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1 Introduction

From the beginning of the fractional calculus, namely, on September 30, 1695, in a letter written
by l’Hospital to his friend Leibniz, in which the meaning of a middle order derivative is proposed
and discussed [30, 31, 32]. Leibniz’s response to his friend, coupled with the contribution of
countless brilliant mathematicians such as Lagrange, Laplace, Fourier, Liouville, among others,
led to the first definitions of non integer orders fractional derivatives and integrals, that at the
end of the nineteenth century, due primarily to the definitions proposed by Riemann-Liouville
and Grünwald–Letnikov, seemed complete [25, 29, 51]. From then on, innumerable definitions of
fractional derivatives and integrals were introduced by numerous researchers and scientists, each
one with its own importance and relevance. Thus, countless incredible applications in various
fields, such as mechanics, population dynamics, medicine, physics, engineering, among others,
have been gaining strength over the years, making the theory well-established [34, 36, 49, 50].
But, an important question arise how do you know, what is the best fractional derivative to
look at data for a given problem? One way to overcome this problem is to propose more general
fractional derivatives and integrals, where the existing ones are particular cases. Then, in 2018,
Sousa and Oliveira [41], introduced the so-called ψ-Hilfer fractional derivative, which contains
as a particular case a wide class of fractional derivatives. To complete the ψ-Hilfer fractional
derivative theory, in 2019, the same authors [42] introduced the two-part Leibniz-type rule,
which, depending on the chosen parameter, gives the Leibniz rule and the Leibniz-type rule for
their particular cases.

Also, another question, why study fractional differential equations? What are the advan-
tages of the results obtained from them? In recent years, investigating fractional differential
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equations has attracted a great deal of attention from several researchers, for better describing
physical phenomena and providing results more consistent with the reality compared to integer
order differential equations [25, 27, 28, 29, 36, 43, 46, 47, 49]. On the other hand, investi-
gating the existence, uniqueness, stability of Ulam-Hyers, attractivity, continuous dependence
on data, among others, of fractional differential equations has been a very attractive field for
researchers from various fields, specifically for mathematicians. To study these numerous so-
lution properties, useful tools are needed, namely: fixed point theorem, Gronwall inequality,
Arzelà-Ascoli theorem, Laplace transform, Fourier transform, measure of non compactness and
others [2, 3, 4, 6, 12, 15, 16, 48, 52, 53].

The Faedo-Galerkin approach has been used by many researchers to investigate more regular
solutions in fractional differential equations [11, 7, 23, 37, 38]. This approach can be used
within a variational formulation to provide solutions of possibly weaker equations [17]. In this
regard, in 2010 Muslim [40] did important work on the global existence and uniqueness of mild
solutions of the fractional order integral equation in Banach space and also discussed these
same properties in Hilbert separable space. In addition, through the Faedo-Galerkin approach,
the approximate solution convergence was investigated. In 2013, Lizama and N’Guérékata [26]
approached the existence of mild solutions for the fractional differential equation with nonlocal
conditions and investigated the asymptotic behavior of mild solutions for abstract fractional
relaxation equations towards the Caputo fractional derivative. On the other hand, we suggest
other work on the existence and uniqueness of mild solutions for semilinear nonlocal fractional
Cauchy problem, as discussed by Ghour and Omari [1]. In the literature there are numerous
works on interesting properties of solutions of fractional differential equations, we refer some
articles for a more detailed reading [14, 18, 19, 35, 44, 45].

On the other hand, the theme Faedo-Galerkin approximation, in fact, continues to be the
subject of study by a class of researchers [6, 20, 21, 22, 24]. In 2016, Chaddha et al. [8] using
the semi-group theory and the Banach fixed point theorem considered an impulsive fractional
differential equation structured over a separable Hilbert space, and investigated the existence
and uniqueness of solutions for each approximate integral equation. Also, using Faedo-Galerkin
approximation the solution was investigated. In the same year, Chadha and Pandey [10],
devoted a work on the Faedo-Galerkin approximation of the solution to a nonlocal neutral
fractional differential equation with into separable Hilbert space.

Finally, in 2019, an interesting and important work on Faedo-Galerkin approximate solu-
tions of a neutral stochastic finite delay fractional differential equation, performed by Chadha
et al. [9], comes to highlight the importance of the theme in the academic community. In this
paper, using Banach’s fixed point theorem and semi group theory, the authors investigated the
existence and uniqueness of mild solutions of a class of neutral stochastic fractional differential
equations. Also, they showed the convergence of solutions using Faedo-Galerkin approxima-
tions. Other works on Faedo-Galerkin approximation can be found at [11, 13, 14, 37, 40].
Although there is a range of relevant and important work published so far, there are still many
ways to go when it comes to mild solutions of fractional differential equations. We note that,
the investigation of a mild solution to a fractional differential equation towards the ψ-Hilfer
fractional derivative, as some properties and tools are still under discussion. Thus, through the
work commented above, we were motivated to propose an investigation of the existence, unique-
ness and convergence for a class of solutions of the nonlocal fractional functional differential
equations, in order to contribute with new results that can be useful for future research.

So, we consider a class of abstract fractional functional differential equation with nonlocal
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condition in a separable Hilbert space H
HDµ,ν

0+ u(t) +Au(t) = f(t, u(t), u(b(t))), t ∈ (0, T0]

I1−γ0+ u(0) +

p∑
k=1

CkI
1−γ
0+ u(tk) = u0

(1.1)

where HDµ,ν
0+ (·) is the Hilfer fractional derivative of order 0 < µ ≤ 1 and type 0 ≤ ν ≤ 1 [41],

I1−γ0+ (·) is the Riemann-Liouville fractional integral of order 1−γ (γ = µ+ν(1−µ), 0 ≤ γ ≤ 1)
[41], 0 < t1 < · · · < tp ≤ T0, I = [0, T0], −A be the infinitesimal generator of a (S(t))t≥0
semigroup of bounded linear operators on a separable Hilbert space H and the nonlinear
application f : [0, T0]×H ×H →H , b ∈ C1−γ(I, I), where C1−γ(I, I) the weighted space of
all continuous functions from I into I, ck 6= 0 for all k = 1, 2, 3, . . . , p, p ∈ N and u0 ∈H .

The extension to the scenario of Hilfer fractional derivative is not immediate and the ev-
idence has important non trivial parts, which are worth highlighting and each step needs to
be verified. In this sense, we will present some points that motivated to investigate a nonlocal
fractional functional differential equation.

1. In semi group theory, we have T (ts) = T (t)T (s). However, when this issue is addressed
in the fractional context, such a property is not valid. For example, the case we are
investigating here, Eµ(ts) 6= Eµ(t)Eµ(s), where Eµ(t), is the one parameter Mittag-Leffler
function;

2. We present a class of an abstract fractional functional differential equations in the sense
of Hilfer fractional derivative with nonlocal condition in a separable Hilbert space H and
its respective class of mild solutions. In this sense, we have that from the choice of the
limits ν → 1 and ν → 0, we have the problems with their respective solutions, for the
Caputo and Riemann-Liouville fractional derivatives, respectively. The special case is the
integer case when we choose µ = 1;

3. Using Faedo-Galerkin approximation and Gronwall inequality, the existence, uniqueness
and convergence of approximation for a class of mild solutions to abstract fractional
functional differential equation will be investigated. As in item 2, here we can also obtain
that all the results investigated here are also valid for their respective particular cases,
since the properties are retained.

The article is organized as follows: In section 2, we present the idea of some function spaces
with their respective norms, fundamental in the course of the work. In this sense, concepts of
Riemann-Liouville fractional integral with respect to another function, the ψ-Hilfer fractional
derivative, the one and two parameter Mittag-Leffler functions, and Gronwall inequality, are
presented. To finish the section, some conditions about the Mittag-Leffler function, and the f
function are discussed, and we show that the investigated problem is well-defined. In section 3,
we will investigate the main results of the paper, approximation of solutions and convergence,
i.e., we present results on existence and uniqueness of mild solutions for a class of abstract
fractional functional differential equations. Finally, in section 4, we will use Galerkin approach
to ensure the uniqueness of solutions.

2 Preliminaries

In this section, we present the spaces and their respective norms that will be very important
for the elaboration of this article. In this sense, we introduce concepts of Riemann-Liouville
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fractional integral with respect to another function and the ψ-Hilfer fractional derivative. We
discuss the mild solution of the nonlocal functional fractional differential equation with respect
to the Mittag-Leffler functions.

Let I = [0, T0] (0 < T0 < ∞) be a finite interval and let C([0, T0],H ) := CT0 a Banach
space of all continuous functions with norm given by [44, 46, 47]

‖Ψ‖C[0,T0]
:= sup

t∈[0,T0]
‖Ψ (t)‖ , for all Ψ ∈ CT0 ·

The weighted space C1−γ([0, T0],H ) of continuous functions f on (0, T0] is defined by [44,
46, 47]

C1−γ ([0, T0] ,H ) =
{

Ψ : (0, T0]→H ; t1−γΨ(t) ∈ C([0, T0],H )
}

with 0 ≤ γ ≤ 1 and the norm given by

‖Ψ‖C1−γ [0,T0]
:= sup

t∈[0,T0]

∥∥t1−γΨ(t)
∥∥
C[0,T0]

.

Let (a, b) (−∞ ≤ a < b ≤ ∞) be a finite or infinite interval of the real line R and µ > 0.
Also let ψ(x) be an increasing and positive monotone function on (a, b], having a continuous
derivative ψ′(x) on (a, b). The left and right-sided fractional integrals of a function f with
respect to another function ψ on [a, b] are defined by [29, 41]

Iµ;ψa+ f (x) =
1

Γ (µ)

∫ x

a

ψ′ (t) (ψ (x)− ψ (t))µ−1 f (t) dt (2.1)

and

Iµ;ψb− f (x) =
1

Γ (µ)

∫ b

x

ψ′ (t) (ψ (t)− ψ (x))µ−1 f (t) dt , (2.2)

respectively.

Choosing ψ(t) = t and replacing in Eq.(2.1) and Eq.(2.2), we have the Riemann-Liouville
fractional integrals, given by [29, 41]

Iµa+f (x) =
1

Γ (µ)

∫ x

a

(x− t)µ−1 f (t) dt

and

Iµ;ψb− f (x) =
1

Γ (µ)

∫ b

x

(t− x)µ−1 f (t) dt ,

respectively.

On the other hand, let n − 1 < µ < n with n ∈ N, I = [a, b] is the interval such that
−∞ ≤ a < b ≤ ∞ and f, ψ ∈ Cn([a, b],R) two functions such that ψ is increasing and
ψ′(x) 6= 0, for all x ∈ I. The left-sided and right-sided ψ-Hilfer fractional derivative of order µ
and type 0 ≤ ν ≤ 1 of a function, denoted by HDµ,ν;ψ

a+ (·) are defined by [41, 42]

HDµ,ν;ψ
a+ f (x) = Iν(n−µ);ψa+

(
1

ψ′ (x)

d

dx

)n
I(1−ν)(n−µ);ψa+ f (x) (2.3)

and
HDµ,ν;ψ

b− f (x) = Iν(n−µ);ψb−

(
− 1

ψ′ (x)

d

dx

)n
I(1−ν)(n−µ);ψb− f (x) , (2.4)

respectively.
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Choosing ψ(t) = t and replacing in Eq.(2.3) and Eq.(2.4), we obtain left-sided and right-
sided Hilfer fractional derivative, which we use in the formulation of the nonlinear functional
fractional differential equation according to Eq.(1.1), given by [41]

HDµ,ν
a+ f (x) = Iν(n−µ);ψa+

(
d

dx

)n
I(1−ν)(n−µ)a+ f (x)

and
HDµ,ν

b− f (x) = Iν(n−µ);ψb−

(
− d

dx

)n
I(1−ν)(n−µ)b− f (x) ,

respectively.

In what follows, let us state some properties of the special function Mν also called Mainardi
function. This function is a particular case of the Wright type function, introduced by Mainardi.
More precisely, for ξ ∈ (0, 1), the entire function Mξ : C→ C is given by [5]

Mξ(z) :=
∞∑
n=0

zn

n!Γ(1− ξ(1 + n))
·

Proposition 2.1 [5] For ξ ∈ (0, 1) and −1 < r <∞, when we restrict Mξ to the positive real
line, it holds that Mξ(t) ≥ 0 for all t ≥ 0 and∫ ∞

0

trMξ(t) dt =
Γ(r + 1)

Γ(ξr + 1)
·

In the sequence, we introduce the Mittag-Leffler operators. Then, for each ξ ∈ (0, 1), we
define the Mittag-Leffler families

{
Eξ(−tξA) : t ≥ 0

}
and

{
Eξ,ξ(−tξA) : t ≥ 0

}
, by [5]

Eξ(−tξA) =

∫ ∞
0

Mξ(s)S(stξ)ds

and

Eξ,ξ(−tξA) =

∫ ∞
0

ξ sMξ(s)S(stξ) ds

respectively. The functions Eξ(·) and Eξ,ξ(·), are the one and two parameters, Mittag-Leffler
functions, respectively.

To this end, let H be a Hilbert space and −A : D(A) ⊂ H → H be the infinitesimal
generators of an D(t), t ≥ 0. In order to investigate these results, we highlight some necessary
conditions about the A operator and the f function, namely:

(H1) A is a closed, positive definite, self-adjoint linear operator A : D(A) ⊂H →H such
that D(A) is dense in H and A has the pure point spectrum

0 < λ0 ≤ λ1 ≤ λ2 ≤ · · ·

and a corresponding complete orthonormal system of eigenfunctions {φi}, i.e.,

Aφi = λiφi, and < φi, φj >= δ̃ij

where δ̃ij = 1 if i = j and δ̃ij otherwise.

It follows that the fractional powers Aδ of A for 0 ≤ δ ≤ 1 are well defined

Aδ : D(Aδ) ⊂H →H .
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Hence, for convenience, we suppose that
∥∥Eξ(−tξA)

∥∥ ≤ M , for all t ≥ 0 and 0 ∈ ρ(−A)
where ρ(−A) is the resolvent set of −A. We can prove easily that D(Aδ), denoted by Hδ, is
the Banach space with the norm [39]

‖X‖δ =
∥∥AδX∥∥ , for all X ∈ D(Aδ) ·

Moreover Cδ
1−γ := Cδ

1−γ([0, T0], D(Aδ)) (0 ≤ δ ≤ 1, and γ = µ+ν(1−µ), 0 ≤ γ ≤ 1), where
D(Aδ) is the domain of Aδ, is the Banach space of all weighted space of continuous functions
with the norm

‖Ψ‖Cδ1−γ := sup
t∈[0,T0]

∥∥t1−γAδΨ(t)
∥∥
C[0,T0]

.

(H2) The nonlinear map f : [0, T0]×H ×H →H is continuous with respect to the first
variable on [0, T0], b : [0, T0]→ [0, T0] is continuous and there exists a non decreasing continuous
function LR : R+ → R+ depending on R > 0 such that

1. ‖f(t, x1, x2)‖ ≤ LR(t)

2. ‖f(t, x1, x2)− f (s, y1, y2)‖ ≤ LR(t)
(
|t− s|µ + ‖x1 − y1‖Cδ1−γ + ‖x2 − y2‖Cδ1−γ

)
for all t, s ∈ [0, T0], 0 ≤ µ ≤ 1 and xi, yi ∈ Br(Hδ) for i = 1, 2.

For any Banach space Z and r > 0 we define Br(Z) = {x ∈ Z, ‖x‖Z ≤ r}. Throughout the
paper we assume that there exists an operator B on D(B) = H given by the formula

B =

(
I +

p∑
k=1

ckI
1−γ
0+ Eµ,γ(−tµkA)tγ−1k

)−1
with

Br(Hδ) := Br = Br(Cδ
T0
∩ Cδ−1

T0
, K̃) = {y ∈ Cδ

T0
∩ Cδ−1

T0
:
∥∥∥y − K̃∥∥∥

Cδ,T1−γ

≤ R} ·

Let
{
Eξ(−tξA); t ≥ 0

}
be a strongly continuous of operators on H such that∥∥∥Eξ (−tξkA)∥∥∥ ≤ `

∥∥∥Eξ (−δtξkA)∥∥∥
k = 1, 2, . . . , p where δ is a positive constant and ` is a constant satisfying the inequality ` ≥ 1
and if

p∑
k=1

|ck|Eξ
(
−tξkA

)
<

1

Eξ
(
δtξ0A

)
then ∥∥∥∥∥

p∑
k=1

ckEξ
(
−tξkA

)∥∥∥∥∥ < 1

hence the operator B exists.

It follows that for 0 ≤ δ ≤ 1, Aδ can be defined as a closed linear invertible operator with
domain D(Aδ) being dense in H . We have Hθ → Hδ for 0 < δ < θ and the embedding is
continuous.

We say that the function u ∈ Cδ
1−γ is called a mild solution of Eq.(1.1) on [0, T0] if it satisfies

the equation

u(t) = Eµ,γ(−tµA)B u0 +

∫ t

0

Hµ(t, s;A)f̃s,ub(s)ds (2.5)
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−Eµ,µ(−tµA)B
p∑

k=1

ckI
1−γ
0+

∫ tk

0

Hµ(tk, s;A)f̃s,ub(s)ds

with γ = µ + ν(1 − µ), t ∈ [0, T0], 0 < t1 < · · · < tp ≤ T ≤ T0, f̃s,ub(s) := f(s, u(s), u(b(s))),
Hµ(t, s;A) := (t− s)µ−1Eµ,µ(−(t− s)µA) and Hµ(tk, s;A) := (tk − s)µ−1Eµ,µ(−(tk − s)µA).

Now, from Eq.(2.5), we get

u(0) = Eµ,γ(0)B u0 − Eµ,γ(0)B
p∑

k=1

ckI
1−γ
0+

∫ tk

0

Hµ(tk, s;A)f̃s,ub(s)ds (2.6)

and

u(ti) = Eµ,γ
(
−tµiAB u0 +

∫ ti

0

Hµ(ti, s;A)f̃s,ub (s)

)
ds (2.7)

−Eµ,µ(−tµiA)B
p∑

k=1

ckI
1−γ
0+

∫ tk

t

Hµ(tk, s;A)f̃s,ub(s)ds.

Hence, from Eq.(2.6) and Eq.2.7) and the definition of operator B, we get

I1−γ0+ u(0) +

p∑
i=1

ciI
1−γ
0+ u(ti)

= I1−γ0+ Eµ,γ(0)B u0 − I1−γ0+ Eµ,γ(0)B
p∑

k=1

ckI
1−γ
0+

∫ tk

0

Hµ(tk, s;A)f̃s,ub(s)ds

+

p∑
i=1

ciI
1−γ
0+ Eµ,γ(−tµiA)B u0 +

p∑
i=1

ciI
1−γ
0+

∫ ti

0

Hµ(ti, s;A)f̃s,ub(s)ds

−
p∑
i=1

ciI
1−γ
0+ Eµ,γ(−tµiA)B

p∑
k=1

ckI
1−γ
0+

∫ tk

0

Hµ(tk, s;A)f̃s,ub(s)ds.

I1−γ0+ u(0) +

p∑
i=1

ciI
1−γ
0+ u(ti)

= u0 − B
p∑

k=1

ckI
1−γ
0+

∫ tk

0

Hµ(tk, s;A)f̃s,ub(s)ds

+

p∑
i=1

ciI
1−γ
0+

∫ ti

0

Hµ(ti, s;A)f̃s,ub(s)ds

−
p∑
i=1

ciI
1−γ
0+ Eµ,γ(−tµiA)B

p∑
k=1

ckI
1−γ
0+

∫ tk

0

Hµ(tk, s;A)f̃s,ub(s)ds

= u0 +

p∑
i=1

ciI
1−γ
0+

∫ ti

0

Hµ(ti, s;A)f̃s,ub(s)ds

−

(
I +

p∑
i=1

ckI
1−γ
0+ Eµ,γ(−tµiA)

)
B

p∑
k=1

ckI
1−γ
0+

∫ tk

0

Hµ(tk, s;A)f̃s,ub(s)ds

= u0.

Thus we have that the mild solution given by Eq.(2.5) satisfies the condition given in Eq.(1.1),
is well defined.

A function u : [0, T0] → H is said to be a classical solution of the nonlocal fractional
functional differential equation, Eq.(1.1) on [0, T0] if:
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1. u is continuous on [0, T0] and continuously differentiable on (0, T0];

2. HDµ,ν
0+ u(t) +Au(t) = f(t, u(t), u(b(t))) for t ∈ (0, T0];

3. I1−γ0+ u(0) +

p∑
k=1

ckI
1−γ
0+ u(tk) = u0.

3 Main results

In this section, our main results, namely, the existence, uniqueness, and approximation solutions
and convergence of a class of solutions of the nonlinear abstract fractional differential equation
in the Hilbert space H, are investigated.

3.1 Approximate solutions and convergence

Let Hn ⊂ H the finite subspace covered by {φ0, φ1, . . . , φn} and let P n : H → Hn be the
corresponding projection operator for n = 0, 1, 2, . . .. Note that, for 0 < T0, R < ∞ fixed,
choosing 0 < T ≤ T0 such that

M ‖B‖ ‖u0‖+

(
1 +M ‖B‖ C̃

p∑
k=1

|ck|

)
T µ−δµCδ

LR(T0)

µ+ 1− δµ
≤ R (3.1)

and

2LR(T0)
Cδµ

1− δµ

{
M ‖B‖ C̃

p∑
k=1

|ck|+ 1

}
T 1−δµ := q < 1 (3.2)

where Cδ is a positive constant depending on µ satisfying∥∥AδEµ,γ(−tµA)
∥∥ ≤ Cδµt

−δµ, for t > 0 ·

We define

fn : [0, T ]×Hµ ×Hµ →H

such that fn(t, x, y) = f(t, P nx, P ny) for all t ∈ [0, T0], x, y ∈Hµ ·

Consider the following set S =
{
u ∈ Cδ

1−γ; ‖u‖Cδ1−γ ≤ R
}

. Note that, clearly, S is a non

empty, closed and bounded set. On the other hand, to facilitate the development of the article,
we introduce the operator Fn on S as follows

Fnu(t) = Eµ,γ(−tµA)B u0 +

∫ t

0

Hµ(t, s;A)f̃n,s,ub(s)ds

−Eµ,γ(−tµA)B
p∑

k=1

ck I1−γ0+

∫ tk

0

Hµ(tk, s;A)f̃n,s,ub(s)ds

with t ∈ [0, T0] for u ∈ S and n = 0, 1, 2, . . . and f̃n,s,ub(s) := fn(s, u(s), u(b(s))).

So, next the first main result of this article, that is, the solution un ∈ S satisfying the
approximate integral equation Eq.(3.3), is presented as a theorem.
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Theorem 3.1 Let us assume that the assumptions (H1)-(H2) hold and u0 ∈ D(A). Then,
there exists a unique un ∈ S such that Fnun = un for each n = 0, 1, 2, . . . i.e., un satisfies the
approximate integral equation

un(t) = Eµ,γ(−tµA)B u0 +

∫ t

0

Hµ(t, s;A)f̃n,s,unb(s)ds

Eµ,γ(−tµA)B
p∑

k=1

ckI
1−γ
0+

∫ tk

0

Hµ(tk, s;A))f̃n,s,unb(s)ds

(3.3)

with t ∈ [0, T ] and f̃n,s,unb(s) := fn(s, un(s), un(b(s))).

Proof:

Our goal here is to establish the uniqueness of solution of approximate integral equation,
Eq.(3.3), on [0, T ]. Two points are necessary and sufficient for the proof of this theorem, namely:

1. Fn is a mapping from S into S

2. Fn is a contraction mapping on S.

Then, we have

‖Fnu (t+ h)− Fnu (t)‖Cδ

=

∥∥∥∥∥∥∥∥∥∥∥∥

(Eµ,γ(−(t+ h)µA)− Eµ,γ(−tµA))BAδu0−
[Eµ,γ(−(t+ h)µA)− Eµ,γ(−tµA)]B

∑p
k=1 ckI

1−γ
0+

×
∫ tk

0

Hµ(tk, s;A)Aδf̃n,s,u ds−
∫ t+h

t

Hµ(t, h, s;A)Aδf̃n,s,ub(s)ds

−
∫ t

0

Hµ(t, h, s;A)Aδf̃n,s,ub(s)ds−
∫ t

0

Hµ(t, s;A)Aδf̃n,s,ub(s)ds

∥∥∥∥∥∥∥∥∥∥∥∥
Cδ

≤ (Eµ,γ(−(t+ h)µA)− Eµ,γ(−tµA)) BAδu0

+

p∑
k=1

|ck| [Eµ,γ(−(t+ h)µA)− Eµ,γ(−tµA)]B I1−γ0+ ×

×
∫ tk

0

Hµ(tk, s;A)Aδf̃n,s,ub(s)ds

+

∫ t

0

(t+ h− s)µ−1 [Eµ,µ(−(t+ h− s)µA)− Eµ,µ(−(t− s)µA]×

×Aδ
∥∥∥f̃n,s,ub(s)∥∥∥ ds

where Hµ(t, h, s;A) := (t + h− s)µ−1Eµ,µ(−(t + h− s)µA), for all t ∈ [0, T ], h > 0, u ∈ S. So
we get,

Fn : Cδ
1−γ → Cδ

1−γ.

On the other hand, for any u ∈ S, we get

‖Fnu(t)‖Cδ

=

∥∥∥∥Eµ,γ(−tµA)BAδu0 +

∫ t

0

Hµ(t, s;A)Aδf̃n,s,ub(s)ds
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−Eµ,γ(−tµA)B
p∑

k=1

ckI
1−γ
0+

∫ tk

0

Hµ(tk, s;A)Aδf̃n,s,ub(s)ds

∥∥∥∥∥
≤ M ‖B‖

∥∥Aδu0∥∥+

∫ t

0

(t− s)µ−1Cδµ(t− s)−δµLR(s) ds

+

p∑
k=1

|ck|M ‖B‖ C̃
∫ tk

0

(tk − s)µ−1Cδµ(tk − s)−δµLR(s) ds

≤ M ‖B‖ ‖u0‖Cδ + LR(T0)Cδµ
T µ−δµ

µ− δµ
+M ‖B‖ C̃CδµLR(T0)

p∑
k=1

|ck|
T µ−δµ

µ− δµ

≤ M ‖B‖ ‖u0‖Cδ +

(
1 + C̃M ‖B‖

p∑
k=1

|ck|

)
T µ−δµ

µ− δµ
CδµLR(T0). (3.4)

Therefore, from inequality (3.4), it follows that

‖Fnu‖Cδ1−γ

≤ MT 1−γ ‖B‖ ‖u0‖Cδ +

(
1 + C̃M ‖B‖

p∑
k=1

|ck|

)
T µ−δµ+1−γCδµLR(T0)

µ− δµ
≤ R

where R is given by Eq.(3.1). Hence Fn : S → S.

Now, for any u, v ∈ S and t ∈ [0, T ] we have

(Fnu) (t)− (Fnv)(t) = −Eµ,γ(−tµA)B
p∑

k=1

ckI
1−γ
0+

∫ tk

0

Hµ(tk, s;A)Ω(u, v, s)ds

+

∫ t

0

Hµ(t, s;A)Ω(u, v, s) ds

with t ∈ [0, T ] and where to facilitate the development of the article, we have introduced
Ω(u, v, s) := [fn(s, u(s), u(b(s))− fn(s, v(s), v(b(s))].

Through inequality (3.2), we have

‖(Fnu)(t)− (Fnv)(t)‖Cδ

=

∥∥∥∥∥∥∥∥∥
∫ t

0

Hµ(t, s;A)Ω(u, v, s) ds−

Eµ,γ(−tµA)B
p∑

k=1

ckI
1−γ
0+

∫ tk

0

Hµ(tk, s;A)Ω(u, v, s) ds

∥∥∥∥∥∥∥∥∥
Cδ

.

Using the precedent we can write

‖(Fnu)(t)− (Fnv)(t)‖Cδ

≤
∫ t

0

(t− s)µ−1 ‖Eµ,µ(−(t− s)µA)‖ ‖Ω(u, v, s)‖ ds+

+ ‖Eµ,γ(−tµA)‖ ‖B‖
p∑

k=1

|ck|
∥∥I1−γ0+

∥∥×
×
∫ tk

0

(tk − s)µ−1 ‖E(−(tk − s)µA)‖ ‖Ω(u, v, s)‖ ds



11

≤
∫ t

0

(t− s)µ−1Cδµ(t− s)−δµLR(s)×

×
(
‖u(s)− v(s)‖Cδ1−γ + ‖u(b(s))− v(b(s))‖Cδ1−γ

)
ds

+M ‖B‖
p∑

k=1

|ck|C̃
∫ tk

t

(tk − s)µ−1Cδµ(tk − s)−δµLR(s)×

×
(
‖u(s)− v(s)‖Cδ1−γ + ‖u(b(s))− v(b(s))‖Cδ1−γ

)
ds

= 2CδµLR(T0) ‖u(t)− v(t)‖Cδ1−γ

∫ t

0

(t− s)µ−1−δµ ds+

2M ‖B‖LR(T0)C̃Cδµ ‖u(t)− v(t)‖Cδ1−γ

p∑
k=1

|ck|
∫ tk

0

(tk − s)µ−1−δµ ds

≤ 2CδµLR(T0) ‖u(t)− v(t)‖Cδ1−γ
T µ−δµ

µ− δµ

+2M ‖B‖LR(T0)C̃Cδµ ‖u(t)− v(t)‖Cδ1−γ
T µ−δµ

µ− δµ

p∑
k=1

|ck|

=
2CδµLR(T0)

µ(1− δ)
T µ−δµ

(
1 +M ‖B‖ C̃

p∑
k=1

|ck|

)
‖u(t)− v(t)‖Cδ1−γ .

Then, we have

‖Fnu− Fnv‖Cδ1−γ ≤ q ‖u− v‖Cδ1−γ
where

q :=
2CδµLR(T0)

µ(1− δ)
T µ−δµ+1−γ

(
1 +M ‖B‖ C̃

p∑
k=1

|ck|

)
< 1

for u, v ∈ S.

Thus, the operator Fn, as defined, has a unique fixed point that is Fnun = un, for un ∈ S
given by

un(t) = Eµ,γ(−tµA)B u0 +

∫ t

0

Hµ(t, s;A)f̃n,s,unb(s)ds

−Eµ,γ(−tµA)B
p∑

k=1

ckI
1−γ
0+

∫ tk

0

Hµ(tk, s;A)f̃n,s,unb(s)ds

with t ∈ [0, T ]. 2

The following result Corollary 3.2, we will not present the demonstration, however, we
suggest the article which contains the following proof. (see Lemma 3.2 [10]).

Corollary 3.2 If all the hypothesis of the Theorem 3.1 hold then un(t) ∈ D(Aθ) for all t ∈ [0, T ]
with 0 ≤ θ < 1.

Corollary 3.3 If all the hypothesis of the Theorem 3.1 hold then there exist a constant M0

independent on n, such that

‖un‖Cθ1−γ :=
∥∥Aθun(t)

∥∥
C1−γ

≤M0

for all 0 ≤ t ≤ T and 0 ≤ θ < 1.
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Proof: In fact, by means of the Eq.(3.3), we get∥∥Aθun (t)
∥∥

=

∥∥∥∥∥∥∥∥
AθEµ,γ(−tµA)B u0 +Aθ

∫ t

0

Hµ(t, s;A)f̃n,s,unb(s)ds

−AθEµ,γ(−tµA)B
∑p

k=1 ckI
1−γ
0+

∫ tk

0

Hµ(tk, s;A)f̃n,s,unb(s)ds

∥∥∥∥∥∥∥∥
≤

∥∥AθEµ,γ(−tµA)
∥∥ ‖B‖ ‖u0‖

+

∫ t

0

(t− s)µ−1
∥∥AθEµ,µ(−(t− s)µA)

∥∥
C1−γ

∥∥∥f̃n,s,unb(s)∥∥∥
C1−γ

ds

+

p∑
k=1

|ck| ‖Eµ,γ(−tµA)‖ ‖B‖
∥∥I1−γ0+

∥∥×
×
∫ tk

0

(tk − s)µ−1
∥∥AθEµ,µ(−(tk − s)µA)

∥∥∥∥∥f̃n,s,unb(s)∥∥∥ ds

≤ M ‖B‖ ‖u0‖+

∫ t

0

(t− s)µ−1Cθµ(t− s)−θµLR(s) ds

+

p∑
k=1

|ck|M ‖B‖ C̃
∫ tk

0

(tk − s)µ−1Cθµ(tk − s)−θµLR(s) ds

≤ M ‖B‖ ‖u0‖+ CθµLR(T0)
T µ−θµ

µ− θµ
+M ‖B‖ C̃CθµLR(T0)

p∑
k=1

|ck|
T µ−θµ

µ− θµ

= M ‖B‖ ‖u0‖+

(
MM ‖B‖ C̃

p∑
k=1

|ck|+ 1

)
T µ−µθ

CθµLR(T0)

µ− µθ

for t ∈ [0, T ].

Then, we have

‖un‖Cθ1−γ ≤M ‖B‖ ‖u0‖+

(
M ‖B‖ C̃

p∑
k=1

|ck|+ 1

)
T µ−µθ+1−γCθµLR(T0)

µ− µθ

with 0 ≤ θ < 1, which conclude the proof 2

Theorem 3.4 The sequence {un} ⊂ S is a Cauchy sequence and therefore converges to a
unique function u ∈ S if the assumptions (H1)-(H2) hold and u ∈ D(A).

Proof:

In fact, for n ≥ m ≥ n0 where n0 is large enough, n,m, n0 ∈ N and t ∈ [0, T ], we get∥∥Aδ (un(t)− um(t))
∥∥

=

∥∥∥∥∥∥∥∥∥
Aδ
∫ t

0

Hµ(t, s;A)Ω(n,m, s)ds−AδEµ,γ(−tµA)B
p∑

k=1

ckI
1−γ
0+ ×

×
∫ tk

0

Hµ(tk, s;A)Ω(n,m, s) ds

∥∥∥∥∥∥∥∥∥
(3.5)

where Ω (n,m, s) = fn (s, un(s), un(b(s)))− fm (s, um(s), um(b(s))).
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So, Eq.(3.5) can be written as follows∥∥Aδ (un(t)− um(t))
∥∥ (3.6)

≤
∫ t

0

(t− s)µ−1
∥∥AδEµ,µ(−(t− s)µA)

∥∥ ‖Ω(n,m, s)‖ ds+

p∑
k=1

|ck| ‖Eµ,γ(−tµA)‖ ‖B‖
∥∥I1−γ0+

∥∥×∫ tk

0

(tk − s)µ−1
∥∥AδEµ,µ(−(tk − s)µA)

∥∥ ‖Ω(n,m, s)‖ ds

≤
∫ t

0

(t− s)µ−1Cδµ(t− s)−µδ ‖Ω(n,m, s)‖ ds+

p∑
k=1

|ck|M ‖B‖ C̃
∫ tk

0

(tk − s)µ−1Cδµ(−(tk − s)−δµ ‖Ω(n,m, s)‖ ds

with t ∈ [0, T ].

Note that, for 0 < δ < θ < 1, we get

‖Ω(n,m, s)‖ ≤ ‖fn(s, un(s), un(b(s)))− fn(s, um(s), um(b(s)))‖
+ ‖fn(s, um(s), um(b(s)))− fm(s, um(s), um(b(s)))‖

≤
(
‖un(s)− um(s)‖Cδ1−γ + ‖un(b(s))− um(b(s))‖Cδ1−γ

)
LR(T0)

+ ‖fn(s, um(s), um(b(s)))‖+ ‖fm(s, um(s), um(b(s)))‖

≤ 2LR(T0) ‖un − um‖Cδ,s1−γ
+ 2LR(T0)

M0

λθ−δm

(3.7)

where M0 is the same as in Corollary 3.3.

Using the inequality (3.7) in inequality (3.6), we have∥∥Aδ(un(t)− um(t))
∥∥

≤

(
1 +M ‖B‖ C̃

p∑
k=1

|ck|

)
Cδµ

∫ t

0

(t− s)µ(1−δ)−1 ‖Ω (n,m, s)‖ ds

≤

(
1 +M ‖B‖ C̃

p∑
k=1

|ck|

)
Cδµ

∫ t

0

(t− s)µ(1−δ)−1 ×

×
(

2LR(T0) ‖un − um‖Cδ,s1−γ
+ 2LR(T0)

M0

λθ−δm

)
ds

≤

(
1 +M ‖B‖ C̃

p∑
k=1

|ck|

)
Cδµ2LR(T0)

∫ t

0

(t− s)µ(1−δ)−1 ‖un − um‖Cδ,s1−γ
ds

+

(
1 +M ‖B‖ C̃

p∑
k=1

|ck|

)
Cδµ

T µ(1−δ)

µ(1− δ)
2LR(T0)

M0

λθ−δm

=
C1

λθ−δm

+ C2

∫ t

0

(t− s)µ(1−δ)−1 ‖un − um‖Cδ,s1−γ
ds (3.8)

where

C1 :=

(
1 +M ‖B‖ C̃

p∑
k=1

|ck|

)
Cδµ

T µ(1−δ)

µ(1− δ)
2M0LR(T0)
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and

C2 :=

(
1 +M ‖B‖ C̃

p∑
k=1

|ck|

)
Cδµ2LR(T0) .

Considering t′0 such that 0 < t′0 < t < T , we have∥∥Aδ(un(t)− um(t))
∥∥

≤ C1

λθ−δm

+ C2

(∫ t′0

0

+

∫ t

t′0

)
(t− s)µ(1−δ)−1 ‖un − um‖Cδ,s1−γ

ds

≤ C1

λθ−δm

+ 2C2LR(T0)M0

∫ t′0

0

(t− s)µ(1−δ)−1ds

+C2

∫ t

t′0

(t− s)µ(1−δ)−1 ‖un − um‖Cδ,s1−γ
ds.

Integrating and introducing the notation NR = 2LR(T0)M0 we can write

∥∥Aδ (un (t)− um (t))
∥∥ ≤ C1

λθ−δm

+
C2NR

µ(1− δ)
(
(T − t′0)µ(1−δ)−1t′0

)
+C2

∫ t

t′0

(t− s)µ(1−δ)−1 ‖un − um‖Cδ,s1−γ
ds.

Taking the following change t = t+ θ̃ in inequality (3.8), where θ̃ ∈ [t′0 − t, 0], we obtain∥∥∥un(t+ θ̃)− um(t+ θ̃)
∥∥∥
Cδ

≤ C1

λθ−δm

+ C2

∫ t+θ̃

t′0

(t+ θ̃ − s)µ(1−δ)−1 ‖un − um‖Cδ,s1−γ
ds

+
C2NR

µ(1− δ)
(
(T − t′0)µ(1−δ)−1t′0

)
. (3.9)

Introducing s− θ̃ = γ̃ in inequality (3.9), we get∥∥∥un(t+ θ̃)− um(t+ θ̃)
∥∥∥
Cδ

≤ C1

λθ−δm

+ C2

∫ t

t′0−ω̃
(t− γ̃)µ(1−δ)−1 ‖un − um‖Cδ,γ̃1−γ

dγ̃

+
C2NR

µ(1− δ)
(
(T − t′0)µ(1−δ)−1t′0

)
.

≤ C1

λθ−δm

+ C2

∫ t

t′0

(t− γ̃)µ(1−δ)−1 ‖un − um‖Cδ,γ̃1−γ
dγ̃

+
C2NR

µ(1− δ)
(
(T − t′0)µ(1−δ)−1t′0

)
.

Thus, we have

sup
t′0−t≤θ̃≤0

∥∥∥un(t+ θ̃)− um(t+ θ̃)
∥∥∥
Cδ
≤ C1

λθ−δm

+ C2

∫ t

t′0

(t− γ̃)µ(1−δ)−1 ‖un − um‖Cδ,γ̃1−γ
dγ̃. (3.10)
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For t+ θ̃ ≤ 0, we have un(t+ θ̃) = K(t+ θ̃) for all n ≥ n0. Thus, we get

sup
−t≤θ̃≤0

∥∥∥un(t+ θ̃)− um(t+ θ̃)
∥∥∥
Cδ
≤ sup

0≤θ̃+t≤t′0

∥∥∥un(t+ θ̃)− um(t+ θ̃)
∥∥∥
Cδ

+ sup
t′0−t≤θ̃≤0

∥∥∥un(t+ θ̃)− um(t+ θ̃)
∥∥∥
Cδ
.

(3.11)

Then, for each t ∈ (0, t′0], we have∥∥∥un(t+ θ̃)− um(t+ θ̃)
∥∥∥
Cδ
≤ C1

λθ−δm

+
C2NR

µ (1− δ)

(
(T − t′0)

µ(1−δ)−1
t′0

)
. (3.12)

Using Eq.(3.10), Eq.(3.11) and Eq.(3.12), we have

sup
0≤t+θ̃≤t

∥∥∥t1−γ (un(t+ θ̃)− um(t+ θ̃)
)∥∥∥

Cδ

≤ 2C1

λθ−δm

+ C2

∫ t

t′0

(t− γ̃)µ(1−δ)−1 ‖un − um‖Cδ,γ̃1−γ
dγ̃

+
C2NR

µ (1− δ)

(
(T − t′0)

µ(1−δ)−1
t′0

)
.

Then, we can write

‖un − um‖Cδ,t1−γ
≤ 2C1

λθ−δm

+ C2

∫ t

t′0

(t− γ̃)µ(1−δ)−1 ‖un − um‖Cδ,γ̃1−γ
dγ̃

+
C2NR

µ (1− δ)

(
(T − t′0)

µ(1−δ)−1
t′0

)
.

Now, using the Gronwall inequality, we have

‖un − um‖Cδ,t1−γ
≤

(
2C1

λθ−δm

+
C2NR

µ (1− δ)

(
(T − t′0)

µ(1−δ)−1
t′0

))
×

×Eµ
(
C2Γ(µ(1− δ))(T − t′0)µ(1−δ)

)
,

where Eµ(·) is an one parameter Mittag-Leffler function. Since t′0 is arbitrary and taking
m→∞, therefore the right hand side can be made as small as desired by taking t′0 sufficiently
small. This complete the proof. 2

Theorem 3.5 Suppose that (H1)-(H(2) hold and u0 ∈ D(A). Then, there exist a unique
function un ∈ C1−γ([0, T ],HR) and another one u ∈ C1−γ([0, T ],HR) satisfying

un(t) = Eµ,γ(−tµA)B u0 +

∫ t

0

Hµ(t, s;A)f̃n,s,unb(s)ds (3.13)

−Eµ,γ(−tµA)B
p∑

k=1

ckI
1−γ
0+

∫ tk

0

Hµ(tk, s;A) f̃n,s,unb(s)ds

with t ∈ [0, T ], and

u(t) = Eµ,γ(−tµA)B u0 +

∫ t

0

Hµ(t, s;A)f̃s,ub(s)ds (3.14)
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−Eµ,γ(−tµA)B
p∑

k=1

ckI
1−γ
0+

∫ tk

0

Hµ(tk, s;A) f̃s,ub(s)ds

with t ∈ [0, T ], such that un → u in C1−γ([0, T ],HBR) as n→∞, where fn is as defined earlier.

Proof: Let u0 ∈ D(A). For t ∈ (0, T ], it follows that there exists Xn ∈ BR such that
Aδun(t)→ Aδu(t) ∈ BR as n→∞. Also, for t ∈ [0, T ], we have Aδun(t)→ Aδu(t) as n→∞
in H . Since Xn ∈ BR, therefore it follows that X ∈ BR and

lim
n→∞

sup
t0≤t≤T

‖Xn(t)−X(t)‖Cδ = 0, t0 ∈ (0, T ].

Also, we have

sup
t∈[t0,T ]

‖fn(t, un(t), un(b(t)))− f(t, u(t), u(b(t)))‖

≤ LR(t)
(
‖un(t)− u(t)‖Cδ1−γ + ‖un(b(t))− u(b(t))‖Cδ1−γ

)
→ 0

as n→∞.

For 0 < t0 < t we rewrite Eq.(3.13) as

un(t) = Eµ,γ(−tµA)B u0 +

(∫ t0

0

+

∫ t

t0

)
Hµ(t, s;A)f̃n,s,unb(s)ds

−Eµ,γ(−tµA)B
p∑

k=1

ckI
1−γ
0+

(∫ t0

0

+

∫ tk

t0

)
Hµ(tk, s;A)f̃n,s,unb(s)ds

= Eµ,γ(−tµA)B u0 +

∫ t0

0

Hµ(t, s;A)f̃n,s,unb(s)ds︸ ︷︷ ︸
(I)

+

∫ t

t0

Hµ(t, s;A)f̃n,s,unb(s)ds

−Eµ,γ(−tµA)B
p∑

k=1

ckI
1−γ
0+

∫ t0

0

Hµ(tk, s;A) f̃n,s,unb(s)ds︸ ︷︷ ︸
(II)

−

Eµ,γ(−tµA)B
p∑

k=1

ckI
1−γ
0+

∫ tk

t0

Hµ(tk, s;A) f̃n,s,unb(s)ds.

Now, we obtain the estimate for integrals (I) and (II), i.e.,∥∥∥∥∫ t0

0

Hµ(t, s;A)Aδf̃n,s,unb(s)ds
∥∥∥∥

≤
∫ t0

0

(t− s)µ−1
∥∥AδEµ,µ(−(t− s)µA)

∥∥∥∥∥f̃n,s,unb(s)∥∥∥ ds
≤

∫ t0

0

(t− s)µ−1Cδµ(t− s)−δµLR(s) ds

≤ LR(T0)Cδµ
(t− t0)µ(1−δ) − tµ(1−δ)

µ(1− δ)

≤ LR(T0)Cδµ
T µ(1−δ) t0
µ(1− δ)
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and ∥∥∥∥∥
p∑

k=1

ck Eµ,γ(−tµA)BI1−γ0+

∫ t0

0

Hµ(tk, s;A)Aδf̃n,s,unb(s)ds

∥∥∥∥∥
≤

p∑
k=1

|ck| ‖Eµ,γ(−tµA)‖ ‖B‖
∥∥I1−γ0+

∥∥×
×
∫ t0

0

(tk − s)µ−1
∥∥AδEµ,µ(−(tk − s)µA)

∥∥∥∥∥|f̃n,s,unb(s)∥∥∥ ds

≤ LR(T0)MC̃Cδµ ‖B‖
p∑

k=1

|ck|
∫ t0

0

(tk − s)µ(1−δ)−1 ds

≤ LR(T0)MC̃

µ(1− δ)
Cδµ ‖B‖

p∑
k=1

|ck|[tµ(1−δ)k − (tk − t0)µ(1−δ)]

≤ LR(T0)MC̃Cδµ ‖B‖T µ(1−δ)t0
µ(1− δ)

p∑
k=1

|ck| ,

respectively.

Thus, we deduce that∥∥∥∥∥∥∥∥
un(t)− Eµ,γ(−tµA)Bu0 −

∫ t

t0

Hµ(t, s;A)f̃n,s,unb(s)ds

+Eµ,γ(−tµA)B
∑p

k=1 ckI
1−γ
0+

∫ tk

t0

Hµ(tk, s;A) f̃n,s,unb(s)ds

∥∥∥∥∥∥∥∥
Cδ

≤ LR(T0)Cδµ
T µ(1−δ)

µ(1− δ)
t0 +

LR(T0)MC̃Cδµ ‖B‖
µ(1− δ)

T µ(1−δ)t0

p∑
k=1

|ck|

=
LR(T0)CδµT

µ(1−δ)

µ(1− δ)

(
1 +MC̃ ‖B‖

p∑
k=1

|ck|

)
t0. (3.15)

Taking the limit n→∞ on both sides of the inequality Eq.(3.15), we have∥∥∥∥∥∥∥∥
u(t)− Eµ,γ(−tµA)Bu0 −

∫ t

t0

Hµ(t, s;A)f̃s,ub(s)ds

+Eµ,γ(−tµA)B
∑p

k=1 ckI
1−γ
0+

∫ tk

t0

Hµ(tk, s;A) f̃s,ub(s)ds

∥∥∥∥∥∥∥∥
Cδ

≤ LR(T0)CδµT
µ(1−δ)

µ(1− δ)

(
1 +MC̃ ‖B‖

p∑
k=1

|ck|

)
t0.

Since t0 is arbitrary we conclude that u(·) satisfies Eq.(2.5), which complete the proof 2

3.2 Faedo-Galerkin approximation

In this section, we investigate the Faedo-Galerkin approximations and some convergence results.

Before investigating the two main results of this section, namely Theorem 3.6 and Theorem
3.7, we have from the previous sections that a uniqueness u ∈ Cδ

T satisfies the integral equation,

u(t) = Eµ,γ(−tµA)B u0 +

∫ t

t0

Hµ(t, s;A)f̃s,ub(s)ds
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−Eµ,γ(−tµA)B
p∑

k=1

ckI
1−γ
0+

∫ tk

0

Hµ(tk, s;A) f̃s,ub(s)ds

with t ∈ [0, T ]. On the other hand, there is a single un ∈ Cδ
T function that satisfies the integral

equation approximation.

un(t) = Eµ,γ(−tµA)Bu0 +

∫ t

t0

Hµ(t, s;A)f̃n,s,unb(s)ds

−Eµ,γ(−tµA)B
p∑

k=1

ckI
1−γ
0+

∫ tk

0

Hµ(tk, s;A) f̃n,s,unb(s)ds

with t ∈ [0, T ].

Now, Faedo-Galerkin approximation is given by un = P nun, satisfying

un(t) = Eµ,γ(−tµA)B P n u0 +

∫ t

t0

Hµ(t, s;A)P n f̃n,s,unb(s)ds

−Eµ,γ(−tµA)B
p∑

k=1

ckI
1−γ
0+

∫ tk

0

Hµ(tk, s;A)P n f̃n,s,unb(s)ds

with t ∈ [0, T ], where fn as before. On the other hand, if exist u(t) the solution given by
Eq.(3.14) in [0, T ], so it has the following representation

u(t) =
∞∑
i=0

δi(t)φi , δi(t) = (u(t), φi), i = 1, 2, . . .

and

un(t) =
∞∑
i=0

δni (t)φi , δni (t) = (un(t), φi), i = 1, 2, . . . .

Finally, we investigate Theorem 3.6, as a direct consequence of Theorem 3.1 and Theorem
3.4, and finally Theorem 3.7. So we start with the following theorem:

Theorem 3.6 Suppose that (H1)-(H2) hold and u0 ∈ D(A). Then, there exists a unique func-
tion un ∈ C([0, T ],H ) and u ∈ C([0, T ],H ) satisfying

un(t) = Eµ,γ(−tµA)B P n u0 +

∫ t

t0

Hµ(t, s;A)P nf̃n,s,unb(s)ds

−Eµ,γ(−tµA)B
p∑

k=1

ckI
1−γ
0+

∫ tk

0

Hµ(tk, s;A)P n f̃n,s,unb(s)ds

with t ∈ [0, T ], and

u(t) = Eµ,γ(−tµA)Bu0 +

∫ t

t0

Hµ(t, s;A)f̃s,ub(s) ds

−Eµ,γ(−tµA)B
p∑

k=1

ckI
1−γ
0+

∫ tk

0

Hµ(tk, s;A) f̃s,ub(s)ds

with t ∈ [0, T ], such that un(t)→ u in C([0, T ], Br) as n→∞ where fn is as before.
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Proof: We have

‖un(t)− u(t)‖Cδ = ‖P nun(t)− u(t)‖Cδ
= ‖P nun(t)− P nu(t) + P nu(t)− u(t)‖Cδ
≤ ‖P n(un(t)− u(t))‖Cδ + ‖(P − I)u(t)‖Cδ .

By means of Theorem 3.5, we can write

lim
n→∞

sup
t∈[0,T ]

‖un(t)− u(t)‖Cδ = 0

which completes the proof. 2

Theorem 3.7 Suppose the statements (H1)-(H2) hold. If u0 ∈ D(A), then for any 0 ≤ t ≤
T ≤ T0, we have

lim
n→∞

sup
t∈0≤t≤T

[
n∑
i=0

λ2δi {δi(t)− δni (t)}2
]

= 0.

Proof: In fact, using Eq.(1.1) and Eq.(2.5), we obtain

Aδ[u(t)− un(t)] = Aδ
[
∞∑
i=0

(δi(t)− δni (t))φi

]

= Aδ
[

n∑
i=0

(δi(t)− δni (t))φi

]
+Aδ

∞∑
i=n+1

δi(t)φi

=
n∑
i=0

Aδ (δi(t)− δni (t))φi +
∞∑

i=n+1

Aδδi(t)φi.

Thus, we get ∥∥Aδ(u(t)− un(t))
∥∥2 ≥ n∑

i=0

λ2δi (δi(t)− δni (t))2 .

Through the Theorem 3.6, we conclude the result 2
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