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Abstract

We consider approximations of functions from samples where the func-
tions take values on a submanifold of Rn. We generalize a common quasi-
interpolation scheme based on cardinal B-splines by combining it with a
projection P onto the manifold. We show that for m ≥ 3 we will have ap-
proximation order 4. We also show why higher approximation order can
not be expected when the control points are constructed as projections of
the filtered samples using a fixed mask.

1 Linear Theory

We start by defining cardinal B-splines.

Definition 1. Cardinal B-splines can recursively be defined by

B0 = 1[− 1
2 ,

1
2 ] and Bm = Bm−1 ∗B0 for all m ≥ 1

where 1[− 1
2 ,

1
2 ] denotes the indicator function on the interval

[
− 1

2 ,
1
2

]
and ∗ de-

notes the convolution.

Up to shift and scale cardinal B-splines are the piecewise polynomial Cm−1-
functions with the smallest support and are therefore a popular choice for a
basis of the space of piecewise polynomial Cm−1-functions. For a meshwidth
h > 0 a function f : [0, 1] → R is approximated by a linear combination of
shifted B-splines.

fh(x) =
∑
i∈Z

ciBm(h−1x− i) (1)

The control points (ci)i∈Z can be found by applying a filter with mask (Ai)i∈Z
to the samples (f(hi))i∈Z, i.e.

ci =
∑
j∈Z

Ajf(h(i + j)) (2)
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For each odd m there exists a finite sequence (Ai)|i|≤m−1
2

of length m such that

|fh(x)− f(x)| ≤ Chm+1,

with a constant C > 0 independent of h. Careful analysis would show that
C can be chosen as a multiple of ‖f (m+1)‖L∞ This can be proven by showing
polynomial reproduction, we refer Thm 3.5.4. of [2]. For small m the sequences
(Ai)|i|≤m−1

2
are for example

m = 1 : (A0) = (1)

m = 3 : (A−1, A0, A1) =

(
−1

6
,

8

6
,−1

6

)
m = 5 : (A−2, A−1, A0, A1, A2) =

(
13

240
,− 7

15
,

73

40
,− 7

15
,

13

240

)
.

In [3] it is presented how these sequences can be constructed. We will consider
the moments

ak :=
∑
i∈Z

Aii
k, bk :=

∑
i∈Z

Bm(i)ik (3)

Since the sequences are symmetric, i.e. A−i = Ai resp. Bm(−i) = Bm(i), the
odd moments a1, a3, . . . resp. b1, b3, . . . are zero. The 0-th moment is always 1,
i.e. a0 =

∑
i∈Z Ai = 1 and b0 =

∑
i∈Z Bm(i) = 1.

2 Nonlinear theory

Assume now that f : [0, 1]→M ⊂ Rn, where M ⊂ Rd is a smooth Riemannian
submanifold of Rd. We consider again the linear combination (2). In general
ci /∈ M . We will apply a projection P : U ⊂ Rn → M to ci. Usually this is
the shortest point projection, i.e. P (q) := argminp∈M |p− q|. However since we
will only require P to be a projection onto M (i.e. a map whose image is M
and whose restriction to M is the identity on M) and to be sufficiently smooth
we could take any other sufficiently smooth projection onto the manifold. For
small h the projection of ci is possible as then ci is sufficiently close to the
manifold such that the projection is well-defined. Projecting will reduce the
degrees of freedom for a control point ci from that of the ambient space to the
dimension of the manifold which can be quite a large reduction. Then we apply
the linear combination (1). Finally, we apply the projection P which makes the
approximation M -valued. Our approximation therefore is

fh(x) = P

(∑
i∈Z

P (ci)Bm(h−1x− i)

)

This method is not new, it has been described in [1], Section 3.5 of [2] and
probably earlier.
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3 Proof

We show that we have an order 4 approximation.

Theorem 1. Let m ≥ 3 be odd, f ∈ C4([0, 1],M) with M ⊂ Rn such that the
projection P is well-defined for h small enough and C4. Define fh as above.
Then we have

|fh(x)− f(x)| ≤ Ch4

with a constant C > 0 independent of h.

Proof. The idea is to use Taylor expansion at x for f and at f(x) for P . We
have

ci =
∑
j

Ajf(h(i + j)) (4)

=
∑
j

Aj

m∑
k=0

f (k)(x)

k!
(hi + hj − x)k +O(hm+1) (5)

=

m∑
k=0

∑
j

Aj(hi + hj − x)k
f (k)(x)

k!
+O(hm+1) (6)

=

m∑
k=0

k∑
j=0

(
k

j

)
hjaj(hi− x)k−j

f (k)(x)

k!
+O(hm+1) (7)

Since a0 = 1 and a1 = 0 we have

ci = f(x) + (hi− x)f ′(x) +

m∑
k=2

f (k)(x)

k!

k∑
j=0

(
k

j

)
hjaj(hi− x)k−j +O(hm+1)

Now using Taylor expansion of P at f(x) yields

P (ci) (8)

= f(x) (9)

+P ′(f(x))

(hi− x)f ′(x) +

m∑
k=2

k∑
j=0

(
k

j

)
hjaj(hi− x)k−j

f (k)(x)

k!

 (10)

+
1

2
P ′′(f(x))[f ′(x), f ′(x)](hi− x)2 (11)

+
1

2
P ′′(f(x))[f ′(x), f ′′(x)](hi− x)

1

2

2∑
j=0

(
2

j

)
hjaj(hi− x)2−j (12)

+
1

6
P ′′′(f(x))[f ′(x), f ′(x), f ′(x)](hi− x)3 (13)

+O(h4) (14)
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It follows that∑
i∈Z

P (ci)Bm(h−1x− i) (15)

= f(x) (16)

+P ′(f(x))

∑
i∈Z

m∑
k=1

k∑
j=0

(
k

j

)
hjaj(hi− x)k−jBm(h−1x− i)

 (17)

+
1

2
P ′′(f(x))[f ′(x), f ′(x)]

∑
i∈Z

(hi− x)2Bm(h−1x− i) (18)

+
1

4
P ′′(f(x))[f ′(x), f ′′(x)]

∑
i∈Z

2∑
j=0

(
2

j

)
hjaj(hi− x)3−jBm

(x
h
− i
)

(19)

+
1

6
P ′′′(f(x))[f ′(x), f ′(x), f ′(x)]

∑
i∈Z

(hi− x)3Bm(h−1x− i) (20)

+O(h4) (21)

By the linear theory Term (17) is zero. By Lemma 2 the constant is equal to
h2b2 > 0 , hence Term (18) does not vanish. For Term (19) we have by Lemma
2 and the fact that ai = bi = 0 for odd i.

∑
i∈Z

2∑
j=0

(
2

j

)
hjaj(hi− x)3−j (22)

b3︸︷︷︸
0

a0 + 2b2 a1︸︷︷︸
0

+ b1︸︷︷︸
0

a2 (23)

= 0. (24)

By Lemma 2, Term (20) is zero as well. Hence (18) is the only term left and we
have

fh(x) = P

(
f(x) + P ′′(f(x))[f ′(x), f ′(x)]

b2h
2

2

)
(25)

+O(h4) (26)

= f(x) (27)

+P ′(f(x))

[
P ′′(f(x))[f ′(x), f ′(x)]

b2h
2

2

]
(28)

+O(h4). (29)

Term (28) is zero by Lemma 4.

In numerical experiments one can observe that, unlike in the linear case, the
approximation order does not exceed 4. This has been observed in [4]. If we try
to generalize the previous proof beyond 4 we end up with the following order 4
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terms for
∑

i∈Z P (ci)Bm(h−1x− i):

1

24
P ′′′′(f(x))[f ′(x), f ′(x), f ′(x), f ′(x)]b4h

4 (30)

3

6
P ′′′(f(x))[f ′(x), f ′(x), f ′′(x)]

1

2
(b4 + b2a2)h4 (31)

2

2
P ′′(f(x))[f ′(x), f ′′′(x)]

1

6
(b4 + 3b2a2)h4 (32)

1

2
P ′′(f(x))[f ′′(x), f ′′(x)]

1

4
(b4 + 2b2a2 + b0a

2
2)h4 (33)

By taking four derivatives of P (f(x)) = f(x) we get

P ′′′′(f(x))[f ′(x), f ′(x), f ′(x), f ′(x)] (34)

+6P ′′′(f(x))[f ′(x), f ′(x), f ′′(x)] (35)

+4P ′′(f(x))[f ′(x), f ′′′(x)] (36)

+3P ′′(f(x))[f ′′(x), f ′′(x)] (37)

= (Id− P ′(f(x)))[f ′′′′(x)]. (38)

The RHS and therefore also the LHS yield zero when applied to P ′(f(x)). By
comparison one can see that in order for the terms (30)-(33) to be a multiple of
(34)-(38) one would for example need b2a2 = 0. However b2 > 0 and in order
to be exact for polynomials of degree 2 one needs a2 = −b2 and hence we have
b2a2 = −b22 6= 0. Hence in general there does not exist a linear sequence (Ai)i∈Z
such that we have optimal approximation order for any manifold. An alternative
way to find control points with optimal approximation order is described in
Section 3.5.3 of [2].

The analysis above also shows that the constant C > 0 in Theorem 1 depends
not only on f (4)(x) = f ′′′′(x) but also on lower order derivatives as well as on
the projection P . Additionally, for fh we will also have the 4-th order term

1

2
P ′′(f(x)) [P ′′(f(x))[f ′(x), f ′(x)], P ′′(f(x))[f ′(x), f ′(x)]]

(
b2h

2

2

)2

.

4 Appendix

The appendix consists of a part regarding linear combinations of B-splines and
a part regarding the projection P onto the manifold.

4.1 B-spline sums

Lemma 1. For 0 ≤ k ≤ m we let G : R→ R be defined by

G(x) =
∑
i∈Z

Bm(x− i)ik

for all x ∈ R. Then G is a polynomial of degree k with leading term xk.
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Proof. By definition of B-splines we have B′m(x − i) = Bm−1(x − i + 1/2) −
Bm−1(x− i− 1/2). Hence we have

G′(x) =
∑
i∈Z

B′m(x− i)ik (39)

=
∑
i∈Z

(Bm−1(x− i + 1/2)−Bm−1(x− i− 1/2)) ik (40)

=
∑
i∈Z

Bm−1(x− i + 1/2)
(
ik − (i− 1)k

)
(41)

When repeatedly applying this rule the polynomial degree of the term on the
right hand side reduces by 1 every time. Hence by applying k times we get

G(k)(x) =
∑
i∈Z

Bm−k(x− i + k/2)k! = k!.

Since the k-th derivative of G is therefore constant to k! the claim follow.

Lemma 2. For 0 ≤ k ≤ m we have for all x ∈ R∑
i∈Z

Bm(x− i)(x− i)k = bk,

where bk is defined in (3).

In particular for odd k the sum is zero by the symmetry of the B-splines.

Proof. By Lemma 1 the function

F (x) :=
∑
i∈Z

Bm(x− i)(x− i)k (42)

=

k∑
j=0

(−1)j
(
k

j

)
xk−j

∑
i∈Z

Bm(x− i)ij (43)

is a polynomial. On the other hand we have F (x+ 1) = F (x), i.e. it is periodic.
Hence it follows that F is constant and that F (x) = F (0) = bk for all x ∈ R.

4.2 Properties of a Projection onto a manifold

Lemma 3. Let P : U ⊂ Rn →M be a projection onto a manifold M . Then for
each p ∈ M the map P ′(p) : Rn → TpM ⊂ Rn is a projection as well, i.e. we
have P ′(p) ◦ P ′(p) = P ′(p).

Proof. Let p ∈ M,v ∈ Rn and g : R → Rn be defined by g(t) = p + tv. The
function t 7→ P (g(t)) is well-defined for |t| sufficiently small. As P is a projection
we have P ◦ P = P and hence also P (P (g)) = P (g). Taking the derivative and
using the chain-rule we get

P ′(P (g(0))) ◦ P ′(g(0))g′(0) = P ′(g(0))g′(0)⇒ P ′(p) ◦ P ′(p)v = P ′(p)v

Since this is true for all v ∈ Rn we get P ′(p) ◦ P ′(p) = P ′(p).
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Lemma 4. Let f : [0, 1] → M and P be a projection onto the manifold M .
Then we have

P ′(f(x)) [P ′′(f(x))[f ′′(x), f ′′(x)]] = 0

for all x ∈ [0, 1]

Proof. Taking two derivative of P (f(x)) = f(x) yields

P ′′(f(x))[f ′(x), f ′(x)] + P ′(f(x))[f ′′(x)] = f ′′(x).

Applying P ′(f(x)) on both sides and using Lemma 3 yields the claim.
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