
Inverted Conditional Generator Classifier

Slow but accurate and robust gradient-descent based prediction classifier

Jeongik Cho1

Dept. of Computer Science and Engineering1

College of Engineering1

Konkuk University, Seoul, Korea1

jeongik. jo. 01@gmail. com1

Abstract

 Traditional deep neural network classifier

receives input data and passes through hidden

layers to output predicted labels.

 Conditional generator such as Conditional VAE

[1] or Conditional GAN [2] receives latent vector

and condition vector, and generates data with

the desired conditions.

 In this paper, I propose an Inverted

Conditional Generator Classifier that uses

conditional generators to find a pair of

condition vector and latent vector that can

generate the data closest to the input data, and

predict the label of the input data. The inverted

Conditional Generator Classifier uses a trained

conditional generator as it is.

 The inverted conditional generator classifier

repeatedly performs gradient descent by taking

the latent vector for each condition as a

variable and the model parameter as a constant

to find the data closest to the input data. Then,

among the data generated for each condition,

the condition vector of the data closest to the

input data becomes the predicted label.

 Inverted Conditional Generator Classifier is

slow to predict because prediction is based on

gradient descent, but has high accuracy and is

very robust against adversarial attacks [3] such

as noise. In addition, the Inverted Conditional

Generator Classifier can measure the degree of

out-of-class through the difference between the

generated nearest data and input data.

Abbreviations

Inverted Conditional Generator Classifier: ICGC

Deep Neural Network: DNN

1. Introduction

 Traditional deep neural network classifiers can

be very sensitive to small changes in input data

[4]. Using this instability of the DNN classifier,

many successful adversarial attack methods [+]

to deceive the classifier with small data changes

have been studied.

mailto:jeongik.jo.01@gmail.com

 The conditional generator is a generator that

receives condition vector and latent vector, and

generates data with the desired conditions. A

decoder of conditional VAE or a generator of

conditional GAN, or other conditional

generative models can be a conditional

generator.

Conditional
Generator

Latent
Vector

Condition
Vector

Generated data
With input
condition

Fig.1 Conditional Generator

 In this paper, I propose a new classifier called

ICGC that performs gradient descent-based

prediction using a conditional generator, rather

than a traditional deep neural network classifier

that outputs a predicted label through a hidden

layer. ICGC uses conditional generator to find

the pair of condition vector and latent vector

that can generate the data closest to the input

data through gradient descent, and outputs the

condition vector of the data as a predicted label.

 Since ICGC classifies the data by generating

the data closest to the input data, it is not

sensitive to small changes like the traditional

DNN classifier, so it is very resistant to

adversarial attacks.

 The traditional DNN classifier cannot classify

the input data as out-of-class even if it belongs

to out-of-class. For example, in the case of a

DNN classifier that classifies the numbers 0 to

9, when a noise image is input, it cannot be

predicted as out-of-class. However, since ICGC

generates the data closest to the input data

among the data that the conditional generator

can generate, the degree of out-of-class can be

measured through the difference between the

generated data and the input data. Using this,

ICGC can classify the input data as out-of-class

when the degree of out-of-class is more than a

certain value.

2. Inverted Conditional Generator Classifier

2.1 Training

 ICGC uses trained conditional generators such

as Conditional VAE or Conditional GAN as

models. For conditional VAE, a decoder is used,

and for conditional GAN, a generator is used as

a model for ICGC. No additional training is

required after training the conditional generator.

2.2 Prediction

 First, ICGC finds a pair of condition vectors and

latent vectors that generate data closest to

input data through a latent space search. Then,

among the data generated for each condition,

the condition vector of the data closest to the

input data becomes the predicted label.

 The latent space search is to perform multiple

gradient descents taking the latent vector for

each condition as a variable, the model

parameter as a constant, and using two losses:

data difference loss and latent restriction loss.

Through this, a pair of condition vectors and

latent vectors that generate data close to the

input data can be found.

 The data difference loss is the loss to find the

latent vector that can generate the data closest

to the input data for each condition.

 The latent restriction loss is a loss to prevent

the latent vector from searching too far from

the latent space used for conditional generator

training.

 The loss for ICGC to perform latent space

search is as follows.

𝐿 = 𝐿𝐷𝐷 + λ𝐿𝑅𝐿𝐿𝑅

𝐿𝐷𝐷 = ∑ 𝑑𝑖𝑓(𝐺(𝑐𝑛𝑑, 𝑙𝑡𝑛), 𝑖𝑛_𝑑)

(𝑐𝑛𝑑,𝑙𝑡𝑛)∈𝑆𝑖𝑛_𝑣𝑒𝑐

𝐿𝐿𝑅 = ∑ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑎𝑏𝑠(𝑧_𝑠𝑐𝑜𝑟𝑒(𝑙𝑡𝑛)))
(𝑐𝑛𝑑,𝑙𝑡𝑛)∈𝑆𝑖𝑛_𝑣𝑒𝑐

 𝐿 is the loss for ICGC to perform latent space

search through gradient descent. 𝐿𝐷𝐷 is data

difference loss, and 𝐿𝐿𝑅 is latent restriction loss.

λ𝐿𝑅 is the weight of latent restriction loss.

𝑆𝑖𝑛_𝑣𝑒𝑐 is a set of pairs having a 𝑐𝑛𝑑 (condition

vector) and a 𝑙𝑡𝑛 (latent vector). 𝑆𝑖𝑛_𝑣𝑒𝑐 has a

pair of 𝑐𝑛𝑑 corresponding to each class and

𝑙𝑡𝑛 corresponding to the 𝑐𝑛𝑑 as many as the

number of classes. For example, if there are 10

classes, 𝑆𝑖𝑛_𝑣𝑒𝑐 has 10 (𝑐𝑛𝑑, 𝑙𝑡𝑛) pairs. 𝐺 is a

trained conditional generator. 𝐺(𝑐𝑛𝑑, 𝑙𝑡𝑛) is

one data generated by 𝐺 by receiving 𝑐𝑛𝑑

and 𝑙𝑡𝑛 . 𝑖𝑛_𝑑 is one input data. 𝑑𝑖𝑓 is a

function that measures the difference between

two data. 𝑧_𝑠𝑐𝑜𝑟𝑒 is a function that calculates

the z score of each element of the input vector

based on the distribution of latent vector used

when training 𝐺 . For example, when 𝐺 is

trained using a latent vector that follows a

Gaussian distribution with mean 0 and standard

deviation 1, 𝑧_𝑠𝑐𝑜𝑟𝑒([1,2, −3]) is [1,2, −3]. 𝑎𝑏𝑠

is a function that converts each element of the

input vector to an absolute value. 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 is a

function to find the average of each element of

the input vector.

 To reduce 𝐿, gradient descent is performed by

taking the latent vector for each condition as

variables and the model parameters as

constants. If gradient descent is repeatedly

performed a certain number of times, the latent

space search ends. Then, the difference

between the data generated for each condition

and the input data is measured using the 𝑑𝑖𝑓

function, and the condition with the smallest

difference is determined as the predicted label.

(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑙𝑎𝑏𝑒𝑙, 𝑙𝑎𝑡𝑒𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟)

= arg min
(𝑐𝑛𝑑,𝑙𝑡𝑛)∈𝑆𝑖𝑛_𝑣𝑒𝑐

𝑑𝑖𝑓(𝐺(𝑐𝑛𝑑, 𝑙𝑡𝑛), 𝑖𝑛_𝑑)

Label Condition Vector Latent vector

num

0

1

(untrainable)

0

(untrainable)

0

(untrainable)

… 0.3

(trainable)

-1.0

(trainable)

…

num

1

0

(untrainable)

1

(untrainable)

0

(untrainable)

… -0.2

(trainable)

0.1

(trainable)

…

num

2

0

(untrainable)

0

(untrainable)

1

(untrainable)

… 0.7

(trainable)

-0.3

(trainable)

…

… … … … … … … …

Fig.2 Example of input vectors of ICGC

Fig.3 Prediction process of ICGC

Fig.2 is an example of an input vectors of ICGC.

The condition vector, which is an untrainable

variable, does not change when performing

gradient descent. However, the latent vector,

which is a trainable variable, changes with every

gradient descent.

 Fig.3 shows the process of ICGC prediction.

Initially, all latent vector is initialized with the

average of the latent vector distribution used

during generator training. That is, at first, all

latent vector for each condition are the same.

Later, the latent vector changes to generate an

image close to the input image. The leftmost

column in Fig.3 is data generated for each

condition before performing gradient descent,

and the rightmost column is after gradient

descent is performed 900 times. After

performing a gradient descent to some extent,

the input condition vector to generate data

with the closest distance to the input image be

the predicted label of the ICGC.

2.3 Out-of-class

 Traditional DNN classifier cannot distinguish

data that does not belong to any class. For

example, in the case of a classifier that classifies

the numbers 0 to 9, the classifier will predict

the class as one of the numbers 0 to 9 even if

noise is input instead of numbers. However,

ICGC can measure the degree of out-of-class for

input data.

𝑜𝑜𝑐 = min
(𝑐𝑛𝑑,𝑙𝑡𝑛)∈𝑆𝑖𝑛_𝑣𝑒𝑐

𝑑𝑖𝑓(𝐺(𝑐𝑛𝑑, 𝑙𝑡𝑛), 𝑖𝑛_𝑑)

 𝑜𝑜𝑐 is the degree of out-of-class. ICGC can

classify input data as out-of-class when 𝑜𝑜𝑐 is

more than a specific value.

2.4 Multi-label classification

 In multi-class classification with one label,

ICGC can predict the label of one data by

creating pairs of condition vector and latent

vector as many as the number of classes of the

label.

 However, in the case of multi-label

classification, the time required for prediction

may be too long because there are so many

possible combinations of condition vectors.

Instead, the ICGC can shorten the time for

prediction by repeating prediction for each

label. That is, when performing prediction on

one label, the condition vector for the label to

be predicted is set as an untrainable variable,

and the condition vectors for the remaining

labels and latent vector are set as trainable

variables to perform latent space search. This

prediction must be repeated as many as the

number of labels.

2.5 Parallel ICGC

 Gradient descent-based search always has the

potential to converge to local optima, not

global optima. Likewise, there is a possibility

that during the latent space search by ICGC, the

latent vector falls into the local optima, not the

global optima.

 To increase the probability that the ICGC finds

a latent vector falling into the global optima, or

even a little better local optima, Parallel ICGC

can be used. ICGC searched one latent vector

per condition, but Parallel ICGC searched

multiple latent vectors per condition to perform

a latent space search. In addition, a latent vector

corresponding to each condition of ICGC is

initialized with the average of latent vectors

used in conditional generator training, but

parallel ICGC latent vectors are randomly

initialized with the latent vector of ICGC to find

different local optima.

Label Condition Vector Latent Vector

num

0

1

(untrainable)

0

(untrainable)

0

(untrainable)

… 0.0 (average)

(trainable)

0.0 (average)

(trainable)

…

num

0

1

(untrainable)

0

(untrainable)

0

(untrainable)

… 0.7 (random)

(trainable)

-0.2 (random)

(trainable)

…

num

0

1

(untrainable)

0

(untrainable)

0

(untrainable)

… -0.6 (random)

(trainable)

0.1 (random)

(trainable)

…

num

1

0

(untrainable)

1

(untrainable)

0

(untrainable)

… 0.0 (average)

(trainable)

0.0 (average)

(trainable)

…

num

1

0

(untrainable)

1

(untrainable)

0

(untrainable)

… 0.7 (random)

(trainable)

-0.8 (random)

(trainable)

…

… … … … … … … …

Fig.4 Example of initialized input vectors of Parallel ICGC

3. Experiment

 Tensorflow 2.1 without compile option and

rtx2080ti was used for the experiment. In this

experiment, I used the MNIST handwriting

number dataset [5] (60000 images for training,

10000 images for test, 28x28x1 resolution).

3.1 Training

 I used conditional activation GAN [6] with

LSGAN [7] adversarial loss to train conditional

generator. The generator receives a 10-

dimensional condition vector and a 256-

dimensional latent vector. All elements of the

latent vector used in training follow the

Gaussian distribution with mean = 0 and

standard deviation = 1. The average FID [8] for

each condition of the generator after training

was measured to be 2.0. Since the MNIST

dataset has one channel and their resolution is

too low for the inception network, the width,

height, and channel are tripled for the FID

evaluation (84 × 84 × 3).

3.2 ICGC evaluation

 For prediction of ICGC, gradient descent was

performed 100 times for each image, and Adam

optimizer [9] (learning rate = 0.001, beta1=0.9,

beta2 = 0.999) was used. The latent restriction

loss (λ𝐿𝑅) is 0.03 and the 𝑑𝑖𝑓 function is mean

absolute error. 1000 data randomly selected

from the MNIST test dataset were used for the

prediction evaluation.

3.2.1 FGSM test

 To show that ICGC is resistant to adversarial

attacks, I experimented with FGSM attack [10].

FGSM noise is generated in the direction that

the loss L for the label predicted by ICGC for

the input data increases and the loss L for the

other labels decreases.

𝐹𝐺𝑆𝑀 𝑙𝑜𝑠𝑠

= 𝐿𝐷𝐷 + λ𝐿𝑅𝐿𝐿𝑅

− 2

× (𝑑𝑖𝑓(𝐺(𝑝_𝑐𝑛𝑑, 𝑝_𝑙𝑡𝑛), 𝑖𝑛_𝑑)

+ λ𝐿𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑎𝑏𝑠(𝑧_𝑠𝑐𝑜𝑟𝑒(𝑝_𝑙𝑡𝑛))))

𝐹𝐺𝑆𝑀 𝑛𝑜𝑖𝑠𝑒 = −𝑠𝑔𝑛 (
∆𝐹𝐺𝑆𝑀 𝑙𝑜𝑠𝑠

∆𝑖𝑛_𝑑
) ÷ 2

 𝑝_𝑐𝑛𝑑 and 𝑝_𝑙𝑡𝑛 are condition vectors and

latent vectors for generating data closest to

input data, respectively. 𝑠𝑔𝑛 is the sign

function.

 The original image was normalized to -0.5 to

0.5, FGSM noise was multiplied by sigma,

added to the original image, and clipped to

maintain the range of -0.5 to 0.5.

𝑛𝑜𝑖𝑠𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 =

𝑐𝑙𝑖𝑝(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 + 𝜎 ∗ 𝐹𝐺𝑆𝑀 𝑛𝑜𝑖𝑠𝑒)

Fig.6 Accuracy by latent vector per condition vector, and sigma

Fig.7 original image, FGSM noise, noised image

in turn. 𝜎 = 0.4

Fig.8 Generated images to predict noised image

of Fig.7. 𝑙𝑡𝑛/𝑐𝑛𝑑 = 1

Latent vector size / Condition vector size 1 1 1 10 10 10

Sigma 0 0.2 0.4 0 0.2 0.4

Accuracy(%) 95.8 93.3 88.7 96.1 95.5 93.7

Fig.9 original image, FGSM noise, noised image

in turn. 𝜎 = 0.4

Fig.10 Generated images to predict noised

image of Fig.9. 𝑙𝑡𝑛/𝑐𝑛𝑑 = 10

 The FGSM noise of the DNN classifier is

generally unrecognizable noise, but the ICGC

FGSM noise is very similar to the inversion of

the input image. In addition, even at high sigma

values, the accuracy hardly decreases.

3.2.2 Gaussian noise test

 To show that ICGC is robust against any type

of adversarial attack, I experimented with a

Gaussian noise attack. The original image was

normalized from -0.5 to 0.5, and Gaussian noise

with an average of 0 and a standard deviation

of 1 was multiplied by sigma σ and added to

the original image, and clipped -0.5~0.5 to

keep the image stay within range.

𝑛𝑜𝑖𝑠𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 =

𝑐𝑙𝑖𝑝(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 + 𝜎 ∗ 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛_𝑛𝑜𝑖𝑠𝑒)

Fig.11 MNIST images with 𝜎 = 0.0, 𝜎 = 0.2, 𝜎 = 0.4 in turn

Fig.12 Accuracy by latent vector per condition vector, and sigma

Fig.13 Correct case of ICGC prediction. 𝜎 = 0.0.

Number 6 on the right side is the input image.

Fig.14 Incorrect case of ICGC prediction. 𝜎 =

0.0. Number 9 on the right side is the input

image but ICGC predicted number 8.

Latent vector size / Condition vector size 1 1 1 10 10 10

Sigma 0.0 0.2 0.4 0.0 0.2 0.4

Accuracy(%) 95.1 94.7 91.2 96.1 96.0 93.4

Time(sec) 2526 2535 2586 6393 6426 6484

Fig.15 Correct case of ICGC prediction. 𝜎 = 0.4.

Noised number 2 on the right side is the input

image.

Fig.16 Incorrect case of ICGC prediction. 𝜎 =

0.4. Noised number 8 on the right side is the

input image but ICGC predicted number 0.

Fig.17 Correct case of Parallel ICGC predict. 𝜎 =

0.0. Number 9 on the right side is the input

image.

 The table in Fig.12 shows the difference in

accuracy between ICGC and parallel ICGC

according to the degree of noise. In particular,

in the case of parallel ICGC using 10 latent

vectors per condition vector, there is almost no

difference in accuracy between 𝜎 = 0.0 and

𝜎 = 0.2.

3.2.3 Out-of-class test

Fig.18 Out-of-class example. 𝑜𝑜𝑐=0.31031805

Fig.19 Not out-of-class example.

𝑜𝑜𝑐=0.02960496

Fig.18 and 19 show 𝑜𝑜𝑐 value for the input

image. For out-of-class data that does not

belong to any class, it has a large 𝑜𝑜𝑐 value,

but for data belonging to a specific class, it has

a low 𝑜𝑜𝑐 value.

4. Conclusion

 ICGC is slow when predicting because it

predicts based on gradient descent, but

accuracy is high and very robust against

adversarial attacks.

++DNN classifier compare

++ooc supplement

++multi-label test

++black box test

5. References

++adversarial attack references

[1] Kihyuk Sohn, Honglak Lee, Xinchen Yan

Learning Structured Output Representation

using Deep Conditional Generative Models

https://papers.nips.cc/paper/5775-learning-

structured-output-representation-using-deep-

conditional-generative-models

[2] Mehdi Mirza, Simon Osindero

“Conditional Generative Adversarial Nets”, arXiv

preprint arXiv:1411.1784, 2014.

https://arxiv.org/abs/1411.1784 (accessed 16

February 2020)

[3] Xiaoyong Yuan, Pan He, Qile Zhu, Xiaolin Li

Adversarial Examples: Attacks and Defenses for

Deep Learning

https://arxiv.org/abs/1712.07107

[4] Christian Szegedy, Wojciech Zaremba, Ilya

Sutskever, Joan Bruna, Dumitru Erhan, Ian

Goodfellow, Rob Fergus

Intriguing properties of neural networks

https://arxiv.org/abs/1312.6199

[dataset] [5] Yann LeCun, Corinna Cortes,

Christopher J.C. Burges

THE MNIST DATABASE of handwritten digits

http://yann.lecun.com/exdb/mnist/

[6] JeongIk Cho, Kyoungro Yoon

Conditional Activation GAN: Improved Auxiliary

Classifier GAN

http://vixra.org/abs/1912.0204

[7] Xudong Mao, Qing Li, Haoran Xie, Raymond

Y.K. Lau, Zhen Wang, Stephen Paul Smolley

Least Squares Generative Adversarial Networks

The IEEE International Conference on Computer

https://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models
https://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models
https://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1712.07107
https://arxiv.org/abs/1312.6199
http://yann.lecun.com/exdb/mnist/
http://vixra.org/abs/1912.0204

Vision (ICCV), 2017, pp. 2794-2802

https://ieeexplore.ieee.org/document/8237566

[8] Heusel, Martin and Ramsauer, Hubert and

Unterthiner, Thomas and Nessler, Bernhard and

Hochreiter, Sepp

GANs Trained by a Two Time-Scale Update Rule

Converge to a Local Nash Equilibrium Advances

in Neural Information Processing Systems 30

(NIPS), 2017, pp. 6626-6637

https://papers.nips.cc/paper/7240-gans-

trained-by-a-two-time-scale-update-rule-

converge-to-a-local-nash-equilibrium

[9] Diederik P. Kingma, Jimmy Ba

Adam: A Method for Stochastic Optimization

https://arxiv.org/abs/1412.6980

[10] Ian J. Goodfellow, Jonathon Shlens,

Christian Szegedy

Explaining and Harnessing Adversarial

Examples

https://arxiv.org/abs/1412.6572

https://ieeexplore.ieee.org/document/8237566
https://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium
https://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium
https://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6572

