Why Quasi-Interpolation onto Manifold has Order 4

Markus Sprecher

April 13, 2020

Abstract

We consider approximations of functions from samples where the functions take values on a submanifold of \mathbb{R}^{n}. We generalize a common quasiinterpolation scheme based on cardinal B-splines by combining it with a projection P onto the manifold. We show that for $m \geq 3$ we will have approximation order 4 . We also show why higher approximation order can not be expected when the control points are constructed as projections of the filtered samples using a fixed mask.

1 Linear Theory

We start by defining cardinal B-splines.
Definition 1. Cardinal B-splines can recursively be defined by

$$
B_{0}=1_{\left[-\frac{1}{2}, \frac{1}{2}\right]} \text { and } B_{m}=B_{m-1} * B_{0} \text { for all } m \geq 1
$$

where $1_{\left[-\frac{1}{2}, \frac{1}{2}\right]}$ denotes the indicator function on the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$ and $* d e-$ notes the convolution.

Up to shift and scale cardinal B-splines are the piecewise polynomial C^{m-1} functions with the smallest support and are therefore a popular choice for a basis of the space of piecewise polynomial C^{m-1}-functions. For a meshwidth $h>0$ a function $f:[0,1] \rightarrow \mathbb{R}$ is approximated by a linear combination of shifted B-splines.

$$
\begin{equation*}
f_{h}(x)=\sum_{i \in \mathbb{Z}} c_{i} B_{m}\left(h^{-1} x-i\right) \tag{1}
\end{equation*}
$$

The control points $\left(c_{i}\right)_{i \in \mathbb{Z}}$ can be found by applying a filter with mask $\left(A_{i}\right)_{i \in \mathbb{Z}}$ to the samples $(f(h i))_{i \in \mathbb{Z}}$, i.e.

$$
\begin{equation*}
c_{i}=\sum_{j \in \mathbb{Z}} A_{j} f(h(i+j)) \tag{2}
\end{equation*}
$$

For each odd m there exists a finite sequence $\left(A_{i}\right)_{|i| \leq \frac{m-1}{2}}$ of length m such that

$$
\left|f_{h}(x)-f(x)\right| \leq C h^{m+1}
$$

with a constant $C>0$ independent of h. Careful analysis would show that C can be chosen as a multiple of $\left\|f^{(m+1)}\right\|_{L^{\infty}}$ This can be proven by showing polynomial reproduction, we refer Thm 3.5.4. of [2]. For small m the sequences $\left(A_{i}\right)_{|i| \leq \frac{m-1}{2}}$ are for example

$$
\begin{array}{ll}
m=1 & : \quad\left(A_{0}\right)=(1) \\
m=3 \quad: \quad\left(A_{-1}, A_{0}, A_{1}\right)=\left(-\frac{1}{6}, \frac{8}{6},-\frac{1}{6}\right) \\
m=5 \quad: \quad\left(A_{-2}, A_{-1}, A_{0}, A_{1}, A_{2}\right)=\left(\frac{13}{240},-\frac{7}{15}, \frac{73}{40},-\frac{7}{15}, \frac{13}{240}\right) .
\end{array}
$$

In [3] it is presented how these sequences can be constructed. We will consider the moments

$$
\begin{equation*}
a_{k}:=\sum_{i \in \mathbb{Z}} A_{i} i^{k}, \quad b_{k}:=\sum_{i \in \mathbb{Z}} B_{m}(i) i^{k} \tag{3}
\end{equation*}
$$

Since the sequences are symmetric, i.e. $A_{-i}=A_{i}$ resp. $B_{m}(-i)=B_{m}(i)$, the odd moments a_{1}, a_{3}, \ldots resp. b_{1}, b_{3}, \ldots are zero. The 0 -th moment is always 1 , i.e. $a_{0}=\sum_{i \in \mathbb{Z}} A_{i}=1$ and $b_{0}=\sum_{i \in \mathbb{Z}} B_{m}(i)=1$.

2 Nonlinear theory

Assume now that $f:[0,1] \rightarrow M \subset \mathbb{R}^{n}$, where $M \subset \mathbb{R}^{d}$ is a smooth Riemannian submanifold of \mathbb{R}^{d}. We consider again the linear combination (2). In general $c_{i} \notin M$. We will apply a projection $P: U \subset \mathbb{R}^{n} \rightarrow M$ to c_{i}. Usually this is the shortest point projection, i.e. $P(q):=\operatorname{argmin}_{p \in M}|p-q|$. However since we will only require P to be a projection onto M (i.e. a map whose image is M and whose restriction to M is the identity on M) and to be sufficiently smooth we could take any other sufficiently smooth projection onto the manifold. For small h the projection of c_{i} is possible as then c_{i} is sufficiently close to the manifold such that the projection is well-defined. Projecting will reduce the degrees of freedom for a control point c_{i} from that of the ambient space to the dimension of the manifold which can be quite a large reduction. Then we apply the linear combination (1). Finally, we apply the projection P which makes the approximation M-valued. Our approximation therefore is

$$
f_{h}(x)=P\left(\sum_{i \in \mathbb{Z}} P\left(c_{i}\right) B_{m}\left(h^{-1} x-i\right)\right)
$$

This method is not new, it has been described in [1], Section 3.5 of [2] and probably earlier.

3 Proof

We show that we have an order 4 approximation.
Theorem 1. Let $m \geq 3$ be odd, $f \in C^{4}([0,1], M)$ with $M \subset \mathbb{R}^{n}$ such that the projection P is well-defined for h small enough and C^{4}. Define f_{h} as above. Then we have

$$
\left|f_{h}(x)-f(x)\right| \leq C h^{4}
$$

with a constant $C>0$ independent of h.
Proof. The idea is to use Taylor expansion at x for f and at $f(x)$ for P. We have

$$
\begin{align*}
c_{i} & =\sum_{j} A_{j} f(h(i+j)) \tag{4}\\
& =\sum_{j} A_{j} \sum_{k=0}^{m} \frac{f^{(k)}(x)}{k!}(h i+h j-x)^{k}+\mathcal{O}\left(h^{m+1}\right) \tag{5}\\
& =\sum_{k=0}^{m} \sum_{j} A_{j}(h i+h j-x)^{k} \frac{f^{(k)}(x)}{k!}+\mathcal{O}\left(h^{m+1}\right) \tag{6}\\
& =\sum_{k=0}^{m} \sum_{j=0}^{k}\binom{k}{j} h^{j} a_{j}(h i-x)^{k-j} \frac{f^{(k)}(x)}{k!}+\mathcal{O}\left(h^{m+1}\right) \tag{7}
\end{align*}
$$

Since $a_{0}=1$ and $a_{1}=0$ we have

$$
c_{i}=f(x)+(h i-x) f^{\prime}(x)+\sum_{k=2}^{m} \frac{f^{(k)}(x)}{k!} \sum_{j=0}^{k}\binom{k}{j} h^{j} a_{j}(h i-x)^{k-j}+\mathcal{O}\left(h^{m+1}\right)
$$

Now using Taylor expansion of P at $f(x)$ yields

$$
\begin{align*}
& P\left(c_{i}\right) \tag{8}\\
& =f(x) \tag{9}\\
& +P^{\prime}(f(x))\left[(h i-x) f^{\prime}(x)+\sum_{k=2}^{m} \sum_{j=0}^{k}\binom{k}{j} h^{j} a_{j}(h i-x)^{k-j} \frac{f^{(k)}(x)}{k!}\right] \tag{10}\\
& +\frac{1}{2} P^{\prime \prime}(f(x))\left[f^{\prime}(x), f^{\prime}(x)\right](h i-x)^{2} \tag{11}\\
& +\frac{1}{2} P^{\prime \prime}(f(x))\left[f^{\prime}(x), f^{\prime \prime}(x)\right](h i-x) \frac{1}{2} \sum_{j=0}^{2}\binom{2}{j} h^{j} a_{j}(h i-x)^{2-j} \tag{12}\\
& +\frac{1}{6} P^{\prime \prime \prime}(f(x))\left[f^{\prime}(x), f^{\prime}(x), f^{\prime}(x)\right](h i-x)^{3} \tag{13}\\
& +\mathcal{O}\left(h^{4}\right) \tag{14}
\end{align*}
$$

It follows that

$$
\begin{align*}
& \sum_{i \in \mathbb{Z}} P\left(c_{i}\right) B_{m}\left(h^{-1} x-i\right) \tag{15}\\
& =f(x) \tag{16}\\
& +P^{\prime}(f(x))\left[\sum_{i \in \mathbb{Z}} \sum_{k=1}^{m} \sum_{j=0}^{k}\binom{k}{j} h^{j} a_{j}(h i-x)^{k-j} B_{m}\left(h^{-1} x-i\right)\right] \tag{17}\\
& +\frac{1}{2} P^{\prime \prime}(f(x))\left[f^{\prime}(x), f^{\prime}(x)\right] \sum_{i \in \mathbb{Z}}(h i-x)^{2} B_{m}\left(h^{-1} x-i\right) \tag{18}\\
& +\frac{1}{4} P^{\prime \prime}(f(x))\left[f^{\prime}(x), f^{\prime \prime}(x)\right] \sum_{i \in \mathbb{Z}} \sum_{j=0}^{2}\binom{2}{j} h^{j} a_{j}(h i-x)^{3-j} B_{m}\left(\frac{x}{h}-i\right) \tag{19}\\
& +\frac{1}{6} P^{\prime \prime \prime}(f(x))\left[f^{\prime}(x), f^{\prime}(x), f^{\prime}(x)\right] \sum_{i \in \mathbb{Z}}(h i-x)^{3} B_{m}\left(h^{-1} x-i\right) \tag{20}\\
& +\mathcal{O}\left(h^{4}\right) \tag{21}
\end{align*}
$$

By the linear theory Term (17) is zero. By Lemma 2 the constant is equal to $h^{2} b_{2}>0$, hence Term (18) does not vanish. For Term (19) we have by Lemma 2 and the fact that $a_{i}=b_{i}=0$ for odd i.

$$
\begin{align*}
& \sum_{i \in \mathbb{Z}} \sum_{j=0}^{2}\binom{2}{j} h^{j} a_{j}(h i-x)^{3-j} \tag{22}\\
& \underbrace{b_{3}}_{0} a_{0}+2 b_{2} \underbrace{a_{1}}_{0}+\underbrace{b_{1}}_{0} a_{2} \tag{23}\\
& =0 \tag{24}
\end{align*}
$$

By Lemma 2, Term (20) is zero as well. Hence (18) is the only term left and we have

$$
\begin{align*}
f_{h}(x)= & P\left(f(x)+P^{\prime \prime}(f(x))\left[f^{\prime}(x), f^{\prime}(x)\right] \frac{b_{2} h^{2}}{2}\right) \tag{25}\\
& +\mathcal{O}\left(h^{4}\right) \tag{26}\\
= & f(x) \tag{27}\\
& +P^{\prime}(f(x))\left[P^{\prime \prime}(f(x))\left[f^{\prime}(x), f^{\prime}(x)\right] \frac{b_{2} h^{2}}{2}\right] \tag{28}\\
& +\mathcal{O}\left(h^{4}\right) \tag{29}
\end{align*}
$$

Term (28) is zero by Lemma 4.
In numerical experiments one can observe that, unlike in the linear case, the approximation order does not exceed 4 . This has been observed in [4]. If we try to generalize the previous proof beyond 4 we end up with the following order 4
terms for $\sum_{i \in \mathbb{Z}} P\left(c_{i}\right) B_{m}\left(h^{-1} x-i\right)$:

$$
\begin{align*}
& \frac{1}{24} P^{\prime \prime \prime \prime}(f(x))\left[f^{\prime}(x), f^{\prime}(x), f^{\prime}(x), f^{\prime}(x)\right] b_{4} h^{4} \tag{30}\\
& \frac{3}{6} P^{\prime \prime \prime}(f(x))\left[f^{\prime}(x), f^{\prime}(x), f^{\prime \prime}(x)\right] \frac{1}{2}\left(b_{4}+b_{2} a_{2}\right) h^{4} \tag{31}\\
& \frac{2}{2} P^{\prime \prime}(f(x))\left[f^{\prime}(x), f^{\prime \prime \prime}(x)\right] \frac{1}{6}\left(b_{4}+3 b_{2} a_{2}\right) h^{4} \tag{32}\\
& \frac{1}{2} P^{\prime \prime}(f(x))\left[f^{\prime \prime}(x), f^{\prime \prime}(x)\right] \frac{1}{4}\left(b_{4}+2 b_{2} a_{2}+b_{0} a_{2}^{2}\right) h^{4} \tag{33}
\end{align*}
$$

By taking four derivatives of $P(f(x))=f(x)$ we get

$$
\begin{align*}
& P^{\prime \prime \prime \prime}(f(x))\left[f^{\prime}(x), f^{\prime}(x), f^{\prime}(x), f^{\prime}(x)\right] \tag{34}\\
& +6 P^{\prime \prime \prime}(f(x))\left[f^{\prime}(x), f^{\prime}(x), f^{\prime \prime}(x)\right] \tag{35}\\
& +4 P^{\prime \prime}(f(x))\left[f^{\prime}(x), f^{\prime \prime \prime}(x)\right] \tag{36}\\
& +3 P^{\prime \prime}(f(x))\left[f^{\prime \prime}(x), f^{\prime \prime}(x)\right] \tag{37}\\
= & \left(I d-P^{\prime}(f(x))\right)\left[f^{\prime \prime \prime \prime}(x)\right] . \tag{38}
\end{align*}
$$

The RHS and therefore also the LHS yield zero when applied to $P^{\prime}(f(x))$. By comparison one can see that in order for the terms (30)-(33) to be a multiple of (34)-(38) one would for example need $b_{2} a_{2}=0$. However $b_{2}>0$ and in order to be exact for polynomials of degree 2 one needs $a_{2}=-b_{2}$ and hence we have $b_{2} a_{2}=-b_{2}^{2} \neq 0$. Hence in general there does not exist a linear sequence $\left(A_{i}\right)_{i \in \mathbb{Z}}$ such that we have optimal approximation order for any manifold. An alternative way to find control points with optimal approximation order is described in Section 3.5.3 of [2].

The analysis above also shows that the constant $C>0$ in Theorem 1 depends not only on $f^{(4)}(x)=f^{\prime \prime \prime \prime}(x)$ but also on lower order derivatives as well as on the projection P. Additionally, for f_{h} we will also have the 4 -th order term

$$
\frac{1}{2} P^{\prime \prime}(f(x))\left[P^{\prime \prime}(f(x))\left[f^{\prime}(x), f^{\prime}(x)\right], P^{\prime \prime}(f(x))\left[f^{\prime}(x), f^{\prime}(x)\right]\right]\left(\frac{b_{2} h^{2}}{2}\right)^{2}
$$

4 Appendix

The appendix consists of a part regarding linear combinations of B-splines and a part regarding the projection P onto the manifold.

4.1 B-spline sums

Lemma 1. For $0 \leq k \leq m$ we let $G: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
G(x)=\sum_{i \in \mathbb{Z}} B_{m}(x-i) i^{k}
$$

for all $x \in \mathbb{R}$. Then G is a polynomial of degree k with leading term x^{k}.

Proof. By definition of B-splines we have $B_{m}^{\prime}(x-i)=B_{m-1}(x-i+1 / 2)-$ $B_{m-1}(x-i-1 / 2)$. Hence we have

$$
\begin{align*}
G^{\prime}(x) & =\sum_{i \in \mathbb{Z}} B_{m}^{\prime}(x-i) i^{k} \tag{39}\\
& =\sum_{i \in \mathbb{Z}}\left(B_{m-1}(x-i+1 / 2)-B_{m-1}(x-i-1 / 2)\right) i^{k} \tag{40}\\
& =\sum_{i \in \mathbb{Z}} B_{m-1}(x-i+1 / 2)\left(i^{k}-(i-1)^{k}\right) \tag{41}
\end{align*}
$$

When repeatedly applying this rule the polynomial degree of the term on the right hand side reduces by 1 every time. Hence by applying k times we get

$$
G^{(k)}(x)=\sum_{i \in \mathbb{Z}} B_{m-k}(x-i+k / 2) k!=k!
$$

Since the k-th derivative of G is therefore constant to k ! the claim follow.
Lemma 2. For $0 \leq k \leq m$ we have for all $x \in \mathbb{R}$

$$
\sum_{i \in \mathbb{Z}} B_{m}(x-i)(x-i)^{k}=b_{k}
$$

where b_{k} is defined in (3).
In particular for odd k the sum is zero by the symmetry of the B-splines.
Proof. By Lemma 1 the function

$$
\begin{align*}
F(x) & :=\sum_{i \in \mathbb{Z}} B_{m}(x-i)(x-i)^{k} \tag{42}\\
& =\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} x^{k-j} \sum_{i \in \mathbb{Z}} B_{m}(x-i) i^{j} \tag{43}
\end{align*}
$$

is a polynomial. On the other hand we have $F(x+1)=F(x)$, i.e. it is periodic. Hence it follows that F is constant and that $F(x)=F(0)=b_{k}$ for all $x \in \mathbb{R}$.

4.2 Properties of a Projection onto a manifold

Lemma 3. Let $P: U \subset \mathbb{R}^{n} \rightarrow M$ be a projection onto a manifold M. Then for each $p \in M$ the map $P^{\prime}(p): \mathbb{R}^{n} \rightarrow T_{p} M \subset \mathbb{R}^{n}$ is a projection as well, i.e. we have $P^{\prime}(p) \circ P^{\prime}(p)=P^{\prime}(p)$.
Proof. Let $p \in M, v \in \mathbb{R}^{n}$ and $g: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be defined by $g(t)=p+t v$. The function $t \mapsto P(g(t))$ is well-defined for $|t|$ sufficiently small. As P is a projection we have $P \circ P=P$ and hence also $P(P(g))=P(g)$. Taking the derivative and using the chain-rule we get

$$
P^{\prime}(P(g(0))) \circ P^{\prime}(g(0)) g^{\prime}(0)=P^{\prime}(g(0)) g^{\prime}(0) \Rightarrow P^{\prime}(p) \circ P^{\prime}(p) v=P^{\prime}(p) v
$$

Since this is true for all $v \in \mathbb{R}^{n}$ we get $P^{\prime}(p) \circ P^{\prime}(p)=P^{\prime}(p)$.

Lemma 4. Let $f:[0,1] \rightarrow M$ and P be a projection onto the manifold M.
Then we have

$$
P^{\prime}(f(x))\left[P^{\prime \prime}(f(x))\left[f^{\prime \prime}(x), f^{\prime \prime}(x)\right]\right]=0
$$

for all $x \in[0,1]$
Proof. Taking two derivative of $P(f(x))=f(x)$ yields

$$
P^{\prime \prime}(f(x))\left[f^{\prime}(x), f^{\prime}(x)\right]+P^{\prime}(f(x))\left[f^{\prime \prime}(x)\right]=f^{\prime \prime}(x)
$$

Applying $P^{\prime}(f(x))$ on both sides and using Lemma 3 yields the claim.

References

[1] P. Grohs and M. Sprecher. Projection-based quasiinterpolation in manifolds. Technical Report 2013-23, Seminar for Applied Mathematics, ETH Zürich, Switzerland, 2013.
[2] M. Sprecher. Dissertation: Numerical methods for optimization and variational problems with manifold-valued data, 2016.
[3] M. Sprecher. Positivity of the Fourier transform of the shortest maximal order convolution mask for cardinal b-splines, 2018.
[4] G. Xie and T. P.-Y. Yu. Approximation order equivalence properties of manifold-valued data sub-division schemes. IMA Journal of Numerical Analysis, page 687-700, 2012.

