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Abstract

We consider approximations of functions from samples where the func-
tions take values on a submanifold of Rn. We generalize a common quasi-
interpolation scheme based on cardinal B-splines by combining it with
the shortest point projection P . We show that for m ≥ 3 we will have
approximation order 4 and why higher approximation order can not be
expected when the control points are constructed as the Projections of
the filtered samples using a fixed mask.

1 Linear Theory

We start by defining cardinal B-splines.

Definition 1. Cardinal B-splines can recursively be defined by

B0 = 1[− 1
2 ,

1
2 ] and Bm = Bm−1 ∗B0 for all m ≥ 1

where 1[− 1
2 ,

1
2 ] denotes the indicator function on the interval

[
− 1

2 ,
1
2

]
and ∗ de-

notes the convolution.

Up to shift and scale cardinal B-splines are the piecewise polynomial Cm−1-
functions with the smallest support and are therefore a popular choice for a
basis of the space of piecewise polynomial Cm−1-functions. For a meshwidth
h > 0 a function f : [0, 1] → R is approximated by a linear combination of
shifted B-splines.

fh(x) =
∑
i∈Z

ciBm(h−1x− i) (1)

The control points (ci)i∈Z can be found by applying a filter with mask (Ai)i∈Z
to the samples (f(hi))i∈Z, i.e.

ci =
∑
j∈Z

Ajf(h(i + j)) (2)
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For each odd m there exists a finite sequence (Ai)|i|≤m−1
2

of length m such that

|fh(x)− f(x)| ≤ Chm+1,

with a constant C > 0 independent of h. Careful analysis would show that
C can be chosen as a multiple of ‖f (m+1)‖L∞ This can be proven by showing
polynomial reproduction, we refer Thm 3.5.4. of [2]. For small m the sequences
(Ai)|i|≤m−1

2
are for example

m = 1 : (A0) = (1)

m = 3 : (A−1, A0, A1) =

(
−1

6
,

8

6
,−1

6

)
m = 5 : (A−2, A−1, A0, A1, A2) =

(
13

240
,− 7

15
,

73

40
,− 7

15
,

13

240

)
.

In [3] it is presented how these sequences can be constructed. We will consider
the moments

ak :=
∑
i∈Z

Aii
k, bk :=

∑
i∈Z

Bm(i)ik

Since the sequences are symmetric, i.e. A−i = Ai resp. Bm(−i) = Bm(i), the
odd moments a1, a3, . . . resp. b1, b3, . . . are zero. The 0-th moment is always 1,
i.e.

∑
i∈Z Ai = 1.

2 Nonlinear theory

Assume now that f : [0, 1]→M ⊂ Rn, where M ⊂ Rd is a smooth Riemannian
submanifold of Rd. We consider again the linear combination (2). In general
ci /∈ M . We will apply the shortest point projection P : Rn → M to ci. For
small h this is possible as then ci is sufficiently close to the manifold such
that the shortest point projection is well-defined. Projecting will reduce the
degrees of freedom for a control point ci from that of the ambient space to the
dimension of the manifold which can be quite a large reduction. Then we apply
the linear combination (1). Finally we apply the projection P which makes the
approximation M -valued. The approximation therefore has the form

fh(x) = P

(∑
i∈Z

P (ci)Bm(h−1x− i)

)

This method is not new, it has been described in [1], Section 3.5 of [2] and
probably earlier.

3 Proof

We show that we have an order 4 approximation.
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Theorem 1. Let m ≥ 3 be odd, f ∈ C4([0, 1],M) with M ⊂ Rn such that the
shortest point projection P is well-defined for h small enough and C4. Define
fh as above. Then we have

|fh(x)− f(x)| ≤ Ch4

with a constant C > 0 independent of h.

Proof. The idea is to use Taylor expansion at x for f and at f(x) for P . We
have

ci =
∑
j

Ajf(h(i + j)) (3)

=
∑
j

Aj

m∑
k=0

f (k)(x)

k!
(hi + hj − x)k +O(hm+1) (4)

=

m∑
k=0

∑
j

Aj(hi + hj − x)k
f (k)(x)

k!
+O(hm+1) (5)

=

m∑
k=0

k∑
j=0

(
k

j

)
hjaj(hi− x)k−j

f (k)(x)

k!
+O(hm+1) (6)

Since a0 = 1 and a1 = 0 we have

ci = f(x) + (hi− x)f ′(x) +

m∑
k=2

f (k)(x)

k!

k∑
j=0

(
k

j

)
hjaj(hi− x)k−j +O(hm+1)

Now using Taylor expansion of P at f(x) yields

P (ci) (7)

= f(x) (8)

+P ′(f(x))

(hi− x)f ′(x) +

m∑
k=2

k∑
j=0

(
k

j

)
hjaj(hi− x)k−j

f (k)(x)

k!

 (9)

+
1

2
P ′′(f(x))[f ′(x), f ′(x)](hi− x)2 (10)

+
1

2
P ′′(f(x))[f ′(x), f ′′(x)](hi− x)

2∑
j=0

(
2

j

)
hjaj(hi− x)2−j (11)

+
1

6
P ′′′(f(x))[f ′(x), f ′(x), f ′(x)](hi− x)3 (12)

+O(h4) (13)
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It follows that∑
i∈Z

P (ci)Bm(h−1x− i) (14)

= f(x) (15)

+P ′(f(x))

∑
i∈Z

m∑
k=1

k∑
j=0

(
k

j

)
hjaj(hi− x)k−jBm(h−1x− i)

 (16)

+
1

2
P ′′(f(x))[f ′(x), f ′(x)]

∑
i∈Z

(hi− x)2Bm(h−1x− i) (17)

+
1

2
P ′′(f(x))[f ′(x), f ′′(x)]

∑
i∈Z

2∑
j=0

(
2

j

)
hjaj(hi− x)3−jBm

(x
h
− i
)

(18)

+
1

6
P ′′′(f(x))[f ′(x), f ′(x), f ′(x)]

∑
i∈Z

(hi− x)3Bm(h−1x− i) (19)

+O(h4) (20)

By the linear theory Term (16) is zero. By Lemma 2 the constant is equal to
b2 > 0 , hence Term (17) does not vanish. For Term (18) we have by Lemma 2
and the fact that ai = bi = 0 for odd i.

∑
i∈Z

2∑
j=0

(
2

j

)
hjaj(hi− x)3−j (21)

b3︸︷︷︸
0

a0 + 2b2 a1︸︷︷︸
0

+ b1︸︷︷︸
0

a2 (22)

= 0. (23)

By Lemma 2, Term (19) is zero as well. Hence (17) is the only term left and we
have

fh(x) = P

(
f(x) + P ′′(f(x))[f ′(x), f ′(x)]

b2
2

)
(24)

+O(h4) (25)

= f(x) (26)

+P ′(f(x))

[
P ′′(f(x))[f ′(x), f ′(x)]

b2
2

]
(27)

+O(h4). (28)

Since P ′(f(x)) is the projection onto the tangent space of M at f(x) it remains
to show that P ′′(f(x))[f ′(x), f ′(x)] is orthogonal to the tangent space. Taking
two times the derivative of the true equation P (f(x)) = f(x) we get

P ′(f(x))[f ′′(x)] + P ′′(f(x))[f ′(x), f ′(x)] = f ′′(x) (29)

⇒ P ′′(f(x))[f ′(x), f ′(x)] = (Id− P ′(f(x)))[f ′′(x)] (30)
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Since P ′(f(x)) is the projection onto the tangent space of M at f(x) the operator
Id− P ′(f(x)) is the projection onto the orthogonal complement of the tangent
space. In particular, we see that P ′′(f(x))[f ′(x), f ′(x)] is orthogonal to the
tangent space.

In numerical experiments one can observe that, unlike in the linear case, the
approximation order does not exceed four. If we try to generalize the previous
proof beyond 4 we end up with the following order 4 terms for

∑
i∈Z P (ci)Bm(h−1x−

i):

1

24
P ′′′′(f(x))[f ′(x), f ′(x), f ′(x), f ′(x)]b4 (31)

3

6
P ′′′(f(x))[f ′(x), f ′(x), f ′′(x)]

1

2
(b4 + b2a2) (32)

2

2
P ′′(f(x))[f ′(x), f ′′′(x)]

1

6
(b4 + 3b2a2) (33)

1

2
P ′′(f(x))[f ′′(x), f ′′(x)]

1

4
(b4 + 2b2a2 + b0a

2
2) (34)

By taking four derivatives of P (f(x)) = f(x) we get

P ′′′′(f(x))[f ′(x), f ′(x), f ′(x), f ′(x)] (35)

+6P ′′′(f(x))[f ′(x), f ′(x), f ′′(x)] (36)

+4P ′′(f(x))[f ′(x), f ′′′(x)] (37)

+3P ′′(f(x))[f ′′(x), f ′′(x)] (38)

= (Id− P ′(f(x)))[f ′′′′(x)]. (39)

The left hand side will be orthogonal to the tangent space at f(x). By compar-
ison to (31)-(34) we can see that in order for the new terms to be a multiple of
(35)-(39) one would for example need b2a2 = 0. However b2 > 0 and in order
to be exact for polynomials of degree 2 one needs a2 = −b2 and hence we have
b2a2 = −b22 6= 0. Hence in general there does not exist a linear sequence (Ai)i∈Z
such that we have optimal approximation order for any manifold. An alterna-
tive way to find control points with optimal approximation order is described
in Section 3.5.3 of [2].

The analysis above also shows that the constant C > 0 in Theorem 1 depends
not only on f (4)(x) = f ′′′′(x) but also on lower order derivatives as well as on
the projection P .

4 Appendix

Lemma 1. For m > 0 and k ≤ m we let P : R→ R be defined by

P (x) =
∑
i∈Z

Bm(x− i)ik

for all x ∈ R. Then P is a polynomial of degree k with leading term xk.
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Proof. By definition of B-splines we have B′m(x − i) = Bm−1(x − i + 1/2) −
Bm−1(x− i− 1/2). Hence we have

P ′(x) =
∑
i∈Z

B′m(x− i)ik (40)

=
∑
i∈Z

(Bm−1(x− i + 1/2)−Bm−1(x− i− 1/2)) ik (41)

=
∑
i∈Z

Bm−1(x− i + 1/2)
(
ik − (i− 1)k

)
(42)

When repeatedly applying this rule the polynomial degree of the term on the
right hand side reduces by 1 every time. Hence by applying k times we get

P (k)(x) =
∑
i∈Z

Bm−k(x− i + k/2)k! = k!.

Since the k-th derivative of P is therefore constant to k! the claim follow.

Lemma 2. For 0 ≤ k ≤ m we have for all x ∈ R∑
i∈Z

Bm(x− i)(x− i)k = bk :=
∑
i∈Z

Bm(i)ik.

In particular for odd k the sum is zero by the symmetry of the B-splines.

Proof. By Lemma 1 the function

F (x) :=
∑
i∈Z

Bm(x− i)(x− i)k (43)

=

k∑
j=0

(−1)j
(
k

j

)
xk−j

∑
i∈Z

Bm(x− i)ij (44)

is a polynomial. On the other hand we have F (x+ 1) = F (x), i.e. it is periodic.
Hence it follows that F is constant and that F (x) = F (0) = bk for all x ∈ R.
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