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Abstract

This paper is a review of some interesting results that has been obtained in various sectors of
noncommutative cosmology, string theory and loop quantum gravity.

In the Section 1, we have described some results concerning the noncommutative model of the
closed Universe with the scalar field. In the Section 2, we have described some results concerning
the low-energy string effective quantum cosmology. In the Section 3, we have showed some results
regarding the noncommutative Kantowsky-Sachs quantum model. In Section 4, we have showed
some results regarding the spectral action principle associated with a noncommutative space and
applied to the Einstein-Yang-Mills system. Section 5 is a review of some results regarding some
aspects of loop quantum gravity. In Section 6, we’ve described some results concerning the
dynamics of vector mode perturbations including quantum corrections based on loop quantum
gravity. In Section 7, we’ve described some equations concerning matrix models as a non-local
hidden variables theories. In Section 8, we have showed some results concerning the quantum
supergravity and the role of a “free” vacuum in loop quantum gravity. In Section 9, we’ve
described various results concerning the unifying role of equivariant cohomology in the Topological
Field Theories.

In conclusion, in Section 10 we have showed the possible mathematical connections between the
arguments above mentioned and some relationship with some equations concerning some sectors of
Number Theory.

1. On some equations concerning the Noncommutative model of the closed Universe with
the scalar field. [1]

We remember that for any nD minisuperspace model the ordering parameter & in the conformally
invariant Wheeler-De Witt (WDW) equation (Planck’s constant 7 =1):

H‘I’(qA)=[—%A+§R+U(q)}‘¥(q/‘)=o, (1.1)



(where the Laplace-Beltrami operator is A Eﬁ%[wl—G(q)@’b (q)%}, R 1is the scalar
Riemannian curvature in minisuperspace M , U(g) is the minisuperspace potential and ‘P(qA) is
the wave function of the universe), is equal to & = (2—n)/ [8(1 - n)] forn=>2.

The Non-commutative Wheeler-De Witt equation (NWDW) is given by the following expression:

2,0 )+ e, Jeasc+ foc =t plicy)=0. 12)

It is possible to find the particular solutions of the NWDW equation by applying the Hartle-
Hawking condition and using the @-modified method of path integrals.

Under the Hartle-Hawking (H-H) condition and the gauge condition N =0, the non-commutative
quantum mechanical propagator G, (éjéA,N |0,0) can be exactly found from the Pauli formula

HH (~"A ) 1 azlz P ( 7
GHE dc ,N|00 :W —det W eXp—Ig GA=0" (13)
where n =2 is the dimension of minisuperspace. The propagator is:
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When a = /3 the propagator (1.4) does not contain the 8° dependence so that integration over the

complex lapse parameter by applying the method of fastest descent yields the particular solutions of
the NWDW equation:

I/IGNB(x;’yC):J.dN Lexp{_l{ﬂ+N_3(a2 _ﬁ2)_

8N 4 2N 6
: 0, o, i0(pn o . . "
- N{2— ox. — By, +§(af -p )}}}xexp[g(ﬂxc + a'yc)} = exp{ﬁ(xc +ye )}I/INB(xC,yC). (L.5)

where ,,(x.., y..) are all particular solutions of the WDW equation.

Now, we consider the noncommutative geometry of the minisuperspace of the quantum model of
the closed universe. It is important to note that the WDW equation (1.1) of the standard
(commutative) nD minisuperspace model may be obtained from the action:

$,1G.s(q). ¥ ¥]=- d"qﬁ{% GV, BV, W + P[&R + U(q)]‘}’} =
_ —jd”qMW[—%A +ER+ U(q)}‘l‘ =—[d"qN-GPHY, (1.6)
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by the Lagrange variation of W(qA). Physically, action (1.6) is related to the expectation value of
the energy of the Universe, which is invariant to the conformal transformation for the fixed value of
the ordering parameter ¢&. In the case when nD minisuperspace M ® possesses Weyl geometry, we
have the following action:

5,16 ()W )= J.d"q\/—_(}'{éG'AB%B‘P'+T‘[§R'(ll')+U'(q)}‘P},(R’(f‘j:R'(F’D.

(1.7)
The action (1.7) is invariant on Weyl rescaling:

n n
1—

Gu(a)=22(9)5,u(0) ¥(a")=2 () (¢") Pla")= 2 (¥ (4" )U(0) =27 (0 (9). (1:8)
where n is the dimension of the minisuperspace and the rescaling
w,=w, +2Q79,Q, (1.9)

for any value of the ordering parameter ¢ due to the validity of the following relation:

) o) o), o

When minisuperspace is (conformally) flat, then action (1.7) acquires the following form:
s 6@ e W w,]= - jd - { G, V9, W+ P'U (¢)¥ } (1.10)

and by applying the Weyl rescaling (1.8) and the rescaling
w,=w,+2Q79,Q=0, (l.11)

one obtains the action:
S [G.,(q)®. P, w, =0]=- jd gV- { G"9 ,P9,¥ +PU(q )‘P} (1.12)

which is same as action (1.6) for which the Riemann scalar curvature vanishes.
If we apply the Weyl rescaling to the following noncommutative Hamiltonian

H® = NH, =—{ p“( 4+ Lec p% + a2 (ach2d, + Bsh2d,)—1

2 a. a

0 2[ Po ac(fech2g, +ash2g.)+ p, (ach2. + Bsh2g, )]}z (1.12b)

we obtain the following noncommutative Hamiltonian:
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' 2 2
H®°=N'H, I;’ { &+p—f+aa3ch2¢—a—%(—paash2¢+ p¢ch2¢) =0. (1.13)
a a

Furthermore, with regard the eq. (1.12b), we remember that:

4ac =g+ O Pu P, +0(@°). (1.13b)

T T 34
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=0+ S
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Applying the Legendre transformations to (1.13) we obtain the noncommutative Lagrangian:

' 2 2,2
Ly a9 | =N —iz(@j a2 %\ ral (112
dt 2| N2 ar 64

Solving the equations of motion obtained from (1.14), taking care of the gauge condition N'=1 and

2
%L—o = aa(0) we obtain the Lorentz 4-metric determined by the
t

o iy da
the initial conditions 7|,:0 =0,
t

space-time interval:
2 2 [ Ly
ds” =—dt” +
0{

jhz(\/_t)dﬂ (c=1). (115

The scalar curvature of the 8-deformed de Sitter space-time is:

2 A2
‘R(r)=4A[1- 02\2’\ , (1.16)
11520 1+ 22 |en2(VAT3t)
576
while the scalar curvature of the 3D subspace is:
R(r)= 2A , (1.17)

(l + ?527/;2 Jch2 (\/A_/31)

where A =3¢ .

After applying the Wick rotation to eq. (1.14), and obtaining the corresponding equations of motion
from this non-commutative Lagrangian, we obtain the Euclidean 4-metric determined by the space-
time interval:

2
dsé=d12+(l+efjsin2(\/57)d95, (0=1)- (1.18)
[0}



From eq. (1.18), the semiclassical non-commutative Hartle-Hawking (H-H) wave functions that
corresponds to this 4-geometry are of the form:

1 (o) o' |
o 1)) = +— |1+ 1—%1”2 1+ . 1.19
pila'=at)=expi 2122 [ [ 64” (119

From eq. (1.19) we see that the non-commutativity parameter € increases (for the “+” sign) or
decreases (for the “—* sign) the two corresponding standard semiclassical H-H tunnelling
amplitudes. So, from this consideration we may conclude that the canonical non-commutativity

prefers the creation of the theta deformed de Sitter universe rather by y", than by y', .

Hence, at the Hartle-Hawking condition and for different choices of the gauge condition N =0 (N

is the lapse function) the @* term either decreases or increases the semiclassical probability
amplitude for tunnelling from nothing to the closed universe with the stable matter potential.

Furthermore, under the Hartle-Hawking condition and when & >0 and £ =0 the canonical
noncommutativity of the minisuperspace prefers as the most probable the creation of the closed
universe with ¢ =0 by the semiclassical wave function which for =0 corresponds to the

geometry of filling in the three-sphere with more than half of a four-sphere of radius/(1/ a).

2. On some equations concerning the low-energy string effective quantum cosmology.[2]

At low energy, the tree-level, (3+1)-dimensional string effective action can be written as
S= —i]d“x,/— ge ' (R+9,0%+V). @.1)

Here ¢ is the dilaton field, a(t)zexp'ﬂ(t)/ \/EJ, A, is the fundamental string length parameter

governing the high-derivative expansion of the action and V is a possible dilaton potential. When
we consider this theory in the metric of isotropic and homogeneous spacetime, after integrating by

parts, and using the convenient time parametrization dt = ¢ ’dr, reduces to
S = —%Idr(5'2—3'2+Ve‘2¢), (2.2) where g=¢—In[(’x/2)-35. 23)
The Hamiltonian of the system is

H= %(n; ST+ AVe®), (2.4)

S

where the canonical conjugate momenta are,
N,=A44, H,=-4¢". (2.5)

The corresponding Wheeler-DeWitt equation, in a particular factor ordering is



1{32 92

- | = /(4 —2¢ _

We shall assume V =V(¢) in order to separate variables. We consider two simple cases of the
potential as toy models that allow us to obtain exact solutions

1) Case: V= —Voe‘“’;
Therefore the solution of the WDW equation (2.6) is
v, (6.8)= ey, (1.,e).
where Y,, is the second class Bessel function.
2) Case: V=-V,

Now the wave function is

v,(@.8)=cek, (A Voe ™), @7)

where K., is the modified Bessel function. We can construct wormhole type solutions by means
integrating over the separation constant v,

Vi @.8)= [ "R, (4 Ve hay = e e kil o )

where g =const. For the noncommutative quantum cosmology model, we will assume the

“cartesian coordinates” ¢ and S of the Robertson-Walker minisuperspace obey a kind of
commutation relation,

[6.8]=i6. 2.9

This is a particular ansatz in these configuration coordinates. The deformation of minisuperspace
can be studied in terms of Moyal product,

116.8466.0)= 6.8k 2] 3. 2.2 | |5.p). @

Then the noncommutative WDW equation is

LN A N e -
215*[352 aﬁz+&V(¢,ﬁ)e }*1//((15,,5)—0. (2.11)

Now, we take the eq. (2.6) and obtain:

1{32 02

e g AVEP op)=0=
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(2.12)

:Lz[ i azj 1
24, \op* 39°)(ev(p.Ble™)

Hence, from the eq. (2.1), we have that:

S = —%J.d“x\/;e"“’(R 10,0049 +V )=

(o 0 1 o — ,
- [3/9’2 aﬁzj(ﬂfv(a,ﬁ)e—w)fd x-ge?(R+0,40%0+V). (2.13)

Furthermore, always from the eq. (2.6), we obtain:

A =(v(g, g )W - % (2.14)
(aﬁz ‘aazJ

Hence, from the eqs. (2.2) and (2.3), we have that

0 9

s == Jarlg" - ve )=~ (25, pe ) [azlg-pr+ve™), @1s)
(o535

where 5:¢—lnj.(d3x//1§)—\/§ﬂ.
3. On some equations concerning the noncommutative Kantowski-Sachs quantum
model.[3]
The Hamiltonian of General Relativity without matter is
H=[dx(NH+N ), (3.1)

where
H=G, /1" -h"”RY, W =2DII". (3.2)

Hence, we can write the (3.1) as
H = [d’x(NG,, "1 - n'"*RY + N 2D11"). (3.2b)

Units are chosen such that 7i=c=162G =1. The quantity R" is the intrinsic curvature of the
spacelike hypersurfaces, D, is the covariant derivative with respect to /,;, and h is the determinant

of /;. The momentum IT; canonically conjugated to h” , and the DeWitt metric G, are

1, _
IT; = _h”z(Kij ~hyK), (3.2¢) G = Eh llz(hikhjl +hyhy _hijhkl)’ (3.2d)
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where K = —(a h; —D,N, —Dle.)/ (2N) is the second fundamental form. The super-Hamiltonian

'

constraint H= 0 yields the Wheeler-DeWitt equation

(Gijkl%%+hll2R(3)ij[hij]:0, (3.2¢)

The Kantowski-Sachs line element is
ds’ ==Ndr* + X*(1)dr* + Y*(t)d6 +sin> 6d¢?). (3.3)
In the Misner parametrization, (3.3) is written as
ds® ==Ndr* + P dr? + ¢ e (467 +sin” Gdg?). (3.4)
From (3.1) and (3.2), the Hamiltonian of General Relativity for this metric is found to be

Py

H=NH=Nexp38+ 2\/59{—— i % —2expl-243Q)|. (3.5)

24
The Poisson brackets for the classical phase space variables are
fart=1. {8.p}=1. {B.p}=0. {Q.8}=0. (3.6
For the metric (3.4), the super-Hamiltonian constraint H = 0 is reduced to
H=¢%n=0, (3.7)

where

£= iexp(ﬁﬂ+ 230), h=—P2+ P} —48expl-243Q)=0. (3.8)
Hence, the eq. (3.7) can be rewrite as
H=expl3p+ 230 72 + £} ~ 4sexpl- 2430 0. 380

Now, let us introduce a noncommutative classical geometry in the model by considering a
Hamiltonian that has the same functional form as (3.5) but is valued on variables that satisfy the
deformed Poisson brackets

{arlt=1, {8p}=1, {B.p}=0, {Q.8}=6. 3.9

The equations of motion in this case are written as

Q=-2P,, B,=-96V3¢2", f=2P,-96v36%, P,=0. (3.10)



The solution for Q(¢) and A(r) are

Qr)= %ln{;—?coshz[%/gPﬁo (t-1, )]} , Bt)=2P, (t—1,)+ B, — 6P, tanhlzﬁpﬂo (c-1,)| G.11)
/60

Now, we may achieve the solutions above by making use of the auxiliary canonical variables Q_
and /., defined as

Q =Q+— P B = ,B——P B, =P,, P, =P, (3.12)

The Poisson brackets for these variables are
QP f=1, 1B.Py =1, B, .P,}=0. {Q.8}=0. (3.13)

As the equations of motion in the canonical formalism in the gauge N = 24exp(— \/gﬁ —2x/§Q)
we have

Q.=-2P,, B, =-96J3¢™°, p =2P, —48367%, P, =0. (3.14)

whose solutions are

Q. ()= \/jln{P—coshz[Z\/_P )]}+§Pﬁa

ﬁ(]
B0)=2P, (=1,)+ B, ~ 2 P tanh[2V3P, (t=1,)], Py (1)=—P, tanh3P, (r—1,)]
Pﬁf(r)=Pﬁ0. (3.15)

Finally, from (3.12) and (3.15) we can recover the solution (3.11).
The Wheeler-DeWitt equation, for the Kantowski-Sachs universe, is

|- B2+ B2 —48expl-2430) (@, 8)=0, (.16)

where f’Q =—id/dQ and f’ﬁ =—id/df . Hence, the eq. (3.16) can be rewritten also

{_(_%):( (_;ZJ — 48expl-2430) |w

A solution to equation (3.16) is
¥ (Q,8)= eivﬁﬂKiv(4e’ﬁQ), (3.16¢)

¥(Q,8)=0. (3.16b)

where K, is a modified Bessel function and v is a real constant.

Now, we fix the gauge N = 24exp(— V3 B - 2\/59) in (3.5). The Wheeler-DeWitt equation for the
noncommutative Kantowski-Sachs model is



l P: +P; —48exp(—2\/§Qc)J*‘P(QC,,5€)=0, (3.17)

which is the Moyal deformed version of (3.16). By using the properties of the Moyal product, it is
possible to write the potential term (which we denote by V' to include the general case) as

v(ﬂc,ﬁc)*w(szc,ﬁc)=V(szc+i§aﬂt.,ﬁ jw(ﬂc,ﬁc)=V(fz,ﬁ>P(Qc,ﬁC), (3.18)

B, . (3.19)

Nlce

B BB+

where
Q:QC _EP'&‘”

Equation (3.19) is nothing but the operatorial version of equation (3.12). The Wheeler-DeWitt

equation then reads
B2+ B2 —a8expl-2430, +4368, |\w(Q..5)=0. (3.20)

In our time gauge N = 24exp(— \/5,3 - 2\/59), the Hamiltonian H = N&h, with & and h defined
in Eq. (3.8), reduces simply to 4. We can therefore use & to generate time displacements and

obtain the equations of motion for QC( ) and B.(r)

. 1 E)S
Q. ()= ( Q. h) =2 , (3.21)
0]y 0 0=250
—243Q_ —i6+/30, \R-€”
( [ﬂ,h]j =295 48 30Re exk ‘/_ ! ,-s\/_ pJ&-) oo (322)
=5 e R-e B=5.11)
As long as Q ( ) and S ( ) are known, the minisuperspace trajectories are given by
o o
Qr)=0,()-79, 5@ A W), 3:23) Bl)=B.(1)+7 3, S[Q.0)A 0] G.24)
A solution to (3.17) is
(Qc,ﬁ )= oV Kiv{4exp{— \/g(QC —%Vﬁj:l} (3.25)
Once a quantum state of the universe is given as a super-position of states

V3 ﬂ}:R-e'S, (3.26)

(@,.8)=>Ce Kiv{4exp|:_ \/5(9 -5

the universe evolution can be determined by solving the system of equations constituted by (3.21)

and (3.22) and substituting the solution in (3.23) and (3.24)
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4. On some equations concerning the spectral action principle associated with a
noncommutative space, applied to the Einstein-Yang-Mills system. [4]

The basic data of Riemannian geometry consists in a manifold M whose points xe M are locally
labelled by finitely many coordinates x“ € R, and in the infinitesimal line element ds ,

ds® =g, dx"dx" . (4.1)
The laws of physics at reasonably low energies are well encoded by the action functional,

I=1,+I, (42

where I, = ﬁJ.R\/E d*x is the Einstein action, which depends only upon the 4-geometry and

where I, is the standard model action, [, = ILSM o Loy =L+ Ly, + Ly + Ly + Ly, . The action
functional I, involves, besides the 4-geometry, several additional fields: bosons G of spin 1 such

as ¥, W* and Z, and the eight gluons, bosons of spin 0 such as the Higgs field H and fermions f

of spin 1/2 , the quarks and leptons.
To test the following spectral action functional

Trace;[(%j +(y,Dy), (43)

we shall first consider the simplest noncommutative modification of a manifold M . Thus we
replace the algebra C~(M ) of smooth functions on M by the tensor product A =C~(M)® M N(C )

where M, (C) is the algebra of Nx N matrices. We shall compare the spectral action functional
(4.3) with the following

1
=25 [Rygd'x+1,, “4)

where [, = J. (LG + L )\/E d*x is the action for an SU(N) Yang-Mills theory coupled to fermions

in the adjoint representation. Hence, the eq. (4.4) can be rewritten also

1
I= WJ.R\/ECZ4X +[(Lg+ Lo Ned'x. (a.4p)
The coupling of the Yang-Mills field A with the fermions is equal to
(w.Dy) weH. (45)

The operator D =D, + A+ JAJ" is given by

D= e;y“[(aﬂ +0,)®1, +1® (—é gOA;',T"ﬂ (4.6)
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where @, is the spin-connection on M :

1 ab
w,u = Z g7 }/ah
and T' are matrices in the adjoint representation of SU(N) satisfying Tr(TiTj)z 267

With regard to compute the square of the Dirac operator given by (4.6), this can be cast into the
elliptic operator form:

P=D*=—(g"9,9,1+A%,+B) (47
where 1, A* and B are matrices of the same dimensions as D and are given by:

A* = 20" -T*)®1, —ig,1, ® AT’
B=(0"w, + @@, ~T" @, +R)®1, —ig,, ® A“T'. (4.8)

We shall now compute the spectral action for this theory given by

2

Tr;([%J +(w,Dy) (4.9

0

where the trace Tr is the usual trace of operators in the Hilbert space H, and m, is a (mass) scale
to be specified. The function y is chosen to be positive and this has important consequences for the
positivity of the gravity action.

Using identities:

-5 ) __ l < s—1 —tP
Tr(P )‘WL £ Tre™dr  Re(s)=0 (4.10)
and the heat kernel expansion for

n—m

Tre™™” ":'Zt d IM a,(x, P)dv(x) (4.11)

n=0

where m is the dimension of the manifold in C*(M), d is the order of P and dv(x)= \/Ed "x
where g“" is the metric on M appearing in equation (4.7). If s=0,—1,... is a non-positive integer

then Tr(P") is regular at this value of s and is given by

Tr(P“‘ ) =ResI(s) ,_,a,.
SZT
From this we deduce that
Try(P)= ) f,a,(P) (4.12)

n=0

where the coefficients f

n

are given by
fo= [ duudu, £, =" 2luldu,  fy,0=1) 270), 120 @.13)

12



and a, (P)= J. a, (x,P)dv(x). Hence, the eq. (4.12) can be rewritten also

Tra(P)= Y £, [a,(x. P)dv(x). (4.13b)

n=0

The Seeley-de Witt coefficients a,(P) vanish for odd values of . The first three a,’s for n even
are:

4y (x, P) = (47) " Tr(s) az(x,p):(m)'"/ZT{_gnwj

s

HVpo

a,(x,P)=(4z)"" %Tr[(— 12R;,“+5R* —2R,,R" + 2R

—60RE +180E” + 60E;ﬂ”+3OQWQ“VJ, (4.14)
where E and Q , are defined by

E=B- g’”(&)ﬂa)'ﬁa)'ﬂ a)'v—l"/fva)'ﬁ), Q, = aﬂw'v—avw'ﬂ+[w'ﬂ wVJ

w,= %gﬂv(AV “TV ). (4.14)

The Ricci and scalar curvature are defined by

R, =R e R=R%e"e). (4.14b)

ap’ uv=a

Now, it is possible evaluate explicitly the spectral action (4.9). Using equations (4.8) and (4.14) we
find:

E:iR@)M@““iyuv®gF;VTi, QﬂV:iRZ’; ab@lN—é1|4®gF/jvTi. (4.15)

From the knowledge that the invariants of the heat equation are polynomial functions of R, R, ,

R, E and Q  and their covariant derivatives, it is then evident from equation (4.15) that the

spectral action would not only be diffeomorphism invariant but also gauge invariant. The first three
invariants are then

azP

Ty 2J. \/_Rdx

d x\/_ (12R; “+SR*—8R,R" —7TR,  R"")+
Vi

a4(

HVpo

120 , . .
- 129 opi poi | a6
62360 N & T } (4-16)

For the special case where the dimension of the manifold M is four, we have a relation between the
Gauss-Bonnet topological invariant and the three possible curvature square terms:

R'R" =R, R"""—4R, R" +R* (4.17)

UVpo

R*R” . Moreover, we can change the expression for a, (P) in terms of

1
FpE ,UVPO'
where R'R = 48 EuprRuv Roo -

13



C,po instead of R, where

1
Cﬂvpo‘ = R,uvpo‘ - (gy[pRv\a] - gv[pR,u\a])_‘_ g (gﬂpgva - g,uagvp )R (418)

is the Weyl tensor. Using the identity:

HVpo uvpo

R RM°=C C”V’J"+2R,,VR”V—§R2 (4.19)

we can recast a,(P)into the alternative form:

4P

T R

2
2 0 C 7+ A (IR'R +12R, )+ S FL F# | (4.20)
487: 120 N

and this is explicitly conformal invariant. The Euler characteristic y, is related to R°R" by the
relation

4.21)

It is also possible to introduce a mass scale m, and consider y to be a function of the

—ZJ In this case terms coming from a, (P),n>4 will be suppressed by

dimensionless variable ;([
m
0

1
powers of —:
mo

vpo 1
{12m0f0jd4x\/_+mofzjd xJgR+ fdd“x\/_[ 5 CunpaC"” +ER;/’+
+1—1R R +g—F JFP40 iz . (4.22)
20 N mg
Normalizing the Einstein and Yang-Mills terms in the bare action we then have:

2 p2 2
Ny~ _ 1 _ 1 {;—g‘; =1, (4.23)
T

and (4.22) becomes:

Hvpo

1,=[d'xg [ SR +e,+a,C C’””"+COR*R*+dOR;ﬂ”+iF;VF”" , (4.24)

where

-3N 1 2 11 Nm0
ay=————, C=—70a, dy=——a,,
80 g, 3 3

> Jfo- (4.25)

Hence, (4.24) can be rewritten also:

14



80 40

=ML R;,” lF F””] (4.25b)
80 g2 4

(o 1 Nmg . —3N 1 wpe [=N 1 )0
1,=|d x\/E{ngm ot g_gcﬂm"c 0 R'R" +

The action for the fermionic quark sector is given by (Q,DqQ) (4.26), while the leptonic action

have the simple form (L, DkL) (4.27). According to universal formula (4.3) the spectral action for
the Standard Model is given by:
Trl(D* 1md )|+ (v, DY), (4.28)

where (y, D) will include the quark sector (4.26) and the leptonic sector (4.27). Calculating the
bosonic part of the above action, we have the following result:

I= 9m°—f0jd4 f+ szjd“ {SR 22HH} f42jd4x [4102(12R +

+11R'R* —18C,,, C*"*° )+ 3y (D H'D'H —éRH Hj+gO3G’ G"" + gLFLF™ +

Hvpo

¥ %gélB,,vB’” w32 HY -y H ) ]+ O(mij . (4.29)
0

where we have denoted

1k‘
3

2
k”zj +l
3

0

e
kO

y: = Tr(‘kd‘

), 2 =Trmkg [+

i e ay i
D,H =3 ,H = g Aj0"H =g, B,H . (430)

4}

Normalizing the Einstein and Yang-Mills terms gives:

15m2f, 1 gif S
—47;22=?0, %:1, g§3=g§2=§g§1- (4.31)

Relations (4.31) among the gauge coupling constants coincide with those coming from SU(5)
unification. To normalize the Higgs field kinetic energy we have to rescale H by:

H—280 . 432
3y

This transforms the bosonic action (4.29) to the form:
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1,=[d'xg { R-u2(H'H)+a,C,,,C" +h R2+c0*R*R+dOR;ﬂ”+eo+iGLvG""+

Hvpo

+1F“F“V“+iB B“V+|DﬂH|2—§0R|H|2+/7.0(H*H)2}, (4.33)

4
where
ﬂé:%, aoz—%é, b, =0, CO:—%aO,dOZ—gao, eo_:r_;zfo 2>
o SRR A EY)

This action has to be taken as the bare action at some cutoff scale A. The renormalized action will
have the same form as (4.33) but with the bare quantities &,,4,,4,,a, to €, and g.,, 8 &os
replaced with physical quantities.

5. Review of some equations concerning various aspects of Loop Quantum Gravity. [5]

We introduce the volume associated with a region Q X, where X is a spatial manifold of fixed
topology (and no boundary). We have that:

mnp

Q)= d'xe=[d’E = d'x \/ g, e"EPEIEY . (5.1)
Writing V =V/(X), we first use the substitution

e, (x)=g,, e EPE B (x) = fy{Am“(x),v} (5.2)

to recover the spatial dreibein. The second trick is to eliminate the extrinsic curvature using a
doubly nested bracket. The first bracket is introduced by rewriting

K,'()=—{a,"(:)K} where K=K(2)=[dK,E". (53)

The second bracket comes in through identity

I 1 E "’E abL
K\x)=—751—" F Vi. 54
(x) 7[‘;/2 { \/E mnc( ) } ( )

Canonical quantisation in the “position space representation” now proceeds by representing the
dreibein as a multiplication operator, and the canonical momentum by the functional differential
operator

h 0 (55
l



With these replacements, the classical constraints are converted to quantum constraint operators
which act on suitable wave functionals. The diffeomorphism and Lorentz constraints become

H, (x)‘P[e] =0, L, (x)‘P[e] =0. (5.6)

They will be referred to as “kinematical constraints” throughout. Dynamics is generated via the
Hamiltonian constraint, the Wheeler-De Witt (WDW) equation

H,(x)®[e]=0. 5.7)

It is straightforward to include matter degrees of freedom, in which case the constraint operators
and the wave functional ‘P[e,...] depend on further variables (indicated by dots). The functional

‘P[e,...] is sometimes referred to as the “wave function of the Universe”, and is supposed to contain
the complete information about the Universe “from beginning to end”.

Now we represent the connection A,* by a multiplication operator, and sets

hos
i &H‘la (x) ‘

E"(x)= (5.8)

The WDW functional depending on the spatial metric (or dreibein) is replaced by a functional
‘P[A] living on the space of connections (modulo gauge transformations). The spatial metric must
be determined from the operator for the inverse densitised metric

o o
™(x)=-h" . (59
WS Y

Furthermore, the spatial volume density is obtained from

~ i’ o o o
=Elx)=—¢&"¢ .
g ()C) (X) 6 mnp &ma (X) &”h (X) 5Apc (X)

(5.10)

For the quantum constraints the replacement of the metric by connection variables leads to a
Hamiltonian which is simpler than the original WDW Hamiltonian. Allowing for an extra factor of
e (and assuming e # 0,00 ) the WDW equation becomes

: o o
“F (Alx)————P|A]=0. (5.11
2 mna( ('x)) 5Amb(x) dAnC(x) [ ] ( )

There is at least one interesting solution if one allows for a non-vanishing cosmological constant A.
Using an ordering opposite to the one above, and including a term Ag with the volume density
(5.10), the WDW equation reads

s &5 (4(x))— A s

i . £ - Y. |A]=0. (5.12
abc 514 a(x) 5Ab(x) mnc X 6 mnp dApL(X) A[ ] ( )

This is solved by

17



v [A]= exp(% Ld3xLCS (A)j , (5.13)

with the Chern-Simons Lagrangian L., =AAdA+iAAAAA. Thence, the eq. (5.12) can be also
rewritten

i 3 : o o ihA
exp| — | & XAANdA+IANANAA)| E,, F_(Alx))— £ =0
Xp( hA JZ X. L ( )J abc 5Ama (x) &nh (X) |: mnc( (X)) 6 mnp 5APC (x)

(5.13b)

Loop Quantum Gravity makes use of wave functions which have singular support in the sense that
they only probe the gauge connection on one-dimensional networks embedded in the three-
dimensional spatial hypersurface X . By definition, each network is a graph I' embedded in ¥ and
consisting of finitely many edges ¢, € I' and vertices ve I'. The edges are connected at the vertices.
Each edge e carries a holonomy #, [A] of the gauge connection A. The wave function on the spin
network over the graph I' can be written as

v, [Al=y(n, [Alh, [AL.) (5.14)

where the ¥ is some function of the basic holonomies associated to the edges e I'.

The wave functionals (5.14) are called cylindrical, because they probe the connection A only “on a
set of measure zero”. With regard the definition of the space of spin network states, we introduce a
suitable scalar product. In Loop Quantum Gravity this is the scalar product of two cylindrical
functions ‘Pn{j},{c}[A] and ‘PF.,{]..},{C.}[A] and it is defined as

<‘Pn{f},{c}|‘1"r:{f},{c}> =0 if T=D"

(e ¥rier) = | [T ipic V- W e i o) i T=T7, (5.15)
e;el’

where the integrals I dh, are to be performed with the SU (2) Haar measure.

With regard the form of the quantum Hamiltonian one starts with the classical expression written in
loop variables. Despite the simplifications brought about by the following equation

!
!

ey ENFype =—72(Habﬂab —%HZJ—ezR“’ =—72eH0—i(1+ YK K, -K>), (5.16)

the Hamiltonian constraint is:

H[N]= Ld3xN

detE

mnc

E;"E;{ea””F —%(1+72)K[m“Kn]b] (5.16b)

In order to write the constraint in terms of only holonomies and fluxes, one has to eliminate the
inverse square root as well as the extrinsic curvature factors. This can be done using the relations
(5.2) — (5.4). Inserting these into the Hamiltonian constraint one obtains the expression
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H[N]= Ld3xN8m”"Tr[an{Ap,V}—%(1+72){Am,1? An,l?}{Ap,V}] (5.17)

6. On some equations concerning the dynamics of vector mode perturbations including
quantum corrections based on Loop Quantum Gravity. [6]

The perturbed densitized triad and Ashtekar connection around a spatially flat Friedmann-
Robertson-Walker (FRW) background are given by

Ef = POl + 8], A= +)K[ =3+ +7K.). @)
where p and s are the background densitized triad and Ashtekar connection. In a canonical

formulation, the Einstein-Hilbert action can be written equivalently using the Ashtekar connection
and densitized triad as

S =Ja -G v vl o

where A', N* and N are Lagrange multipliers of the Gauss, diffeomorphism and Hamiltonian
constraints. In triad variables, a Gauss constraint appears which generates internal gauge rotations
of phase space functions because triads whose legs are rotated at a fixed point correspond to the
same spatial metric. This constraint is given by

— 3 Al _ 1 3 Al a k xjpa
G(A)= [ 4*xAG, —%Ld N (D,E +e, ATE!). (6.3)
Using the perturbed form of basic variables (6.1), it can be reduced to
G(A)= Lj d*xN (e BOKI +e, ' KIE?). (6.4)
87ZG ¥ ij a ia kJ* .

The diffeomorphism constraint generates gauge transformations corresponding to spatial coordinate
transformations of phase space functions. Its general contribution from gravitational variables is
given by

a a 1 a i i
Dy[N*]=[ "N, =5 [l [, E - 4G 65)

where the subscript “G” stands for “gravity” to separate the term from the matter contribution.
Using the expression of the perturbed basic variables (6.1), one can reduce the diffeomorphism
constraint to

Dg [Na]: %Ld%&w[— E(akékf )_ Eé:k (adéE: )] - (6.6)

In a canonical formulation, the Hamiltonian constraint generates “time evolution” of the spatial
manifold for phase space functions satisfying the equations of motion. Its gravitational contribution
in Ashtekar variables is (see also (5.16b))
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! Uil ‘
HG[N]=%Ld3xNWEjEf(g/ Fi =20+ PKIKY). 6.7)

Using the general perturbed forms of basic variables and the expression of curvature
F, =0,A —d,A +¢& ixAlA , one can simplify (6.7). Up to quadratic terms is given by

£ (). 68)

H [N]_—jd | 687~ (o 3551 )+ ﬁ(&(jékjd,féj)—%
P

P

with N =0 for vector modes.
With regard the quantum corrected Hamiltonian constraint, this is given by

HEN) =~ [ @ alp, o6 | ~ 687~ (9wt 0r ) ok o)~ ook )
2p§ \/;
(6.9),

where 0{(]_9, éEl.“) is the correct function, now also depends on triad perturbations.

To study quantum gravity effects, we have introduced a quantum correction function a(ﬁ,éEi”)

which depends on phase space variables. Having a new expression for the Hamiltonian constraint,
there could be an anomaly term of quantum origin in the constraint algebra. A non-trivial anomaly

in the algebra could occur in the Poisson bracket between HZ[N] and D, [N ”]. This bracket turns
out to be

laa

{H[N] D [Na]}_—jd xp(d ,ON° BNK> \/_{—(—) =5 (éEdﬁkﬁf):l. (6.10)

With regard the quantum dynamics, there are also the holonomy corrections. Hence, it is possible
write the following expression for the corrected Hamiltonian constraint

—\2
1 sin 1 (sing . ;
HEV]= 1o o 647 fyﬂ{j - | o)

+JploKIsk s 5!)- _(sz“ﬂ‘ aEfaKf] 6.11)
N

Further, a non-trivial anomaly in the algebra can occur between the Poisson bracket between
H2[N] and D, [N*]

{HGQ[N],DG[N“]}—% k- 5”121“774‘ jD [ve] +—j d*xp(0,0N7)-

i _i SiHIL_l}EJZ (SinﬁﬂgJZ_EZ (éEJCj 6.12
ﬁ[paﬁ(ﬁV Ty p ) O
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7. On some equations concerning Matrix models as non-local hidden variables theories.

(7]

In this section we describe some equations that show that the matrix models which give non-
perturbative definitions of string and M theory, may be interpreted as non-local hidden variables
theories in which the quantum observables are the eigenvalues of the matrices while their entries are
the non-local hidden variables.

We study a bosonic matrix model which is the bosonic part of the models used in string and M

theory. The degrees of freedom are d NxN real symmetric matrices X/, with a=1,...,d and

ai’®

i,j=1,..,N . The action is:
s=ufamr[X?+e’[x,.x,[x . x"]. @.1)

We choose the matrices X“ to be dimensionless. @ is a frequency and g has dimensions of

mass - length® . It is useful to split the matrices into diagonal and off-diagonal pieces,
Xaji = Daji + Q;z (7.2)

where D = diagonal (dl",...,d,f,) is diagonal and Q. has no diagonal elements. Since the Q’ are

dimensionless we will expect them to scale like a power of T /@’ . We then write the action (7.1)
as

S=[alr! + 12+ 1] (73)

The theory of the d ’s alone is free,

- ﬂz(d;')2 . (7.4)

while the theory of the Q ’s alone has the same quartic interaction

1= ﬂ[Z(Q';,-Y +or [Qa,Qb][Q“,Qb]} . (15)
aij
The interaction terms between the diagonal and off-diagonal elements are

Lim = 2/‘(022 l_ (dia - d; )2( bji)z - (did - d; dib - df b{/{lQI;] + z(did - d; )thj [Qa 7Qb ]jiJ‘ (7-6)
abij
Hence, the action (7.3) can be rewritten also as

= Jar-Luglir} ol o) +orlo.0 o0+

w2uw Y|4 —as V(o)) - (ar —asNa - )ojy, +2lar —at)o¥[0,.0,) | 1. @)

abij
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We now derive the Schroedinger equation for the eigenvalues of the matrices. This is a three step
process. (i) Formulate the statistical variational principle for the matrix model. (ii) Make
assumptions about the statistical ensemble. We assume that the model is in an S-ensemble, heat it to
finite temperature 7 and then study the large N limit with 7 =1/N . (iii) Derive an effective
statistical variational principle for the eigenvalues by averaging over the variational principle of the
matrix elements and show that when N — oo this is equivalent to Schroedinger quantum theory for
the eigenvalues.

STEP 1.

We begin by defining an § -ensemble for the matrix elements. That is, we begin with the variational
principle

1lp,s]= [ dt[(da)dQ)p(d.0.1) S(d,Q)+i(%] +i[%®j +U(d,0)|, (7.8

where U(d,Q) is the interaction term L™ given by (7.6).
STEP 2.
- The Q system is in a distribution that is to leading order in 1/ N statistically independent of

the distribution of the eigenvalues. This means that to leading order the probability density
factorizes

pld.0)=p,(d)p,(0)+O(U/N). (7.9

- The Q subsystem is in thermal equilibrium at a temperature 7 . So we have
_ 1 o
PolQ)=—e (7.10)

where H (Q) is the Hamiltonian corresponding to the Q system alone

H(Q)Zﬂ[Z(QJi)z—wz[Qa,Qb][Q“,Qb]} (7.11)

aij

and
Z= j dQe™ "' - (7.12)

As a result of these assumptions our variational principle reads,

1lp,.8.7]=[at[(dd)dQ)p,(d)p, (0 S(¢Q)+i[$} +i( SC_,J +U(d.0)|. (7.13)

STEP 3.

Now we want to derive an effective variational principle to describe the evolution of the probability
distribution for the eigenvalues. We will do this by averaging the variational principle (7.13) over

22



the values of the matrix elements, and then extracting the leading behaviour for large N and small
T . We begin by inserting the factor unity in the form

00"
1= dAO| A —d' =Y —L—L+...|. (7.14
IH 5{ : ;dﬁ_d}? j( )
Thus, we have,

1lp,.8.T]= %jdrjdddg | d,w(z;' —d —Z%+~-J eI
i 7 j

. l (%w 2 1 & 2
S+Z(&zgj +Z(5Q;J +U(d.0)|. (1.15)

We recall that in the theory of stochastic processes the limits which define time derivatives are
taken after the averages over probability distributions, not before. So, we must write

Jarfataop, p,fo)3 | 2| = [aasiop, (e folubiay] -

dl.“(t+At)—d,-“(f))2}:

Ar?

_ J dt lim j dddQp,(d)p, (Q)ﬂ{

Zfd’}}fj})fdddQPd (d)pQ(Q)ﬁ{{d,a(HAt)— d,.a(t))2:l+{d,.a(t)— d,.“(;—Az))2 :l} (7.16)

2 At? Ar?

Note that the last equation follows trivially, for smooth motion, but it will have non trivial
consequences once we have averaged over the Q’s because the result for large N is to induce

Brownian motion for the off diagonal elements and eigenvalues. Now we perform the integral over
the d ’s. It is useful to write

d =2 +AX (1.17)

where
;05

AZ(Q.2)=-2, Py

J

+... (7.18)

has to be treated as a stochastic variable, taking into account its dependence on the Q’s which are

themselves fluctuating due to the assumption that they are in equilibrium in a potential. We then
have, to leading order in 1/ N,

1 (d&‘(/i+A/l,Q

1lp,.8,.7=[at[ ddp,(4.1)] d0p,(0) S(/1+M,Q)+Z o )J +U(1.0)|+K,,

(7.19)
where to leading order, the kinetic energy terms for the d ’s have become,
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A—0 At At?

K., = [drtim[dzp, (Z,t)depQ(Q)g{[(ﬂ? (¢ + Ay 2(0)f J N ((/1? (1)— A —Ar)) J} (720

We now are ready to integrate over the Q’s. The key point is that the dependence of the A °’s on the
0; Q0
d' —dj
the A’s with the Q’s coming from the terms in U(4,Q) turns the A’s into stochastic variables,

described by a stochastic differential equation of the form

Q’s through a sum of a large number of independent terms, Zj , as well as the coupling of

DX =b'(A,t)dt +AX  Ar>0 (7.21)
DX =b“(A0)dt + A X Ar<0 (7.22)

with
(ALAZ)=6"6y,dt di>0 (1.23)
(NANX)==8"6y,dt dt<0 (7.24).

Here the brackets mean

(F(2,0)) = [d0p,(Q)F(2,0). (7.25)

We note that we can use the value of v, described from the following equation

Nv q2 dt3/2 t3/2
Q ~
2 +..= T +ng,4+3,4 (7.25b)

4d -1y N*

V,=v,+

We have, from the Focker-Planck equations that the current velocity is
v (4)= %(bﬁ 1b) (7.26)

while the osmotic velocity is

From these we can derive

tim [ d0p, (1.1)p, (Q)%[w e+ AAtt); Z40)] J = p, (A1)t (A1) +NC] (7.28)
and
lim [d0p, (2.1)p, (Q)%((ﬂ? )=o) J = p(da)(1ey + x| (2.29)
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where C is the infinite constant defined in the following equation

C=vd lim i (7.29b)
Ar—0 At

To go further we need to define the effective Hamilton-Jacobi function for the eigenvalues. We
define

$,(4)=[(dQ)p,(Q)s(2,0). (7.30)
We now show that, to leading order in 1/ N,

a_dgﬂ()l)
="

. (7.31)

Consider the probability conservation law that follows from the statistical variational principle that
defines the dynamics of our matrix models, eq. (7.8).

p(w):-;{g(md,@ﬁsg@} 2 [p(d,Qfﬁig’?)H. 7.3

ai ai

But using (7.9) and (7.10) we have that
Ald.0)=p,(d)p,(Q). (7.33)

We also have, by the same assumptions, since a thermal distribution is stationary and has no current
velocity,

V“U(Q):lmzo(lm). (7.34)
u 80,

Thus, we have, integrating over the Q’s,

)=~ )3 a0, (@)sta.0) |+ 0m). 039

To leading order we can replace everywhere the dependence on d, with dependence on A, since
the terms by which they differ are also higher order in 1/ N . Thus we have

N 55,(4)
p0--12 (pdu)—% jm(mv). (7136)

But by (7.26) we must have

DR
oA C

ai

Pa (l): -
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This establishes eq. (7.31). With this result we have the key relation that,

(v2+u2):{ ! {‘Sﬂ(’”jl”Vﬁ(&“pﬂ(’ujz}. (7.38)

(b? +57)=

(SRR
(Y

2l O 2 S

We also define

&,00))  uw? )
Eo= IdeQ(Q{i( géf)J +£2 Tr[Q,Q]} (739)

and

Lo 3k -4 =[aop, (@™ (2.0). (7.40)

aij

We can estimate that E, =TN (N=1)/4~ Nuw" so this is a divergent constant in the limit. The

result is

1lp,.8.T=[at[dAlp,(2.1)S, ~H (S,.p,.T)| (7.41)

where, the effective Hamiltonian for the eigenvalues is

2

L&, (1)

Hﬂ(Sﬂnp}nT):pd(ﬂ) E,+ £

2
pvi(Snp, (A |, #% (e_ 2¥ | 740
P +2(5z;' P52 -aT | 0

aij

where Eé = E, + NuC contains both infinite constants. The resulting equations of motion are

(s,
E +S,+—| —4 + AN - v U ™™™ =0 (7.43

aij

and the current conservation equation

- 1 ai
p1=—;a £,0,8,). (7.44)

The so-called “quantum potential” is given by

P

2
Slnp, (1) 1 ; . 2
[ wanmm =,UV2 (—j J +—aai‘0 “Inp, ) =—uv, ——=V-=.p (ﬂ) (7.45)
l{ o P ! 2 "pi(4) !

These we recognize as the real and imaginary parts of Schroedinger equation, when we write

W(A,t)=+/p,e*'" (7.46)
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with

dt3/2
/] =uv,= IUC()W . (747)

So, finally, we have in the limit N — oo,

L dY(A) | w8 Q] . -
in = _{ " 5(/1?)2+ : azij(/i, /lj)z+EQ:|‘P(/l,t). (7.48)

Finally, we can show that the conserved energy of the original theory splits into two pieces,
H=H"+E, (7.49)

where

v (g o0 MO (e g
H —jdl‘l{ 2ﬂ5(/1?)2+ : azij(/i, zj)z}w. (7.50)

Since E'Q is an infinite constant the result is that H* , which is the quantum mechanical energy, is

conserved as N — oo. We can then renormalize the wave-functional so that

W (4)=e"""p(2). (7.51)

r

Finally, we note that as Qf, =1/ N the eigenvalues become free in the limit N — c. Thus, when
N — oo the probabilities evolve according to the free Schroedinger equation

2 2
" d\y,(,z,t){_ )

— P (A,). (7.52
di 2#5(&?)2:] r( 1). ( )

Furthermore, from eqs. (7.43) and (7.50) we can also write eq. (7.49) as:

v? pﬂ(ﬂ') _Sl +

— R 6 ,UQZ @ 2a )\ 2
H=[dP|-——— LN (A -2 ——
J. |: 2,11 5(2;1)24_ 2 ;( 1 j):|l//+:uvl ,01(/1)

(S (e
2;1( S j ) Z(ﬂz ﬂj)z. (7.53)

aij

8. On some equations concerning the quantum supergravity and the role of a ‘“free”
vacuum in loop quantum gravity. [8]

Now we will consider mainly N =1 supergravity. This can be formulated in chiral variables which
extend the Ashtekar-Sen variables of general relativity. In this formulation, the canonical variables

are the left handed su(2) spin connection A and its super-partner spin-3/2 field y”. These fit
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together into a connection field of the super-Lie algebra 0sp(l|2). We thus define the graded

connection:
A,=AJ +y!0, 8.1

where « is the spatial index. If E and 7% are momenta of A’ and y respectively, we can define
the graded momentum as:
E=EJ + 10", (8.2)

The constraints that generate local gauge transformations can then be expressed as

G =DE +——r'w " =0. (8.3)

V2

The left and right handed supersymmetry transformations are generated by,
L,=D,r; _igEiaTxﬁWuB =0 (84
R = "B E'ol (- 4iD i ++2ge,,27)=0, (8.5)

where the cosmological constant is given by A =-g>. The diffeomorphism and Hamiltonian
constraints can be derived by taking the Poisson brackets of (8.4) and (8.5). These may be written
simply in terms of the fundamental representation of 0sp(l|2), which is 3 dimensional. The super-

Lie algebra 0sp(l|2) is then generated by five 3x3 matrices G,(I =1...5). Using them we can
define
Al=(al), g0 g=(E.m) ¢

where I=(i,A) labels the five generators of 0sp(1|2). Then the first two constraints can be
combined into one 0sp(l|2) Gauss constraint:

D& =0 (8.8)
while the last one combines with the Hamiltonian constraint to give:
'S F, —ig’€, 55" =0, (89)
where F,, is the curvature of the super connection A :
F,=dA,+[A,.A,] (8.10)

The loop representation for supergravity in the chiral representation can be constructed in terms of
0sp(1|2) Wilson loops. These are defined in terms of the super-trace taken in the fundamental 3

dimensional representation of 0sp(1|2).

)= StrPexp@ydsAdy“)E SorU,(A). (8.11)
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These Wilson loop states are subject to additional relations arising from intersections of loops.
These are solved completely by the introduction of the spin network basis, which are complete and

orthogonal. We can construct the loop-momentum variables by inserting the 0sp(1|2) invariant

momentum & into the Wilson loops:
T'lal(s)=srlv, () (als))]. 3.12)

It is straightforward to show that the T[}/] and T¢ [a](s) form a closed algebra under Poisson

brackets, which we will call the N =1 super-loop algebra. We will also need to describe operators
quadratic in the conjugate momenta, which in the loop representation are formed by inserting two
momenta in the loop trace,

[a(s.1) = srlU (5,0)E (@)U, (1,2 (@ds))]. (8.13)
The higher order loop operators are similarly defined as
g [a](s,t,...v) = Str[Ua (s,1)E (a(t))Ua (t,u)& ((Z(u))...Ua (v, )& (a’(s))] (8.14)

The supersymmetric extension of the Chern-Simons state may be formed from the Chern-Simons
form of the superconnection A,

v (A, )= exp{i | d3xSTr(A AF - %A AAA Aﬂ . (8.15)

This state is an exact solution to all the quantum constraints. Like the ordinary Chern-Simons state
it also has a semiclassical interpretation as the ground state associated with DeSitter or Anti-
DeSitter spacetime.

Now, we want to describe some equations concerning the role of a “free” vacuum in Loop Quantum
Gravity.

The classical Ashtekar-Barbero variables are obtained by the transformation

A =T+ K, (8.16)
where £ is the Immirzi parameter and T [E ] denotes the spin connection as a function of E:

r'[E]= %g"kaf b, —3,E + E<E!2,E! |+ ie"f" {25,{ abTE —E] BTE} . (8.17)

Here, we take S to be real. The transformation leads to the following Poisson brackets

{Er (). 4) 0= 1{E ) [EN )+ K,f(y)}=%5f@j5(z—z), (8.18)

or in terms of Fourier modes
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{E(k), 47" (k }ﬁ"a’wa“ (8.19)

The linearization of (8.16) induces a canonical transformation on the reduced variables:

AY =g 9.+ BK” . (8.20)

acd

One may check that A% is again symmetric, transverse and of constant trace. In the quantum
theory, we introduce the new operator

A =€,,0.85 + PR, (8.21)

Up to an A -dependent phase (which we choose to be zero), eigenstates of A have the form

%[e,-(k)]:NeXp[%Z(A*(k)ei(k)—kef(k)ez(k)) 622

k

Within the quantum theory, the canonical transformation (8.20) is implemented by a unitary map

A

',V[e] - e"f[“]/hgy[e], O —s el Hpiflelin ’

that turns the A, -operator into a pure functional derivative in e, i.e.

Ak) > —in P O (823

2 0¢j (k)

We see from (8.22) that the required factor is

The transformed vacuum reads

e (= Nexpl 3 0l ) 2 01 520

k

In terms of reduced Fourier components, it takes the form
Wl (k)] = N exp{——Z{w(k) 0 (ke (k)+%e;if’*(k)emk & (k)ﬂ. (8.25)

By doing a Gaussian integration, we can transform (8.24) to the A -representation:
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hx| p @, 1+ B =k Jij

1 1 3/4 (. 2i
P[4, (k)] = Nexp{— —{ —AN0)+ —22—(4 (k)4 (k) + = A (k)A, (ls)ﬂ} . (8.26)
Hence, the canonically transformed and regularized vacuum becomes

Wl (k)] = Nex{_h—z(w(k) (ke "”d(/s)+%e£2d*(k) wike e;;f’(/g)ﬂ. (8.27)

k<A

red
ab

In the regularized scheme, we consider the position space field e ()_c) as a function

red Z lkx rLd k (828)

ub
k<A

red

of the Fourier modes e, (k ) Hence, we can write the state functional also as

ql[ered _] Nexp[——“d xjd A (E y)ercd (x nd __Id xe (x)e, 0, ered(_)ﬂ, (8.29)

where the kernel W, is defined by

W, (ey)=— 3" afk). (8.30)

k<A

Now, we simplify the state (8.29) by dropping the f-dependent phase factor:

Wle (0)]= NeXp{——Id x[d?yw, (x. y e’ (x) ""(z)}- (8.31)

Furthermore, we extend the functional (8.31) to the full configuration space. The most simple
possibility would be to use the projection map

e (k)= P (k)e,(k), (8.32)

and define the extended state by the pull-back, i.e.
“ 1
lPe)ct [El (k)] = Nexp{— h_K_J.da'xJ.dayWA (E?XXPe)ab (E)(Pe)ab (z):l . (833)
Now, we could drop the projectors in (8.33) and define the state as

v, [E ()= Nexp[——fd xfd’yw, (e, v, (e (y)} (8.34)

We replace the triad fluctuations e, (x) in (8.34) by the fluctuation of the densitized inverse metric
g (x):
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eul6) 537" ()-6")= B IE! (- 6"). (835)

The triad fields are 1-densitites, so g“’(x) has density weight 2. Since E; contains only modes up

to k= A, we can write §*’(x) also in a smeared form
gV =[x E (x)5,(x - x)E (x), (8.36)

where the smearing is done with the regularized delta function

5, (x)= é et (8.37)

k<A

The new state ¥, , is defined as

[ (k)] = Nexp{——jd x[dyw, (e y N[ @ B¢ (25, (s~ x)E (x) - 5)

<([a*y EX()8, (- y)E () -6 838)

This state is almost gauge-invariant, but not completely, due to the smearing at the cutoff scale.
By a Gaussian integration, we transform the state (8.38) to the A -representation:

v, [4)®) NJDEexp{—;T”ﬁzAf*(k)E,.aog)jxexp[—ﬁjdaxjdaymz)

k<A

(v £ ()6, (e 208! ()= 67 ([ @y B ()6, - y)Er (v) - 67 )] 8.39)

Using that
2l a%* a 2 2 L a 2l a a
foee| ~ 2> 4 @) | TT T decto) e - 25 3 a:0e: )
hip (= k<Ak'>0 i=1 a=l r=0 hif =
is the delta functional on the connection, and that the operator Ei‘" acts like
KB kK6 d
2 94 (k)

we can write the entire expression (8.39) as

w4 k)= Nexp[—%Jd%fd*‘yWAQ,z)(Id*‘x'Ef(z)c&(zc—z‘)Ef’@)—5‘”’)
x([ay Ex(0)8. (v - y)EN ()-8 JB(a). 8.40)

where

1 A
— Y E*E (k). (8.41
\/_ i (_) ( )
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This form of the state is similar to Thiemann’s general complexifier form for coherent states.

Now, we have the following action
[&'x Ef ()8, (x - x)E! (x)S = 28" ()5, (8.42)

and the delta functional

5.(A)= > 5(0)5°(4). (8.43)

ScTj

With the action (8.42) and the replacement of the delta functional by (8.43), we obtain the state

Y=NY§ (O)exp{— ﬁ [a*x[d?yw, (x= y)i (x)ig” (X)}S" “.(8.44)

ScTy

Now we make the transition from (8.44) to a gauge-invariant state in H,. Gauge-averaging simply
yields
1 T a Ta *
=Ny S(O)exp{—w [ax[a*yw, (x- X)hsb(g)hsb(z)}S , (8.45)

ScTy

where the sum ranges over all gauge-invariant spin networks S on T, . We introduce the coefficient

EANES S(O)exp[— HIK‘J.LFXJ. d’yw, (Lc - X)ﬁsu” ()_c)ﬁsd” (X)} , (8.46)

and write this more compactly as
P, =N D W (S)S". (8.47)

ScTy

One can think of ¥, (S) as the wave-function of Y, in the § -representation.

From the equation (8.45), including a phase factor, if we were using a hypercubic lattice, we would
simply get the following wave-function:

w,(5)= s(o)exp[_ A fafasw e i R )

+ ’KﬂZﬁsah(v)g“fdvﬁg”(v)}. (8.48)

4h

With regard the graviton states, we take the Schrodinger representation of linearized extended ADM
gravity. For k # 0, we define creation and annihilation operators such that

la,(k).a\ (k)] = 6,6, (8.49)

With regard the one-graviton state with polarization i and momentum k, we can write this also
with tensors:
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w )2 e e el 650

The canonical transformation to Ashtekar-Barbero variables adds the phase factor

exp[;T"ﬂ;ke:(@ez(@]. 1)

Next we extend the functional from the reduced to the full configuration space. This gives us
v [2(0)]= 2./ e ()= [d*xe™ e, (x)¥[E (k)] (852)
ik =i \& hK i \= \/V a

We replace e, (x) by %( “(x)—6“) and arrive at

Wl W)= Lot L faset (- Wl ). 59

We bring this into the complexifier form, make the transition to Hand finally apply the gauge
projector. The result is the state

¥, =N} 50 \/7 h[‘”(k)xexp{——jd x[d?yw, (x = y )" ()i (y )+pt}S* (8.54)

SCT

in the gauge-invariant Hilbert space H, (here p, is the phase term). We define an associated wave-
function

W (5) = S(O)] e (k)i (k)x exp{—L [a*x[a?yw,(x - y)rs"(y)+ p,}, (8.55)
= dhx = =

hx
and write the state as
P, =N>Y P, (5)S". (856)

ScTy

In the same way, we construct multiply excited states. Denote the polarizations and momenta of the
gravitons by i ,k,;...;iy, k. Then, the N-graviton state in H, becomes

lPilykllwiiN Ky = Nil,kl;m;i,\,,kN letl kyesiy ok oy (S)S* s (857)

Til!kﬁijJiN (S):: S(O)(H\/; la(k )hla*( n)leXp{——Jd XJ.d YW, (_ ) )_c)h (X)—l- pt:l

(8.58)
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The normalization factor N, , . .., ~depends on the excitation number of each mode.

The basic idea of this approach is to start from the free Fock vacuum of linearized gravity and
construct from it a state ‘¥, that could play the role of the “free” vacuum in loop quantum gravity.

The state we get is a superposition
P, =N P, (S)S". (859

ScTy

The sum ranges over all spin networks § whose graph lies on the dual complex T, of the
triangulation. The coefficients ¥, (S) are given by

¥ (S)= S(O)exp{—ﬁ [a'x] &> yW, (x— y)ig” ()i (y)+ p,} . (8.60)

9. On some equations concerning the unifying role of equivariant cohomology in the
Topological Field Theories. [9]

Now, we describe the Yang-Mills equations and action. Let X, be a spacetime of dimension 7,

G, ametriconit. P— X, aprincipal G bundle. Let A(P) be the space of all connections on P .

This space is infinite-dimensional, and is the space of gauge fields in nonabelian gauge theory. We
would like to write an action on A(P) which is gauge invariant.

To get an action consider * F . This is an (n—2)—form with values in the Lie algebra. Let “Tr” be
an invariant form on the Lie algebra — for example the ordinary trace in the fundamental
representation for SU(N). The gauge-invariant action is

Iy [A]zﬁj;h TrF A*F =$J‘ZT de‘/detGﬂvGMGVpTrFﬂvF,ip . 9.1

The equations of motion and Bianchi identities are:
D,F =dF + [A,F ]: 0 Bianchiidentity D, *F =0 Equations of motion. (9.2)
In local coordinates (9.2) is:

D,F,;=0 D"F,=0. (9.3)

Consider quantizing the theory on a cylinder with periodic spatial coordinate x of period L. With
the gauge choice A, =0, we may characterize the Hilbert space as follows. The constraint obtained

from varying A, in the Yang-Mills action (9.1) is
DF,=0. (94)

In canonical quantization we must impose the constraint (9.4) on wavefunctions ‘P[Af (x)] Let T,

be an orthonormal (ON) basis of g, with structure constants [T.,7,]= f5T.. Then the Gauss law
constraint becomes:
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5
A (x)

V- E¥= (al _° . fLAY (x)

54°() j‘P =0, (9.5)

which is solved by wavefunctionals of the form:
L
wlar (x)]= ‘P[P eXp[ ) dxAlﬂ- 9.6)

Demanding invariance under x-independent gauge transformations shows that W only depends on

the conjugacy class of U = Pexp .[oLdXAl . Hence, we conclude that: the Hilbert space of states is

the space of I”-class functions on G . The inner product will be
(flr)=],duf; W)L W)

where dU is the Haar measure normalized to give volume one.
A form Ue W(g )® Q(V),, will be called a universal Thom form (in the Weil model) if it

=S

satisfies: (1) U 1is basic; (i) QU =0, where Q =d,, +d ; (iii) JVU =1.

In order to write a manifestly closed expression for U we enlarge the equivariant cohomology
complex to:

wig, Jeo (v)eamv:) ©.7)

and consider the following differential

0,=d,®1®1+1®d®1+1®1®S5 (9.8)

d,, is the Weil differential, while J is the de Rham differential in ITV" . Explicitly:

0 1
S Pa|_ P '
T, 0 OA7,
The grading, or ghost numbers of p and 7 are —1 and O, respectively. Consider the “gauge
fermion”

w

. 1 1 . . "
¥ =i(p.3)+ - (0.60) — (p.7), € wig Jea v)ea mv) 9.9
which in orthonormal coordinates reads:
Y=- (ix“—lﬁab +l7r j (9.10)
pa 4 pb 4 a |° °

Expanding the action and doing the Gaussian integral on 7 leads to the third representation:

2m dﬂ- dp (
U= e Sha ™) (9,11
.[v*xnv*g /27[ /271- ( )
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The advantage of this representation is that
jQW (.)=(d+d, )j(...) (9.12)

which follows from the simple observation that

azxai (9.13)
ap,

and hence Iﬁ(...):O by properties of the Berezin integral over p. Since the integrand is Q,, -
closed, it immediately follows from (9.12) that U is closed in W(gs)® Q*(V). Thus, we have
finally proven that U satisfies criteria (i), (ii) and (iii) and hence U is a universal Thom form.

A universal Thom form U, e (S (gj)@ Q(V))C can also be constructed in the Cartan model of
equivariant cohomology. U., is obtained by a differential on the complex

slg, )o@ (V)@ (v°) defined by:

_ P (0 1yp,
Qcx=ld—1,)x, Q{”aj—(_% OJ(EJ (9.14)

We then may take the much simpler gauge fermion:

1 o it in 1Y 1 .
Uc,t = (271_)2171 J.V*xl'lv* d]Z'dpeQC .t . = (Hj J.HV* deXp|:_ Z(X,X)V + l<,0, dX> + [(pv ¢p)v* } :

9.15)

It is important that we note that the Cartan model is used in topological gauge theories and string
theories.

One application of the nonabelian localization theorem is a formula for the partition function of
YM, . The key observation is that we can write the YM, partition function as

1 N i 1 1 )
Zpi ==L 49 exp{— [ yr LT{W — oy wﬂ - {e fiug=Tro (P)}} 9.16)

where € is related to the gauge coupling by
e’ =27’ (9.17)

and [, = dAdy is the usual superspace measure. (9.16) coincides with the partition function of the
theory because the integral over ¥ is just such as to give the symplectic volume element on A :

n

Iﬂ expLJ.Tr ll///\l// Hw’
ATAT a4 (2 n!

(9.18)
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The remaining action then coincides with the following equation
r=-1 | iTr(0F )+~ uTr g
2 2 '

(9.16) is a special case of integration of equivariant differential forms for Q. (A).

The Supersymmetric Quantum Mechanics (SQM) is an example of a topological field theory.
Let X be a Riemannian manifold with metric G,,. The degrees of freedom of supersymmetric

quantum mechanics on X, SOM(X), consist of a coordinate ¢“(r) on X and fermionic
coordinates W*(¢t) and W*(¢), which together may be thought of as components of a superfield:

D" =" + OF* + F* +66F*. (9.19)

Here F* is an auxiliary field. The action of SQM (X)) is given by:
Loy = j dt(GﬂVs"sV -i¥,D,¥" —%R”VpﬁﬂGW'Wv,ww) (9.20)

where

s* =¢" +G"OW, DW*=VW¥+G"(V,V W, V¥*= %qfﬂ +Thg" PP (9.21)

and W is a real-valued function on X .
The theory is supersymmetric and has a standard superspace construction. If we make the field
redefinition

F,=2G, (F +4)+3,G, %% (9.22)
the usual supersymmetry transformations take the simple form:

Q¢" =w*, Q¥,=F,, Q¥ =0, QF,=0. (9.23)

Evidently Q> =0. SQM provides a simple example of a topological field theory. The nilpotent
fermionic symmetry Q can be interpreted as a BRST' operator. Moreover, (9.20), is derived from a
Q -exact action:

w | 1 W T WV 1 V=
Iigw = | dt{Q,‘I’ﬂ(zs”+ZG““PKFM‘P G F)} (9.24)

After integrating out F,, to get

' We remember that the BRST invariance, is a nilpotent symmetry of Faddeev-Popov gauge-fixed theories, which
encodes the information container in the original gauge symmetry. Furthermore, we remember that the Faddeev-Popov
determinant, is the Jacobian determinant arising from the reduction of a gauge-invariant functional integral to an
integral over a gauge slice. While, the Faddeev-Popov ghosts are the wrong-statistics quantum fields used to give a
functional integral representation of the Faddeev-Popov determinant.
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— . , 1, —
F,= —2(1Gﬂ‘,s —Erﬂﬂ\{ﬂ\gj (9.25)

we recover (9.20). Topological invariance implies that the partition function
Zogy =[ e (9.26)

is a topological invariant, i.e. independent of any einbein one puts on the one-dimensional space,
and, if X is compact, is independent of W .

We will apply the MQ formalism to the bundle E =T LX . The Riemannian geometry of LX is
almost identical to that of X , with some extra delta functions entering expressions when written in
terms of local coordinates. The Levi-Civita connection, V, on LX is just the pullback connection
from X . It acts on a vector field

V= § dtv*(p,t)

99" (1)
to produce
oV*“(¢.1,) 2 9 P
VV = EANY - ®
v =faras] 2Ot oty )| 2 00
where {%} and {J @ (t)} are to be viewed as bases of T LX and T'LX , respectively.

Having specified our connection we choose a section of E to be:

[s(@)} (¢) =" (e)+ G*0,W(r). (9.27)

An easy calculation shows that

Vs = failv, e + (V”VlW)‘P’l]%. (9.28)

Identifying coordinates for the dual bundle TTE" as p — Wﬂ (t), we see that ( p,Vs> corresponds to

fermion bilinear terms in (9.20). Thus the SQM action (9.20) coincides exactly with the MQ
formula. Moreover, the expression (9.24) for the action coincides with the gauge fermion (9.10).
The differential is:

0 — 0

+F,(t)—=—

o) ")

0 =§dt WA (r)

The index of the Dirac operator is obtained by reducing the supersymmetry to N = % , by imposing

the condition
PH = =P

From the Bianchi identity it follows that the curvature term in / disappears, leaving
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:M% jdz{——G P+ G ‘P"D‘PV}

There is one remaining supersymmetry and the supercharge Q for this model is related to the Dirac
operator, iD, on the target space. Evaluating the path integral of this theory one finds

ind iD = jM AM)  (9.29)

where A(M ) is the A-roof genus
1 1

—dimM
2

—X

A a 1 1

A(M): H 2 _1__pl(M) (7p1 4P2XM . (9.30)
a=1 sinh;xa 24 5760

Hence, the eq. (9.29) can be rewritten also

ldlmM 1
1 1
d iD= —<% _ = 1-—pM 7 M)+... (9.30b
ind i _[ H smh . 24]71( ) 5760( pl pz)( ) ( )
2

Here x, label the eigenvalues of the skew-diagonalized form %Rab and p, (M) are the Pontryagin
T

classes. Taking the tensor product of the Dirac complex with a vector bundle, E, one obtains the
twisted Dirac complex, whose index may be computed from the following SQM action

1= dt{ { ¢4 — ‘P"D 111} +iC; (¢, - A () T C,)- 2\11”\11 FACTIC, }
where A, is the connection on the associated bundle (viewed here as an external gauge field) and

the C; form a Clifford algebra in the representation of G generated by 7} .

Evaluating the partition function, one finds

indiD, = IM ch(F)AAM) (9.31)
where ch(F) is the Chern character
ch(F)= Trexple =rank E + cl(F)+%(clz —26,F)+... (9.32)
V4

and the ¢, (F) are the Chern classes of F . Hence the eq. (9.31) can be rewritten

ldlmM lx
1 1
lndlD J. Tl"esz—F/\ H E l—apl(M) 5760(7pl 4p2XM (932]3)
2
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The Cartan representation of the MQ form in (9.15) becomes:
p =1 [ a*xsTraliF, ~ i) (933)
e

and

0¥, = ei [d'x gt (F, —tH)-Try(i(D,y), +lp. 2]} (939

Integrating out H gives

H=—_F, (935
2t
yielding the Lagrangian:
e_12 j d'x\[g {— iTrFf —iTry" (D), + 12,10 21" )} . (9.36)

We now apply to the present case the following form

dimG
@, (P> M)= (Lj [ dadne®™: . w,=i(1.C'), e Q'(P).
27 8 g

Here, C' is a one-form with values in the Lie algebra Lie(G). From the following expression
Dir= (ijz'ﬂ): g‘”(avfﬂ + [AV,Tﬂ]+ FV’LQ): 0,
we see that it may be identified with
C'——#D, =y =—(D"y, | € Q'(A;Lie(G)) (9.37)

so that

= )= L 0, = L Do) 93

and hence

0%, = —e’—2 [ D, #y+ My #y}+ AD, + D,9). (9.39)

Combining the actions for projection and localization we recover Witten’s celebrated Lagrangian
for Donaldson theory

I, = e%fd ‘xfe {iTr(an:w,, + My,.w* 1+ D, % D)+ (— iTrFf 11z, D) +ilo. z“]]ﬂ :
(9.40)
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In the paper “Two Dimensional Gauge Theories Revisited” (Witten, 1992), Witten shows that the
cohomological theory with the following gauge fermion

zzthry/*sztjﬂTeraf

is equivalent to a theory with gauge fermion
Y=y +ij Tryd. (9.41)
Pt S

He then shows that the theory with gauge fermion (9.41) is equivalent to D =2 Donaldson theory

with the standard gauge fermion (9.38) + (9.33), up to terms of order = O(e_"/ "’2) for t - 0". The
difference comes about because the second term in (9.41) introduces new Q -fixed points.

The result is that the generator of intersection numbers on the moduli space of flat connections is
related to the physical partition function by

l J-DAexp{2 I duTrf } (2-2p) Z(dlmR)z 20 yalCy(R)ray) _

R

Vo
=<e”’+w0< ’>MN +0(e ™)), (9.42)

where M, is the moduli space of flat connections on X for G = SU (N).

10. On some possible mathematical connections. [10] [11]

Now, in this Section, we describe the various possible and interesting mathematical connections
that we have obtained, principally with the Hartle-Hawking wave-function but also with some
sectors of Number Theory (Riemann zeta function and Ramanujan’s modular equations) and with
the fundamental equation of Palumbo-Nardelli model.

We remember that the corresponding real Einstein-Hilbert action of the two minisuperspace models
of de Sitter type, with D =4 and D = 3 space-time dimensions, is:

S=— de\/_R 2A)+ jd’“\/_K (10.1)

- 167zG

With regard the de Sitter model in D = 3 dimensions, the p-adic Hartle-Hawking wave function is

A,(- 2N)Zp(_%+ VA coth(V+/2)

172
| 2

¥, (a)=]

N a’|, (10.2)
|v], <1 |N

while, with regard the de Sitter model in D = 4 dimensions, it is possible to obtain the p-adic Hartle-
Hawking wave function by the following equations:
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¥, ()=], A 87) p(—ﬂzTa

T ¢
T +(Ag-2)=+L |, (103
S et 2 T2y STJ (103

B AT (Ag 1 5
_ J.dex,}jp(qx)J. DT;{{— i +(T—5—2x jT} (10.4)

Now, we recall that Ramanujan have shown that the definite integral

© COSTUX _,,
¢w(t)= e m‘/xzdxy
0 cosh mx

can be evaluated in finite terms if w is any rational multiple of i. Furthermore, this integral can be
evaluated not only for these values but also for many other values of ¢ and w. Now we have

2
mw'

oo poo COS 27TX. — e * recoshmxw' _.2.
= 2I I £ cos mmxe ™ dxdz = I e ™ dx, (10.4a)
0 J0 cosh V74 AJw 0 cosh 7y

here w' stands for 1/w . It follows that

8,(t)= ﬁ e_gw-% (itw'). (10.4b)

Now, it is possible to obtain the 7z value utilizing the following expression

2
mTw

712'2

o COS 7AXW'

.y 1 "
()= e jo Coshﬂxe dxzﬁe 7. (iw'), (10.5)

cosm‘xw e
e '[ TX™w dx=¢vv(t),
\/_ 0 coshizx
L i)
2, — N
R 1 R
1 (=cosamw _o, COSTXW' a1
I SR o iy I " dx
Jw % coshmx Jw coshx
. j COSTUXW' _p2,
20 ——w o 2 -, ¢ d
e_m4 _ e ¢ ¢W,(ZIW) . logﬂTW _ 0 cosh mx .
o COSTIXW' 2w o 4 = ’
IO cosh mx ¢ e 9, (iw)
© COSTUXW' 2,
A mwdx 1
70 = 4| antilog =—COShzx . (106)
L w
e * @, (iw)

With regard the number 24, from the following Ramanujan’s modular equation
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24 [\/(10“1\/2} \/[10+7\/2H
r=——log| || ——— |+ || ——— ||,
142 4 4

for the eq. (10.6), we have that

75 75 r COS ZIXW' oY gy
24 log 10+11v2 N 10+7+/2 — 4 antilog o Coszhﬂx _ 21 :
142 4 4 L *w'
e ¢ ¢W-(ifW')
o COS TXW' o gy
4| antilog ’ coszhﬂ'x . 142
LA trw'
e 4 ¢w'(ilw')

- . 10.7)
1 [\/(10“1\/5} \/(10+7\/§ﬂ
o8 s " 4

When a string moves in space-time by splitting and recombining, a large number of mathematical
identities must be satisfied. These are the identities of Ramanujan’s modular function (Ramanujan’
modular equations).

The Ramanujan function, has 24 “modes” that correspond to the physical vibrations of a bosonic
string. When the Ramanujan function is generalized, 24 is replaced by 8 (8 + 2 = 10), hence, has 8
“modes” that correspond to the physical vibrations of a superstring.

With regard the fundamental equation of Palumbo-Nardelli model, we have that:

26 Hp VO ! i =
o] e L6, 0, o)L a,,¢av¢}

oo

j jdlo G)"e "2¢[R+48 CIDB“CD——‘H‘ ——T (7 )} (10.8)

()

Hence, the following connections with the equations (10.3), (10.4), (10.7) and (10.8):

A,(-87) 273 T ¢°
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0

With regard the Section 1, if we take the eqs. (1.16) and (1.19), we note that are possible the
following connections:
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0

(Note that 576 =24x24 and 1152=2x24x24)
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810
With regard the eq. (1.13b), we have the following connection with some expressions concerning

1
2k,

the Riemann zeta function:

o 6
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With regard the Section 2, for the eq. (2.1), we have the following connection with the egs. (10.3),
(10.7) and (10.8):

ol A,(=8T) (21’ T g
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while, for the eq. (2.11), we have the following connection with the eq. (1.2) and the solutions (1.5)
of the Section 1:

4| antilog
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(10.13b)

With regard the Section 3, for the eq. (3.17), we have the following connection with the eq. (1.2):
B2+ P} —48expl-2430 )k w(Q,.8)=0=

= {4(81( -9 )+%(aayc — 0, )+ axe + By, —l}w(xc,yc): 0. (10.14)

For the eq. (3.26), we have the following connection with the eqgs. (10.3), (10.7) and with the
fundamental equation of Palumbo-Nardelli model (10.8):
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With regard the Section 4, the eq. (4.20) can be connected with the eqs. (10.3), (10.7) and (10.8),
obtaining:
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The eq. (4.33), can be connected with the (10.8), obtaining:
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With regard the Section 5, the eq. (5.12) can be connected with the eq. (1.2), obtaining:
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The eq. (5.13), can be connected with the eq. (10.2), obtaining:
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With regard the Section 6, for the eq. (6.2), we have the following possible connection with the eq.

(10.2):
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With regard the Section 7, the eq. (7.53) can be connected with the eqs. (10.3), (10.7) and (10.8)
obtaining:
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With regard the Section 8, the egs. (8.15), (8.31), (8.38), (8.40), (8.46), (8.48), (8.58) and (8.60),
can be connected with the eq. (10.2). Hence, we obtain, for example:

i 1
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In conclusion, with regard the Section 9, the egs. (9.30) and (9.30b) can be related with the egs.
(10.7) and (10.8), obtaining the following connections:
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While, the eqs. (9.33)-(9.34), (9.38)-(9.39) and (9.40), can be connected with the eqs. (10.3), (10.7)
and (10.8), obtaining the following interesting connections:
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