
Inverted Generator Classifier

Accurate and robust gradient-descent based classifier

Jeongik Cho1

Dept. of Computer Science and Engineering1

College of Engineering1

Konkuk University, Seoul, Korea1

jeongik. jo. 01@gmail. com1

Abstract

 In the field of deep learning, a traditional

classifier receives input data and passes

through hidden layers to output predicted

labels. Conditional generators such as

Conditional VAE [1] and Conditional GAN [2]

receive latent vector and condition vector and

generate data with the desired conditions.

 In this paper, I propose an Inverted Generator

Classifier that uses conditional generators to

find a pair of condition vectors and latent

vectors that generate the data closest to the

input data, and predict the label of the input

data. Inverted Generator Classifier uses a

trained conditional generator as it is. The

inverted generator classifier repeatedly

performs gradient descent by taking the latent

vector for each condition as a variable and the

model parameter as a constant to find the data

closest to the input data. Then, among the data

generated for each condition, the condition

vector of the data closest to the input data

becomes the predicted label.

 Inverted Generator Classifier is slow to predict

because prediction is based on gradient

descent, but has high accuracy and is very

robust against adversarial attacks [3] such as

noise. It is also not subject to gradient-descent

based white-box attacks like FGSM [4].

Abbreviations

Inverted Generator Classifier: IGC

1. Inverted Generator Classifier

1.1 Training

 IGC uses trained conditional generators such

as Conditional VAE and Conditional GAN as

models. For conditional VAE, a decoder is used,

and for conditional GAN, a generator is used as

a model for IGC. No additional training is

required after training the conditional generator.

1.2 Prediction

 First, IGC finds a pair of condition vectors and

latent vectors that generate data closest to

mailto:jeongik.jo.01@gmail.com

input data through the latent space search.

Then, among the data generated for each

condition, the condition vector of the data

closest to the input data becomes the predicted

label.

 The latent space search is to perform multiple

gradient descents taking the latent vector for

each condition as a variable, the model

parameter as a constant, and using two losses:

data difference loss and latent restriction loss.

Through this, a pair of condition vectors and

latent vectors that generate data close to the

input data can be found.

 The data difference loss is the loss to find the

latent vector that can generate the data closest

to the input data for each condition. The latent

restriction loss is a loss for the latent vector not

to search beyond the latent space too much.

 The loss for IGC to perform latent space search

is as follows.

𝐿 = 𝐿𝐷𝐷 + λ𝐿𝑅𝐿𝐿𝑅

𝐿𝐷𝐷 = ∑ 𝑑𝑖𝑓(𝐺(𝑐𝑛𝑑, 𝑙𝑡𝑛), 𝑑)

(𝑐𝑛𝑑,𝑙𝑡𝑛)∈𝑆𝑖𝑛_𝑣𝑒𝑐

𝐿𝐿𝑅 = ∑ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑎𝑏𝑠(𝑧_𝑠𝑐𝑜𝑟𝑒(𝑙𝑡𝑛)))
(𝑐𝑛𝑑,𝑙𝑡𝑛)∈𝑆𝑖𝑛_𝑣𝑒𝑐

 𝐿 is the loss for IGC to perform latent space

search through gradient descent. 𝐿𝐷𝐷 is data

difference loss, and 𝐿𝐿𝑅 is latent restriction loss.

λ𝐿𝑅 is the weight of latent restriction loss.

 𝑆𝑖𝑛_𝑣𝑒𝑐 is a set of pairs having a 𝑐𝑛𝑑

(condition vector) and a 𝑙𝑡𝑛 (latent vector).

𝑆𝑖𝑛_𝑣𝑒𝑐 has 𝑐𝑛𝑑 corresponding to each class as

many as the number of classes. For example, if

there are 10 classes, 𝑆𝑖𝑛_𝑣𝑒𝑐 has 10 pairs with

different condition vectors. 𝐺 is a trained

conditional generator. 𝐺(𝑐𝑛𝑑, 𝑙𝑡𝑛) is one data

generated by 𝐺 by receiving 𝑐𝑛𝑑 and 𝑙𝑡𝑛 . 𝑑

is one input data. 𝑑𝑖𝑓 is a function that

measures the difference between two data.

 𝑧_𝑠𝑐𝑜𝑟𝑒 is a function that calculates the z

score of each element of the input vector based

on the distribution of latent vectors used when

training 𝐺. For example, if 𝐺 was trained by 3

dimension latent vector, each element of which

follows a Gaussian distribution (mean=0,

standard deviation=1), 𝑧_𝑠𝑐𝑜𝑟𝑒([1,2, −3]) is

[1,2, −3].

 𝑎𝑏𝑠 is a function that converts each element

of the input vector to an absolute value.

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 is a function to find the average of

each element of the input vector.

 To reduce L, gradient descent is performed by

taking the latent vector for each condition as

variables and the model parameters as

constants. If gradient descent is repeatedly

performed a certain number of times, the latent

space search ends.

 Then, the difference between the data

generated for each condition and the input

data is measured using the 𝑑𝑖𝑓 function, and

the condition with the smallest difference is

determined as the predicted label.

(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑙𝑎𝑏𝑒𝑙, 𝑙𝑎𝑡𝑒𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟)

= arg min
(𝑐𝑛𝑑,𝑙𝑡𝑛)∈𝑆𝑖𝑛_𝑣𝑒𝑐

𝑑𝑖𝑓(𝐺(𝑐𝑛𝑑, 𝑙𝑡𝑛), 𝑑)

Label Condition Vector Latent vector

num

0

1

(untrainable)

0

(untrainable)

0

(untrainable)

… 0.3

(trainable)

-1.0

(trainable)

…

num

1

0

(untrainable)

1

(untrainable)

0

(untrainable)

… -0.2

(trainable)

0.1

(trainable)

…

num

2

0

(untrainable)

0

(untrainable)

1

(untrainable)

… 0.7

(trainable)

-0.3

(trainable)

…

… … … … … … … …

Fig.1 Example of input vectors of IGC

Fig.2 Prediction process of IGC

 Fig. 1 is an example of an input vectors of IGC.

The condition vector, which is an untrainable

variable, does not change when performing

gradient descent. However, the latent vector,

which is a trainable variable, changes with every

gradient descent.

 Initially, the latent vector is initialized with the

average of the latent vector distribution used

during generator training. That is, at first, all

latent vector for each condition are the same.

Later, the latent vector changes to generate an

image close to the input image.

 The leftmost column in Fig. 2 is data

generated for each condition before

performing gradient descent, and the rightmost

column is after gradient descent is performed

900 times. After performing a gradient descent

to some extent, the input condition vector to

generate data with the closest distance to the

input image be the predicted label of the IGC.

1.3 Out of class

 Traditional classifier cannot distinguish data

that does not belong to any class. For example,

in the case of a classifier that classifies the

numbers 0 to 9, the classifier will predict the

class as one of the numbers 0 to 9 even if noise

is input instead of numbers. However, IGC can

measure the degree of Out Of Class for input

data.

𝑜𝑜𝑐 = min
(𝑐𝑛𝑑,𝑙𝑡𝑛)∈𝑆𝑖𝑛_𝑣𝑒𝑐

𝑑𝑖𝑓(𝐺(𝑐𝑛𝑑, 𝑙𝑡𝑛), 𝑑)

 𝑜𝑜𝑐 is degree of Out Of Class. IGC can classify

input data as out of class when 𝑜𝑜𝑐 is more

than a specific value.

1.4 Multi-label classification

 In multi-class classification with one label, IGC

can predict the label of one data by creating

pairs of condition vector and latent vector as

many as the number of classes of the label.

However, in the case of multi-label classification,

the time required for prediction may be too

long because there are so many possible

combinations of condition vectors.

 Instead, the IGC can shorten the time for

prediction by repeating prediction for each

label. That is, when predicting a label, the

condition vector for the label is set as an

untrainable variable, and the condition vectors

for the remaining labels and latent vector are

set as trainable variables to perform a latent

space search. This prediction must be repeated

as many as the number of labels.

2. IGC Experiment

 Tensorflow 2.1 without compile option and

rtx2080ti was used for the experiment. In this

experiment, I used the MNIST handwriting

number dataset [5] (60000 images for training,

10000 images for test, 28x28x1 resolution). I

used conditional activation GAN [6] with LSGAN

[7] adversarial loss to train conditional

generator. The generator receives a 10-

dimensional condition vector and a 256-

dimensional latent vector. All elements of the

latent vector used in training follow the

Gaussian distribution with mean = 0 and

standard deviation = 1. The average FID [8] for

each condition of the generator after training

was measured to be 2.0. Since the MNIST

dataset has one channel and their resolution is

too low for the inception network, the width,

height, and channel are tripled for the FID

evaluation (84 × 84 × 3).

 For prediction of IGC, gradient descent was

performed 100 times for each image, and Adam

optimizer [9] (learning rate = 0.001, beta1=0.9,

beta2 = 0.999) was used. The latent restriction

loss (λ𝐿𝑅) is 0.03 and the 𝑑𝑖𝑓 function is mean

absolute error. All latent vectors are initialized

to 0. 1000 data randomly selected from the

MNIST test dataset were used for the prediction

evaluation.

 First, I tested the change in accuracy according

to the change in the intensity of random

Gaussian noise to test images. The original

image was normalized from -0.5 to 0.5, and

Gaussian noise with an average of 0 and a

standard deviation of 1 was multiplied by sigma

σ and added to the original image, and clipped

-0.5~0.5 to keep the image stay within range.

𝑛𝑜𝑖𝑠𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 = 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 + 𝜎 ∗ 𝑛𝑜𝑖𝑠𝑒

Test Data size 1000 1000 1000

Sigma 0 0.2 0.4

Accuracy (%) 95.1 94.7 91.2

Time(sec) 2526 2535 2586

Fig.3 Correct case of IGC predict. Without noise.

Number 6 in right side is the input image.

Fig.4 Incorrect case of IGC prediction. Number

9 in right side is the input image but IGC

predicted number 8.

Fig.5 Correct case of IGC predict. sigma=0.4.

Noised number 2 in right side is the input

image.

Fig.6 Incorrect case of IGC prediction. Noised

number 8 in right side is the input image but

IGC predicted number 0.

Fig.7 Out of class example. 𝑜𝑜𝑐=0.31031805

Fig.8 Not out of class example.

𝑜𝑜𝑐=0.02960496

Fig. 7 and 8 show 𝑜𝑜𝑐 value for the input

image. For out of class data that does not

belong to any class, it has a large 𝑜𝑜𝑐 value,

but for data belonging to a specific class, it has

a low 𝑜𝑜𝑐 value.

3. Parallel Inverted Generator Classifier

 Gradient descent-based searches are always

likely to converge to local optima, not global

optima. Likewise, in the latent space search,

there is a possibility that the latent vector falls

into the local optima instead of the global

optima. To increase the probability that the IGC

finds a latent vector falling into the global

optima, or a little better local optima, Parallel

IGC can be used. IGC searched one latent vector

per condition, but Parallel IGC searched

multiple latent vectors per condition to perform

the latent space search. Also, latent vectors

corresponding to each condition of IGC are

initialized with the average of the latent vectors

used in conditional GAN training, but parallel

IGC latent vectors are initialized randomly with

the one average latent vector to find different

local optima.

Label Condition Vector Latent Vector

num

0

1

(untrainable)

0

(untrainable)

0

(untrainable)

… 0.0

(trainable)

0.0

(trainable)

…

num

0

1

(untrainable)

0

(untrainable)

0

(untrainable)

… 0.7

(trainable)

-0.2

(trainable)

…

num

0

1

(untrainable)

0

(untrainable)

0

(untrainable)

… -0.6

(trainable)

0.1

(trainable)

…

num

1

0

(untrainable)

1

(untrainable)

0

(untrainable)

… 0.0

(trainable)

0.0

(trainable)

…

num

1

0

(untrainable)

1

(untrainable)

0

(untrainable)

… 0.7

(trainable)

-0.8

(trainable)

…

… … … … … … … …

Fig.7 Example of initialized input vectors of Parallel IGC

4. Parallel IGC Experiments

 All experimental conditions are the same as

2.IGC experiments. The latent vector size per

condition is 5.

Test data size 1000 1000 1000

Sigma 0 0.2 0.4

Accuracy (%) 95.7 95.7 92.3

Time (sec) 4201 4205 4208

Fig.8 Parallel IGC prediction accuracy

Fig.3 Correct case of Parallel IGC predict.

Without noise. Number 9 in right side is the

input image.

5. Conclusion

Inverted Generator Classifier is slow when

predicting because it predicts based on

gradient descent, but accuracy is high and very

robust against adversarial attacks such as noise.

Also, it is impossible to apply the existing

white-box adversarial attack such as FGSM, so

it is safe in terms of security.

6. References

[1] Kihyuk Sohn, Honglak Lee, Xinchen Yan

Learning Structured Output Representation

using Deep Conditional Generative Models

https://papers.nips.cc/paper/5775-learning-

structured-output-representation-using-deep-

conditional-generative-models

[2] Mehdi Mirza, Simon Osindero

“Conditional Generative Adversarial Nets”, arXiv

preprint arXiv:1411.1784, 2014.

https://arxiv.org/abs/1411.1784 (accessed 16

February 2020)

[3] Xiaoyong Yuan, Pan He, Qile Zhu, Xiaolin Li

Adversarial Examples: Attacks and Defenses for

Deep Learning

https://arxiv.org/abs/1712.07107

[4] Ian J. Goodfellow, Jonathon Shlens, Christian

Szegedy

Explaining and Harnessing Adversarial

Examples

https://arxiv.org/abs/1412.6572

[dataset] [5] Yann LeCun, Corinna Cortes,

Christopher J.C. Burges

THE MNIST DATABASE of handwritten digits

http://yann.lecun.com/exdb/mnist/

[6] JeongIk Cho, Kyoungro Yoon

Conditional Activation GAN: Improved Auxiliary

Classifier GAN

http://vixra.org/abs/1912.0204

[7] Xudong Mao, Qing Li, Haoran Xie, Raymond

Y.K. Lau, Zhen Wang, Stephen Paul Smolley

Least Squares Generative Adversarial Networks

The IEEE International Conference on Computer

Vision (ICCV), 2017, pp. 2794-2802

https://ieeexplore.ieee.org/document/8237566

[8] Heusel, Martin and Ramsauer, Hubert and

Unterthiner, Thomas and Nessler, Bernhard and

Hochreiter, Sepp

GANs Trained by a Two Time-Scale Update Rule

Converge to a Local Nash Equilibrium Advances

in Neural Information Processing Systems 30

(NIPS), 2017, pp. 6626-6637

https://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models
https://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models
https://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1712.07107
https://arxiv.org/abs/1412.6572
http://yann.lecun.com/exdb/mnist/
http://vixra.org/abs/1912.0204
https://ieeexplore.ieee.org/document/8237566

https://papers.nips.cc/paper/7240-gans-

trained-by-a-two-time-scale-update-rule-

converge-to-a-local-nash-equilibrium

[9] Diederik P. Kingma, Jimmy Ba

Adam: A Method for Stochastic Optimization

https://arxiv.org/abs/1412.6980

https://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium
https://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium
https://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium
https://arxiv.org/abs/1412.6980

