the Fréchet-Nikodým topology τ generated by λ (indeed, the set \mathcal{I}_{fin} of all finite subsets of \mathbb{N} is countable and τ -dense in Σ).

For any $A \subset \mathbb{N}$ and $n \in \mathbb{N}$ set $\delta_n(A) = 1$ if $n \in A$, and $\delta_n(A) = 0$ if $n \in \mathbb{N} \setminus A$. It is not difficult to check that δ_n is a set function, continuous from above at \emptyset for each $n \in \mathbb{N}$, and that for every $W \in \mathcal{I}_{\text{fin}}$ we have $\lim \delta_n(W) = 0$ and hence $(O\mathcal{F}) \lim \delta_n(W) = 0$.

However, observe that for every $\delta>0$ there is a cofinite set $Z_{\delta}\subset\mathbb{N}$ with $\lambda(Z_{\delta})<\delta$, and hence $\lambda(E\triangle F)\leq\lambda(Z_{\delta})<\delta$ whenever $E\cup F\subset Z_{\delta}$. Note that for every infinite subset $M\subset N$, and even a fortiori for each $M\in\mathcal{F}$, it is possible to find an integer $\overline{n}\in M$ large enough and two sets $E,\,F\in\Sigma$, with $E\cup F\subset Z_{\delta}$ and $\overline{n}\in E\setminus F$, so that $|\delta_{\overline{n}}(E)-\delta_{\overline{n}}(F)|=\delta_{\overline{n}}(E)=1$. Thus the set functions $\delta_n,\,n\in\mathbb{N}$, are not uniformly \mathcal{F} -exhaustive on Σ . Moreover, it is not true that the limit $(O\mathcal{F})$ lim $\delta_n(A)$ exists in \mathbb{N} for every $A\subset\mathbb{N}$. Indeed, let $C\subset\mathbb{N}$ be with $C\not\in\mathcal{F}$ and $\mathbb{N}\setminus C\not\in\mathcal{F}$: note that such a set C does exist (see also [4]). We have $\delta_n(C)=1$ if and only if $n\in C$ and $\delta_n(C)=0$ if and only if $n\not\in C$. Let now $l\not=0$ and $\varepsilon_0:=\frac{|l|}{2}>0$. Then for each $n\in\mathbb{N}\setminus C$ we get $|\delta_n(C)-l|=|l|>\varepsilon_0$, and thus $\{n\in\mathbb{N}: |\delta_n(C)-l|\leq\varepsilon_0\}\not\in\mathcal{F}$, because it is contained in C and

 $C \not\in \mathcal{F}$. When l=0, take $\varepsilon_0=\frac{1}{2}$. For every $n\in C$ we have $|\delta_n(C)|=1>\varepsilon_0$. So, $\{n\in\mathbb{N}: |\delta_n(C)|\leq\varepsilon_0\}\not\in\mathcal{F}$, since it is contained in $\mathbb{N}\setminus C$ and $\mathbb{N}\setminus C\not\in\mathcal{F}$. Hence, the limit $(O\mathcal{F})\lim_n\delta_n(C)$ does not exist in \mathbb{R} . Furthermore, given any infinite subset $M\subset\mathbb{N}$ and $k\in M$, we get $\sup_{n\in M}\delta_n(\{k\})=1$, and so the set functions $\delta_n,\ n\in M$, are not uniformly (s)-bounded on Σ . \square

Further developments. It is still an open problem, whether limit theorems for k-triangular set functions hold also for other kinds of non-additive lattice group-valued set functions and whether it is possible to find weaker conditions on the involved filter \mathcal{F} in Theorem 3.9.

References

- [1] K. Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications, Physica-Verlag, Heidelberg, 1999.
- [2] A. Boccuto, D. Candeloro, A. R. Sambucini, L^p spaces in vector lattices and applications, Math. Slovaca **67** (6) (2017), 1409–1426. DOI: 10.1515/ms-2017-0060.
- [3] A. Boccuto and X. Dimitriou, Some new results on limit theorems with respect to ideal convergence in (ℓ)-groups, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 58 (2011), 163-174.
- [4] A. Boccuto and X. Dimitriou, Convergence Theorems for Lattice Group-Valued Measures, Bentham Science Publ., U. A. E., 2015. ISBN 9781681080109
- [5] A. Boccuto and X. Dimitriou, Non-additive lattice group-valued set functions and limit theorems, Lambert Acad. Publ., 2017. ISBN 9786134913355.
- [6] A. Boccuto and X. Dimitriou, Equivalence between limit theorems for lattice group-valued k-triangular set functions, Mediterranean J. Math. 15 (4) (2018), 1–20.
- [7] A. Boccuto and X. Dimitriou, Dieudonné-type theorems for lattice group-valued k-triangular set functions (2018), viXra:1811.0496.
- [8] D. Candeloro, A. R. Sambucini, Filter convergence and decompositions for vector lattice-valued measures, *Mediterranean J. Math.* 12 (3) (2015), 621–637. DOI: 10.1007/s00009-014-0431-0

- [9] P. Cavaliere, P. de Lucia, On Brooks-Jewett, Vitali-Hahn-Saks and Nikodým convergence theorems for quasi-triangular functions, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 20 (4) (2009), 387–396.
- [10] P. Cavaliere, P. de Lucia, F. Ventriglia, On Drewnowski lemma for non-additive functions and its consequences, *Positivity* **14** (1) (2010), 1–16.
- [11] P. Cavaliere, P. de Lucia, A. De Simone, F. Ventriglia, On the Lebesgue decomposition for non-additive functions, *Positivity* 18 (3) (2014), 489–503.
- [12] J. Diestel, Sequences and series in Banach spaces, Springer -Verlag, Berlin, Heidelberg, New York, 1984.
- [13] L. Drewnowski, Topological rings of sets, Continuous set functions, Integration. I, II, III, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 20 (1972), 269-276, 277-286, 439-445.
- [14] L. Drewnowski, Equivalence of Brooks Jewett, Vitali Hahn Saks and Nikodym theorems, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 20 (1972), 725-731.
- [15] M. Grabisch, k-order additive discrete fuzzy measures and their representation, Fuzzy Sets Systems, **92** (1997) 167–189.
- [16] A. Kolesárová, J. Li, R. Mesiar, k-additive aggregation function and their characterization, European J. of Operational Research, 265 (2018) 985–992.
- [17] A. Kolesárová, J. R. Mesiar, k-maxitive aggregation functions, Fuzzy Sets Systems (2018). DOI: 10.1016/j.fss.2017.12.016
- [18] E. Pap, Null-Additive Set Functions, Kluwer Acad. Publishers/Ister Science, Bratislava, 1995.
- [19] S. Saeki, The Vitali-Hahn-Saks theorem and measuroids, Proc. Amer. Math. Soc. 114 (3) (1992), 775-782.
- [20] Z. Wang and G. J. Klir, Generalized Measure theory, Springer, Berlin, Heidelberg, New York, 2009.
- [21] H. Weber, FN-topologies and group-valued measures, in: E. Pap (Ed.), Handbook on Measure Theory, vol. I, Elsevier, Amsterdam, 2002, 703-743.