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Abstract

We consider approximations of functions from samples where the func-
tions take values on a submanifold of R™. We generalize a common quasi-
interpolation scheme based on cardinal B-splines by combining it with
the shortest point projection P. We show that for m > 3 we will have
approximation order 4 and why higher approximation order can not be
expected when the control points are constructed as the Projections of
the filtered samples using a fixed mask.

1 Linear Theory
We start by defining cardinal B-splines.
Definition 1. Cardinal B-splines can recursively be defined by

By = 1[7 ] and By, = Bp,—1 % By for allm > 1
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where 1[ 1] denotes the indicator function on the interval [—%, %] and * de-
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notes the convolution.

Up to shift and scale cardinal B-splines are the piecewise polynomial C™~1-
functions with the smallest support and are therefore a popular choice for a
basis of the space of piecewise polynomial C™ !-functions. For a meshwidth
h > 0 a function f:[0,1] — R is approximated by a linear combination of
shifted B-splines.

fu(@) = ciBp(h 'z — i) (1)
i€z
The control points (¢;);ez can be found by applying a filter with mask (A;);ez
to the samples (f(hi))iez, i.e.

ci =Y Ajf(h(i+ 7)) (2)
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For each odd m there exists a finite sequence (Ai)\ilé m_1 of length m such that

|[fn(2) = f(2)] < O™,

with a constant C' > 0 independent of h. Careful analysis would show that
C can be chosen as a multiple of || f(™*+1) |~ This can be proven by showing
polynomial reproduction, we refer Thm 3.5.4. of [2]. For small m the sequences
(Ai)‘ilémT—l are for example

m=1 : (4)=(1)

18 1

=3 : (A, Ap, A= (-2>,2,-2

m 3 ( 1,410, 1) < 6,6; 6)
1 1

m=>5 : (A_27A_1,A0,A1,A2)=< 3 (NG 7 3)
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In [3] it is presented how these sequences can be constructed. We will consider

the moments
ar =Y Aii*, b= Bp(i)i*
i€Z i€
Since the sequences are symmetric, i.e. A_; = A; resp. By, (—i) = B, (i), the
odd moments aq, as, ... resp. by, bs,... are zero. The 0-th moment is always 1,

i.e. ZiEZ Al =1.

2 Nonlinear theory

Assume now that f: [0,1] — M C R", where M C R% is a smooth Riemannian
submanifold of R?. We consider again the linear combination (2). In general
ci ¢ M. We will apply the shortest point projection P: R — M to ¢;. For
small h this is possible as then ¢; is sufficiently close to the manifold such
that the shortest point projection is well-defined. Projecting will reduce the
degrees of freedom for a control point ¢; from that of the ambient space to the
dimension of the manifold which can be quite a large reduction. Then we apply
the linear combination (1). Finally we apply the projection P which makes the
approximation M-valued. The approximation therefore has the form

fu(z) =P <Z P(c;)Bp(h™'a — i))

€L

This method is not new, it has been described in [1], Section 3.5 of [2] and
probably earlier.

3 Proof

We show that we have an order 4 approximation.



Theorem 1. Let m > 3 be odd, f € C*([0,1], M) with M C R™ such that the
shortest point projection P is well-defined for h small enough and C*. Define
fn as above. Then we have

|fn(z) = f(2)] < Ch*

with a constant C > 0 independent of h.

Proof. The idea is to use Taylor expansion at x for f and at f(z) for P. We

have

C; =

D4

j

> Aif (i +j) (3)
3 f(lzfx) (hi+ hj — @) + O(R™) (4)
k=0 '

(hi + hj — z)* 9@ O(h™+1) (5)
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Since ag = 1 and a; = 0 we have

¢ = fx)+ (hi—2x)f

k

Z (j) haj(hi — x)*7 + O(h™T)

7=0

P

Now using Taylor expansion of P at f(z) yields

k=2 j=0
+%P”(f(x))[f/(x), F(@))(hi — x)? (10)
+LP(f()f (@) f”(w)](hl—ff)i( > Waj(hi — x)*~ (11)
2 9 = ,7 J
+%P’”<f< W (@), f/(x), £ (@) (hi — x)? (12)



It follows that

ZP (ci) By (h™'2 — 1) (14)
1€L
= f(z) (15)
m k
+P'(f [ZZZ( )hﬂ (hi — x)* I B, (h~ x—z)] (16)
1€Z k=1 j=0
+§P”(f(x))[f’(w), F1(@)] Y (hi = ) B (h™ e — i) (17)
i€EZ
L) ZZ ( >hﬂa (hi — )* B, (7 72) (18)
2 1€Z 3=0 ! h
+(15P”’(f(af))[f’(x), F(@), f1(@)] Y (hi — 2)° Bu(h™ e — i) (19)
i€EL
+0(h%) (20)

By the linear theory Term (16) is zero. By Lemma 2 the constant is equal to
by > 0, hence Term (17) does not vanish. For Term (18) we have by Lemma 2
and the fact that a; = b; = 0 for odd 3.

ZZ( >h3a] (hi —x)>~7 (21)

i€Z j=0

bs ag+2by a1 + by as (22)
~— ~—

0 0 0
0. (23)

By Lemma 2, Term (19) is zero as well. Hence (17) is the only term left and we
have

fie) = P (1@ + P @)L @) (24)
+0O(h*) (25)

- @ (26)
(@) [P @), ) (27)

+O(hY). (28)

Since P'(f(x)) is the projection onto the tangent space of M at f(z) it remains

to show that P"(f(x))[f'(x), f'(x)] is orthogonal to the tangent space. Taking
two times the derivative of the true equation P(f(z)) = f(x) we get

P'(f(@)[f"(@)]+ P"(f(@)[f (@), f'(2)] = f"(2) (29)

S PU@)I @), F (@)] = (Id— P/(f(@)[f" (@) (30)
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Since P’(f(x)) is the projection onto the tangent space of M at f(z) the operator
Id — P'(f(z)) is the projection onto the orthogonal complement of the tangent
space. In particular, we see that P”(f(z))[f'(x), f'(x)] is orthogonal to the
tangent space. O

In numerical experiments one can observe that, unlike in the linear case, the
approximation order does not exceed four. If we try to generalize the previous
proof beyond 4 we end up with the following order 4 terms for 3. _, P(¢;) By, (h™ 12—

i):

€7

S PN @), 5@, @), @b (1)
SR @@, 1), 1 @) (0 + baaa) (32)
2P ()L (@), £ (@) (b + Bb3a2) (33)
S P @) @), £ (@) (b + 2030z + boad) (34)

By taking four derivatives of P(f(z)) = f(x) we get
(

P (f@)f (), £/ (@), ['(2), £ ()] (35)
+6P" (f(2))[f (), f'(x), f" ()] (36)
+4P" (f(2)[f' (2), f" ()] (37)
+3P"(f () [f" (), f" ()] (38)
= (Id=P'(f@)f" ()] (39)

The left hand side will be orthogonal to the tangent space at f(z). By compar-
ison to (31)-(34) we can see that in order for the new terms to be a multiple of
(35)-(39) one would for example need baas = 0. However b > 0 and in order
to be exact for polynomials of degree 2 one needs as = —by and hence we have
boaz = —b3 # 0. Hence in general there does not exist a linear sequence (4;)icz
such that we have optimal approximation order for any manifold. An alterna-
tive way to find control points with optimal approximation order is described
in Section 3.5.3 of [2].

The analysis above also shows that the constant C' > 0 in Theorem 1 depends
not only on f*)(x) = f””(z) but also on lower order derivatives as well as on
the projection P.

4 Appendix

Lemma 1. Form >0 and k < m we let P: R — R be defined by
P(z) =Y Bp(z —i)i*
i€z

for all z € R. Then P is a polynomial of degree k with leading term x*.



Proof. By definition of B-splines we have B/ (z — i) = By—1(x — i+ 1/2) —
B,,—1(x —i—1/2). Hence we have

Plx) = Y B (z—i)i (40)

i€Z

= S (Buile—i+1/2) = Bua(z —i—1/2))i  (41)
iE€EL

= Y Buoale—i+1/2) (" = (i-1)") (42)
1EZL

When repeatedly applying this rule the polynomial degree of the term on the
right hand side reduces by 1 every time. Hence by applying k£ times we get

P® () =" B g(x—i+k/2)k! =K.
i€Z

Since the k-th derivative of P is therefore constant to k! the claim follow. [

Lemma 2. For 0 < k < m we have for all x € R

> Bu(w—i)(w—i)f = by =Y Bn(i)i*.

i€z i€Z
In particular for odd k the sum is zero by the symmetry of the B-splines.

Proof. By Lemma 1 the function

F(z) = Y Bp(z—i)(z—i)* (43)

1E€E7L
k
_ i (B e v )il
= Y (j) > Bute ) (44)

is a polynomial. On the other hand we have F(x+ 1) = F(z), i.e. it is periodic.
Hence it follows that F is constant and that F(z) = F(0) = b; forallz € R. O
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