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Abstract 

 In the field of deep learning, a traditional 

classifier receives input data and passes 

through hidden layers to output predicted 

labels. Conditional generators such as 

Conditional VAE [1] and Conditional GAN [2] 

receive latent vector and condition vector and 

generate data with the desired conditions.  

 In this paper, I propose an Inverted Generator 

Classifier that uses conditional generators to 

find a pair of condition vectors and latent 

vectors that generate the data closest to the 

input data, and predict the label of the input 

data. Inverted Generator Classifier uses a 

trained conditional generator as it is. The 

inverted generator classifier repeatedly 

performs gradient descent by taking the latent 

vector for each condition as a variable and the 

model parameter as a constant to find the data 

closest to the input data. Then, among the data 

generated for each condition, the condition 

vector of the data closest to the input data 

becomes the predicted label. 

 Inverted Generator Classifier is slow to predict 

because prediction is based on gradient 

descent, but has high accuracy and is very 

robust against adversarial attacks [3] such as 

noise. It is also not subject to gradient-descent 

based white-box attacks like FGSM [4]. 

 

Abbreviations 

Inverted Generator Classifier: IGC 

 

1.  Inverted Generator Classifier 

1.1 Training 

 IGC uses trained conditional generators such 

as Conditional VAE and Conditional GAN as 

models. For conditional VAE, a decoder is used, 

and for conditional GAN, a generator is used as 

a model for IGC. No additional training is 

required after training the conditional generator. 

 

1.2 Prediction 

 First, IGC finds a pair of condition vectors and 

latent vectors that generate data closest to 
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input data through the latent space search. 

Then, among the data generated for each 

condition, the condition vector of the data 

closest to the input data becomes the predicted 

label. 

 The latent space search is to perform multiple 

gradient descents taking the latent vector for 

each condition as a variable, the model 

parameter as a constant, and using two losses: 

data difference loss and latent restriction loss. 

Through this, a pair of condition vectors and 

latent vectors that generate data close to the 

input data can be found. 

 The data difference loss is the loss to find the 

latent vector that can generate the data closest 

to the input data for each condition. The latent 

restriction loss is a loss for the latent vector not 

to search beyond the latent space too much. 

 The loss for IGC to perform latent space search 

is as follows. 

𝐿 = 𝐿𝐷𝐷 + λ𝐿𝑅𝐿𝐿𝑅 

𝐿𝐷𝐷 = ∑ 𝑑𝑖𝑓(𝐺(𝑐𝑛𝑑, 𝑙𝑡𝑛), 𝑑)

(𝑐𝑛𝑑,𝑙𝑡𝑛)∈𝑆𝑖𝑛_𝑣𝑒𝑐

 

𝐿𝐿𝑅 = ∑ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑎𝑏𝑠(𝑧_𝑠𝑐𝑜𝑟𝑒(𝑙𝑡𝑛)))
(𝑐𝑛𝑑,𝑙𝑡𝑛)∈𝑆𝑖𝑛_𝑣𝑒𝑐

 

 𝐿 is the loss for IGC to perform latent space 

search through gradient descent. 𝐿𝐷𝐷 is data 

difference loss, and 𝐿𝐿𝑅 is latent restriction loss. 

λ𝐿𝑅 is the weight of latent restriction loss. 

 𝑆𝑖𝑛_𝑣𝑒𝑐  is a set of pairs having a 𝑐𝑛𝑑 

(condition vector) and a  𝑙𝑡𝑛  (latent vector). 

𝑆𝑖𝑛_𝑣𝑒𝑐 has 𝑐𝑛𝑑 corresponding to each class as 

many as the number of classes. For example, if 

there are 10 classes, 𝑆𝑖𝑛_𝑣𝑒𝑐 has 10 pairs with 

different condition vectors. 𝐺  is a trained 

conditional generator. 𝐺(𝑐𝑛𝑑, 𝑙𝑡𝑛) is one data 

generated by 𝐺 by receiving 𝑐𝑛𝑑 and 𝑙𝑡𝑛 . 𝑑 

is one input data. 𝑑𝑖𝑓  is a function that 

measures the difference between two data.  

 𝑧_𝑠𝑐𝑜𝑟𝑒  is a function that calculates the z 

score of each element of the input vector based 

on the distribution of latent vectors used when 

training 𝐺. For example, if 𝐺 was trained by 3 

dimension latent vector, each element of which 

follows a Gaussian distribution (mean=0, 

standard deviation=1), 𝑧_𝑠𝑐𝑜𝑟𝑒([1,2, −3])  is 

[1,2, −3]. 

 𝑎𝑏𝑠 is a function that converts each element 

of the input vector to an absolute value. 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 is a function to find the average of 

each element of the input vector. 

 To reduce L, gradient descent is performed by 

taking the latent vector for each condition as 

variables and the model parameters as 

constants. If gradient descent is repeatedly 

performed a certain number of times, the latent 

space search ends.  

 Then, the difference between the data 

generated for each condition and the input 

data is measured using the 𝑑𝑖𝑓 function, and 

the condition with the smallest difference is 

determined as the predicted label. 

(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑙𝑎𝑏𝑒𝑙, 𝑙𝑎𝑡𝑒𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟)

= arg min
(𝑐𝑛𝑑,𝑙𝑡𝑛)∈𝑆𝑖𝑛_𝑣𝑒𝑐

𝑑𝑖𝑓(𝐺(𝑐𝑛𝑑, 𝑙𝑡𝑛), 𝑑)

 



Label Condition Vector Latent vector 

num 

0 

1 

(untrainable) 

0 

(untrainable) 

0 

(untrainable) 

… 0.3 

(trainable) 

-1.0 

(trainable) 

… 

num 

1 

0 

(untrainable) 

1 

(untrainable) 

0 

(untrainable) 

… -0.2 

(trainable) 

0.1 

(trainable) 

… 

num 

2 

0 

(untrainable) 

0 

(untrainable) 

1 

(untrainable) 

… 0.7 

(trainable) 

-0.3 

(trainable) 

… 

… … … … … … … … 

Fig.1 Example of input vectors of IGC 

 

Fig.2 Prediction process of IGC 

 Fig. 1 is an example of an input vectors of IGC. 

The condition vector, which is an untrainable 

variable, does not change when performing 

gradient descent. However, the latent vector, 

which is a trainable variable, changes with every 

gradient descent. 

 Initially, the latent vector is initialized with the 

average of the latent vector distribution used 

during generator training. That is, at first, all 

latent vector for each condition are the same. 

Later, the latent vector changes to generate an 

image close to the input image. 

 The leftmost column in Fig. 2 is data 

generated for each condition before 

performing gradient descent, and the rightmost 

column is after gradient descent is performed 

900 times. After performing a gradient descent 

to some extent, the input condition vector to 



generate data with the closest distance to the 

input image be the predicted label of the IGC. 

 

1.3 Out of class 

 Traditional classifier cannot distinguish data 

that does not belong to any class. For example, 

in the case of a classifier that classifies the 

numbers 0 to 9, the classifier will predict the 

class as one of the numbers 0 to 9 even if noise 

is input instead of numbers. However, IGC can 

measure the degree of Out Of Class for input 

data. 

𝑜𝑜𝑐 = min
(𝑐𝑛𝑑,𝑙𝑡𝑛)∈𝑆𝑖𝑛_𝑣𝑒𝑐

𝑑𝑖𝑓(𝐺(𝑐𝑛𝑑, 𝑙𝑡𝑛), 𝑑) 

 𝑜𝑜𝑐 is degree of Out Of Class. IGC can classify 

input data as out of class when 𝑜𝑜𝑐 is more 

than a specific value.  

 

1.4 Multi-label classification 

 In multi-class classification with one label, IGC 

can predict the label of one data by creating 

pairs of condition vector and latent vector as 

many as the number of classes of the label. 

However, in the case of multi-label classification, 

the time required for prediction may be too 

long because there are so many possible 

combinations of condition vectors. 

 Instead, the IGC can shorten the time for 

prediction by repeating prediction for each 

label. That is, when predicting a label, the 

condition vector for the label is set as an 

untrainable variable, and the condition vectors 

for the remaining labels and latent vector are 

set as trainable variables to perform a latent 

space search. This prediction must be repeated 

as many as the number of labels. 

 

2. IGC Experiment 

 Tensorflow 2.1 without compile option and 

rtx2080ti was used for the experiment. In this 

experiment, I used the MNIST handwriting 

number dataset [5] (60000 images for training, 

10000 images for test, 28x28x1 resolution). I 

used conditional activation GAN [6] with LSGAN 

[7] adversarial loss to train conditional 

generator. The generator receives a 10-

dimensional condition vector and a 256-

dimensional latent vector. All elements of the 

latent vector used in training follow the 

Gaussian distribution with mean = 0 and 

standard deviation = 1. The average FID [8] for 

each condition of the generator after training 

was measured to be 2.0. Since the MNIST 

dataset has one channel and their resolution is 

too low for the inception network, the width, 

height, and channel are tripled for the FID 

evaluation (84 × 84 × 3). 

  For prediction of IGC, gradient descent was 

performed 100 times for each image, and Adam 

optimizer [9] (learning rate = 0.001, beta1=0.9, 

beta2 = 0.999) was used. The latent restriction 

loss (λ𝐿𝑅) is 0.03 and the 𝑑𝑖𝑓 function is mean 

absolute error. All latent vectors are initialized 

to 0. 1000 data randomly selected from the 

MNIST test dataset were used for the prediction 

evaluation.  

 First, I tested the change in accuracy according 



to the change in the intensity of random 

Gaussian noise to test images. The original 

image was normalized from -0.5 to 0.5, and 

Gaussian noise with an average of 0 and a 

standard deviation of 1 was multiplied by sigma 

σ and added to the original image, and clipped 

-0.5~0.5 to keep the image stay within range.  

 

𝑛𝑜𝑖𝑠𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 = 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 + 𝜎 ∗ 𝑛𝑜𝑖𝑠𝑒 

 

Test Data size 1000 1000 1000 

Sigma 0 0.2 0.4 

Accuracy (%) 95.1 94.7 91.2 

Time(sec) 2526 2535 2586 

 

  

Fig.3 Correct case of IGC predict. Without noise. 

Number 6 in right side is the input image. 

 

 

Fig.4 Incorrect case of IGC prediction. Number 

9 in right side is the input image but IGC 

predicted number 8. 

 

Fig.5 Correct case of IGC predict. sigma=0.4. 

Noised number 2 in right side is the input 

image. 



 

 

Fig.6 Incorrect case of IGC prediction. Noised 

number 8 in right side is the input image but 

IGC predicted number 0. 

 

 

Fig.7 Out of class example. 𝑜𝑜𝑐=0.31031805 

 

 

Fig.8 Not out of class example. 

𝑜𝑜𝑐=0.02960496 

 

Fig. 7 and 8 show 𝑜𝑜𝑐  value for the input 

image. For out of class data that does not 

belong to any class, it has a large 𝑜𝑜𝑐 value, 

but for data belonging to a specific class, it has 

a low 𝑜𝑜𝑐 value. 

 

3. Parallel Inverted Generator Classifier 

 Gradient descent-based searches are always 

likely to converge to local optima, not global 

optima. Likewise, in the latent space search, 

there is a possibility that the latent vector falls 

into the local optima instead of the global 

optima. To increase the probability that the IGC 

finds a latent vector falling into the global 

optima, or a little better local optima, Parallel 

IGC can be used. IGC searched one latent vector 

per condition, but Parallel IGC searched 

multiple latent vectors per condition to perform 

the latent space search. Also, latent vectors 

corresponding to each condition of IGC are 

initialized with the average of the latent vectors 

used in conditional GAN training, but parallel 

IGC latent vectors are initialized randomly with 

the one average latent vector to find different 

local optima. 

 

 

 

 

 

 



Label Condition Vector Latent Vector 

num 

0 

1 

(untrainable) 

0 

(untrainable) 

0 

(untrainable) 

… 0.0 

(trainable) 

0.0 

(trainable) 

… 

num 

0 

1 

(untrainable) 

0 

(untrainable) 

0 

(untrainable) 

… 0.7 

(trainable) 

-0.2 

(trainable) 

… 

num 

0 

1 

(untrainable) 

0 

(untrainable) 

0 

(untrainable) 

… -0.6 

(trainable) 

0.1 

(trainable) 

… 

num 

1 

0 

(untrainable) 

1 

(untrainable) 

0 

(untrainable) 

… 0.0 

(trainable) 

0.0 

(trainable) 

… 

num 

1 

0 

(untrainable) 

1 

(untrainable) 

0 

(untrainable) 

… 0.7 

(trainable) 

-0.8 

(trainable) 

… 

… … … … … … … … 

Fig.7 Example of initialized input vectors of Parallel IGC 

 

4. Parallel IGC Experiments 

 All experimental conditions are the same as 

2.IGC experiments. The latent vector size per 

condition is 5. 

Test data size 1000 1000 1000 

Sigma 0 0.2 0.4 

Accuracy (%) 95.7 95.7 92.3 

Time (sec) 4201 4205 4208 

Fig.8 Parallel IGC prediction accuracy 

 

 

Fig.3 Correct case of Parallel IGC predict. 

Without noise. Number 9 in right side is the 

input image. 

 

 

 

 

 



5. Conclusion 

Inverted Generator Classifier is slow when 

predicting because it predicts based on 

gradient descent, but accuracy is high and very 

robust against adversarial attacks such as noise. 

Also, it is impossible to apply the existing 

white-box adversarial attack such as FGSM, so 

it is safe in terms of security. 
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