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Abstract 

 Traditional deep neural network classifier 

receives input data and passes through hidden 

layers to output predicted labels. 

 Conditional generator such as Conditional VAE 

[1] or Conditional GAN [2] receives latent vector 

and condition vector, and generates data with 

the desired conditions. 

 In this paper, I propose an Inverted  

Conditional Generator Classifier that uses 

conditional generators to find a pair of 

condition vector and latent vector that can 

generate the data closest to the input data, and 

predict the label of the input data. The inverted 

Conditional Generator Classifier uses a trained 

conditional generator as it is. 

 The inverted conditional generator classifier 

repeatedly performs gradient descent by taking 

the latent vector for each condition as a 

variable and the model parameter as a constant 

to find the data closest to the input data. Then, 

among the data generated for each condition, 

the condition vector of the data closest to the 

input data becomes the predicted label. 

 Inverted Conditional Generator Classifier is 

slow to predict because prediction is based on 

gradient descent, but has high accuracy and is 

very robust against adversarial attacks [3] such 

as noise. In addition, the Inverted Conditional 

Generator Classifier can measure the degree of 

out-of-class through the difference between the 

generated nearest data and input data. 

 

Abbreviations 

Inverted Conditional Generator Classifier: ICGC 

Deep Neural Network: DNN 

 

1. Introduction 

 Traditional deep neural network classifiers can 

be very sensitive to small changes in input data 

[4]. Using this instability of the DNN classifier, 

many successful adversarial attack methods [+] 

to deceive the classifier with small data changes 

have been studied.  
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 The conditional generator is a generator that 

receives condition vector and latent vector, and 

generates data with the desired conditions. A 

decoder of conditional VAE or a generator of 

conditional GAN, or other conditional 

generative models can be a conditional 

generator. 
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Fig.1 Conditional Generator 

 

 In this paper, I propose a new classifier called 

ICGC that performs gradient descent-based 

prediction using a conditional generator, rather 

than a traditional deep neural network classifier 

that outputs a predicted label through a hidden 

layer. ICGC uses conditional generator to find 

the pair of condition vector and latent vector 

that can generate the data closest to the input 

data through gradient descent, and outputs the 

condition vector of the data as a predicted label. 

 Since ICGC classifies the data by generating 

the data closest to the input data, it is not 

sensitive to small changes like the traditional 

DNN classifier, so it is very resistant to 

adversarial attacks. 

 The traditional DNN classifier cannot classify 

the input data as out-of-class even if it belongs 

to out-of-class. For example, in the case of a 

DNN classifier that classifies the numbers 0 to 

9, when a noise image is input, it cannot be 

predicted as out-of-class. However, since ICGC 

generates the data closest to the input data 

among the data that the conditional generator 

can generate, the degree of out-of-class can be 

measured through the difference between the 

generated data and the input data. Using this, 

ICGC can classify the input data as out-of-class 

when the degree of out-of-class is more than a 

certain value.  

 

2.  Inverted Conditional Generator Classifier 

2.1 Training 

 ICGC uses trained conditional generators such 

as Conditional VAE or Conditional GAN as 

models. For conditional VAE, a decoder is used, 

and for conditional GAN, a generator is used as 

a model for ICGC. No additional training is 

required after training the conditional generator. 

 

2.2 Prediction 

 First, ICGC finds a pair of condition vectors and 

latent vectors that generate data closest to 

input data through a latent space search. Then, 



among the data generated for each condition, 

the condition vector of the data closest to the 

input data becomes the predicted label.  

 The latent space search is to perform multiple 

gradient descents taking the latent vector for 

each condition as a variable, the model 

parameter as a constant, and using two losses: 

data difference loss and latent restriction loss. 

Through this, a pair of condition vectors and 

latent vectors that generate data close to the 

input data can be found. 

 The data difference loss is the loss to find the 

latent vector that can generate the data closest 

to the input data for each condition. 

 The latent restriction loss is a loss to prevent 

the latent vector from searching too far from 

the latent space used for conditional generator 

training. 

 The loss for ICGC to perform latent space 

search is as follows. 

 

𝐿 = 𝐿𝐷𝐷 + λ𝐿𝑅𝐿𝐿𝑅 

𝐿𝐷𝐷 = ∑ 𝑑𝑖𝑓(𝐺(𝑐𝑛𝑑, 𝑙𝑡𝑛), 𝑖𝑛_𝑑)

(𝑐𝑛𝑑,𝑙𝑡𝑛)∈𝑆𝑖𝑛_𝑣𝑒𝑐

 

𝐿𝐿𝑅 = ∑ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑎𝑏𝑠(𝑧_𝑠𝑐𝑜𝑟𝑒(𝑙𝑡𝑛)))
(𝑐𝑛𝑑,𝑙𝑡𝑛)∈𝑆𝑖𝑛_𝑣𝑒𝑐

 

 

 𝐿 is the loss for ICGC to perform latent space 

search through gradient descent. 𝐿𝐷𝐷 is data 

difference loss, and 𝐿𝐿𝑅 is latent restriction loss. 

λ𝐿𝑅  is the weight of latent restriction loss. 

𝑆𝑖𝑛_𝑣𝑒𝑐 is a set of pairs having a 𝑐𝑛𝑑 (condition 

vector) and a 𝑙𝑡𝑛 (latent vector). 𝑆𝑖𝑛_𝑣𝑒𝑐  has a 

pair of 𝑐𝑛𝑑 corresponding to each class and 

𝑙𝑡𝑛 corresponding to the 𝑐𝑛𝑑 as many as the 

number of classes. For example, if there are 10 

classes, 𝑆𝑖𝑛_𝑣𝑒𝑐  has 10 (𝑐𝑛𝑑, 𝑙𝑡𝑛) pairs. 𝐺 is a 

trained conditional generator. 𝐺(𝑐𝑛𝑑, 𝑙𝑡𝑛)  is 

one data generated by 𝐺  by receiving 𝑐𝑛𝑑 

and 𝑙𝑡𝑛 . 𝑖𝑛_𝑑  is one input data. 𝑑𝑖𝑓  is a 

function that measures the difference between 

two data. 𝑧_𝑠𝑐𝑜𝑟𝑒 is a function that calculates 

the z score of each element of the input vector 

based on the distribution of latent vector used 

when training 𝐺 . For example, when 𝐺  is 

trained using a latent vector that follows a 

Gaussian distribution with mean 0 and standard 

deviation 1, 𝑧_𝑠𝑐𝑜𝑟𝑒([1,2, −3]) is [1,2, −3]. 𝑎𝑏𝑠 

is a function that converts each element of the 

input vector to an absolute value. 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 is a 

function to find the average of each element of 

the input vector. 

 To reduce 𝐿, gradient descent is performed by 

taking the latent vector for each condition as 

variables and the model parameters as 

constants. If gradient descent is repeatedly 

performed a certain number of times, the latent 

space search ends. Then, the difference 

between the data generated for each condition 

and the input data is measured using the 𝑑𝑖𝑓 

function, and the condition with the smallest 

difference is determined as the predicted label. 

  

(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑙𝑎𝑏𝑒𝑙, 𝑙𝑎𝑡𝑒𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟)

= arg min
(𝑐𝑛𝑑,𝑙𝑡𝑛)∈𝑆𝑖𝑛_𝑣𝑒𝑐

𝑑𝑖𝑓(𝐺(𝑐𝑛𝑑, 𝑙𝑡𝑛), 𝑖𝑛_𝑑)

 



Label Condition Vector Latent vector 

num 

0 

1 

(untrainable) 

0 

(untrainable) 

0 

(untrainable) 

… 0.3 

(trainable) 

-1.0 

(trainable) 

… 

num 

1 

0 

(untrainable) 

1 

(untrainable) 

0 

(untrainable) 

… -0.2 

(trainable) 

0.1 

(trainable) 

… 

num 

2 

0 

(untrainable) 

0 

(untrainable) 

1 

(untrainable) 

… 0.7 

(trainable) 

-0.3 

(trainable) 

… 

… … … … … … … … 

Fig.2 Example of input vectors of ICGC 

 

 

Fig.3 Prediction process of ICGC 

 

Fig.2 is an example of an input vectors of ICGC. 

The condition vector, which is an untrainable 

variable, does not change when performing 

gradient descent. However, the latent vector, 

which is a trainable variable, changes with every 

gradient descent. 

 Fig.3 shows the process of ICGC prediction. 

Initially, all latent vector is initialized with the 

average of the latent vector distribution used 

during generator training. That is, at first, all 

latent vector for each condition are the same. 

Later, the latent vector changes to generate an 



image close to the input image. The leftmost 

column in Fig.3 is data generated for each 

condition before performing gradient descent, 

and the rightmost column is after gradient 

descent is performed 900 times. After 

performing a gradient descent to some extent, 

the input condition vector to generate data 

with the closest distance to the input image be 

the predicted label of the ICGC. 

 

2.3 Out-of-class 

 Traditional DNN classifier cannot distinguish 

data that does not belong to any class. For 

example, in the case of a classifier that classifies 

the numbers 0 to 9, the classifier will predict 

the class as one of the numbers 0 to 9 even if 

noise is input instead of numbers. However, 

ICGC can measure the degree of out-of-class for 

input data. 

 

𝑜𝑜𝑐 = min
(𝑐𝑛𝑑,𝑙𝑡𝑛)∈𝑆𝑖𝑛_𝑣𝑒𝑐

𝑑𝑖𝑓(𝐺(𝑐𝑛𝑑, 𝑙𝑡𝑛), 𝑖𝑛_𝑑) 

 

 𝑜𝑜𝑐  is the degree of out-of-class. ICGC can 

classify input data as out-of-class when 𝑜𝑜𝑐 is 

more than a specific value. 

 

2.4 Multi-label classification 

 In multi-class classification with one label, 

ICGC can predict the label of one data by 

creating pairs of condition vector and latent 

vector as many as the number of classes of the 

label.  

 However, in the case of multi-label 

classification, the time required for prediction 

may be too long because there are so many 

possible combinations of condition vectors. 

Instead, the ICGC can shorten the time for 

prediction by repeating prediction for each 

label. That is, when performing prediction on 

one label, the condition vector for the label to 

be predicted is set as an untrainable variable, 

and the condition vectors for the remaining 

labels and latent vector are set as trainable 

variables to perform latent space search. This 

prediction must be repeated as many as the 

number of labels. 

 

2.5 Parallel ICGC 

 Gradient descent-based search always has the 

potential to converge to local optima, not 

global optima. Likewise, there is a possibility 

that during the latent space search by ICGC, the 

latent vector falls into the local optima, not the 

global optima. 

 To increase the probability that the ICGC finds 

a latent vector falling into the global optima, or 

even a little better local optima, Parallel ICGC 

can be used. ICGC searched one latent vector 

per condition, but Parallel ICGC searched 

multiple latent vectors per condition to perform 

a latent space search. In addition, a latent vector 

corresponding to each condition of ICGC is 

initialized with the average of latent vectors 

used in conditional generator training, but 

parallel ICGC latent vectors are randomly 

initialized with the latent vector of ICGC to find 

different local optima. 



 

Label Condition Vector Latent Vector 

num 

0 

1 

(untrainable) 

0 

(untrainable) 

0 

(untrainable) 

… 0.0 (average) 

(trainable) 

0.0 (average) 

(trainable) 

… 

num 

0 

1 

(untrainable) 

0 

(untrainable) 

0 

(untrainable) 

… 0.7 (random) 

(trainable) 

-0.2 (random) 

(trainable) 

… 

num 

0 

1 

(untrainable) 

0 

(untrainable) 

0 

(untrainable) 

… -0.6 (random) 

(trainable) 

0.1 (random) 

(trainable) 

… 

num 

1 

0 

(untrainable) 

1 

(untrainable) 

0 

(untrainable) 

… 0.0 (average) 

(trainable) 

0.0 (average) 

(trainable) 

… 

num 

1 

0 

(untrainable) 

1 

(untrainable) 

0 

(untrainable) 

… 0.7 (random) 

(trainable) 

-0.8 (random) 

(trainable) 

… 

… … … … … … … … 

Fig.4 Example of initialized input vectors of Parallel ICGC 

 

3. Experiment 

 Tensorflow 2.1 without compile option and 

rtx2080ti was used for the experiment. In this 

experiment, I used the MNIST handwriting 

number dataset [5] (60000 images for training, 

10000 images for test, 28x28x1 resolution). 

 

3.1 Training 

 I used conditional activation GAN [6] with 

LSGAN [7] adversarial loss to train conditional 

generator. The generator receives a 10-

dimensional condition vector and a 256-

dimensional latent vector. All elements of the 

latent vector used in training follow the 

Gaussian distribution with mean = 0 and 

standard deviation = 1. The average FID [8] for 

each condition of the generator after training 

was measured to be 2.0. Since the MNIST 

dataset has one channel and their resolution is 

too low for the inception network, the width, 

height, and channel are tripled for the FID 

evaluation (84 × 84 × 3). 

 

3.2 ICGC evaluation 

 For prediction of ICGC, gradient descent was 

performed 100 times for each image, and Adam 

optimizer [9] (learning rate = 0.001, beta1=0.9, 

beta2 = 0.999) was used. The latent restriction 

loss (λ𝐿𝑅) is 0.03 and the 𝑑𝑖𝑓 function is mean 

absolute error. 1000 data randomly selected 

from the MNIST test dataset were used for the 

prediction evaluation. 

 

3.2.1 FGSM test 

 To show that ICGC is resistant to adversarial 

attacks, I experimented with FGSM attack [10]. 

FGSM noise is generated in the direction that 



the loss L for the label predicted by ICGC for 

the input data increases and the loss L for the 

other labels decreases. 

𝐹𝐺𝑆𝑀 𝑙𝑜𝑠𝑠

= 𝐿𝐷𝐷 + λ𝐿𝑅𝐿𝐿𝑅

− 2

× (𝑑𝑖𝑓(𝐺(𝑝_𝑐𝑛𝑑, 𝑝_𝑙𝑡𝑛), 𝑖𝑛_𝑑)

+ λ𝐿𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑎𝑏𝑠(𝑧_𝑠𝑐𝑜𝑟𝑒(𝑝_𝑙𝑡𝑛)))) 

𝐹𝐺𝑆𝑀 𝑛𝑜𝑖𝑠𝑒 = −𝑠𝑔𝑛 (
∆𝐹𝐺𝑆𝑀 𝑙𝑜𝑠𝑠

∆𝑖𝑛_𝑑
) ÷ 2 

 

 𝑝_𝑐𝑛𝑑  and 𝑝_𝑙𝑡𝑛 are condition vectors and 

latent vectors for generating data closest to 

input data, respectively. 𝑠𝑔𝑛  is the sign 

function. 

 The original image was normalized to -0.5 to 

0.5, FGSM noise was multiplied by sigma, 

added to the original image, and clipped to 

maintain the range of -0.5 to 0.5. 

𝑛𝑜𝑖𝑠𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 = 

𝑐𝑙𝑖𝑝(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 + 𝜎 ∗ 𝐹𝐺𝑆𝑀 𝑛𝑜𝑖𝑠𝑒) 

 

 

Fig.6 Accuracy by latent vector per condition vector, and sigma 

 

 

Fig.7 original image, FGSM noise, noised image 

in turn. 𝜎 = 0.4 

 

 

Fig.8 Generated images to predict noised image 

of Fig.7. 𝑙𝑡𝑛/𝑐𝑛𝑑 = 1 

Latent vector size / Condition vector size 1 1 1 10 10 10

Sigma 0 0.2 0.4 0 0.2 0.4

Accuracy(%) 95.8 93.3 88.7 96.1 95.5 93.7



 

Fig.9 original image, FGSM noise, noised image 

in turn. 𝜎 = 0.4 

 

 

Fig.10 Generated images to predict noised 

image of Fig.9. 𝑙𝑡𝑛/𝑐𝑛𝑑 = 10 

 The FGSM noise of the DNN classifier is 

generally unrecognizable noise, but the ICGC 

FGSM noise is very similar to the inversion of 

the input image. In addition, even at high sigma 

values, the accuracy hardly decreases. 

 

3.2.2 Gaussian noise test 

 To show that ICGC is robust against any type 

of adversarial attack, I experimented with a 

Gaussian noise attack. The original image was 

normalized from -0.5 to 0.5, and Gaussian noise 

with an average of 0 and a standard deviation 

of 1 was multiplied by sigma σ and added to 

the original image, and clipped -0.5~0.5 to 

keep the image stay within range.  

 

𝑛𝑜𝑖𝑠𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 = 

𝑐𝑙𝑖𝑝(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 + 𝜎 ∗ 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛_𝑛𝑜𝑖𝑠𝑒) 

 

 

 

Fig.11 MNIST images with 𝜎 = 0.0, 𝜎 = 0.2, 𝜎 = 0.4 in turn 

 



 

Fig.12 Accuracy by latent vector per condition vector, and sigma 

 

  

Fig.13 Correct case of ICGC prediction. 𝜎 = 0.0. 

Number 6 on the right side is the input image. 

 

 

Fig.14 Incorrect case of ICGC prediction. 𝜎 =

0.0. Number 9 on the right side is the input 

image but ICGC predicted number 8. 

Latent vector size / Condition vector size 1 1 1 10 10 10

Sigma 0.0 0.2 0.4 0.0 0.2 0.4

Accuracy(%) 95.1 94.7 91.2 96.1 96.0 93.4

Time(sec) 2526 2535 2586 6393 6426 6484



 

Fig.15 Correct case of ICGC prediction. 𝜎 = 0.4. 

Noised number 2 on the right side is the input 

image. 

 

 

Fig.16 Incorrect case of ICGC prediction. 𝜎 =

0.4. Noised number 8 on the right side is the 

input image but ICGC predicted number 0. 

 

 

Fig.17 Correct case of Parallel ICGC predict. 𝜎 =

0.0. Number 9 on the right side is the input 

image. 

 

 The table in Fig.12 shows the difference in 

accuracy between ICGC and parallel ICGC 

according to the degree of noise. In particular, 

in the case of parallel ICGC using 10 latent 

vectors per condition vector, there is almost no 

difference in accuracy between 𝜎 = 0.0  and 

𝜎 = 0.2.  

 

3.2.3 Out-of-class test 

 

Fig.18 Out-of-class example. 𝑜𝑜𝑐=0.31031805 

 

 

Fig.19 Not out-of-class example. 

𝑜𝑜𝑐=0.02960496 

 



Fig.18 and 19 show 𝑜𝑜𝑐  value for the input 

image. For out-of-class data that does not 

belong to any class, it has a large 𝑜𝑜𝑐 value, 

but for data belonging to a specific class, it has 

a low 𝑜𝑜𝑐 value. 

 

4. Conclusion 

 ICGC is slow when predicting because it 

predicts based on gradient descent, but 

accuracy is high and very robust against 

adversarial attacks. 

 

++DNN classifier compare 

++ooc supplement 

++multi-label test 

++black box test  

 

5. References 

++adversarial attack references 

[1] Kihyuk Sohn, Honglak Lee, Xinchen Yan 

Learning Structured Output Representation 

using Deep Conditional Generative Models 

https://papers.nips.cc/paper/5775-learning-

structured-output-representation-using-deep-

conditional-generative-models 

 

[2] Mehdi Mirza, Simon Osindero 

“Conditional Generative Adversarial Nets”, arXiv 

preprint arXiv:1411.1784, 2014. 

https://arxiv.org/abs/1411.1784 (accessed 16 

February 2020) 

 

[3] Xiaoyong Yuan, Pan He, Qile Zhu, Xiaolin Li 

Adversarial Examples: Attacks and Defenses for 

Deep Learning 

https://arxiv.org/abs/1712.07107 

 

[4] Christian Szegedy, Wojciech Zaremba, Ilya 

Sutskever, Joan Bruna, Dumitru Erhan, Ian 

Goodfellow, Rob Fergus 

Intriguing properties of neural networks 

https://arxiv.org/abs/1312.6199 

 

[dataset] [5] Yann LeCun, Corinna Cortes, 

Christopher J.C. Burges 

THE MNIST DATABASE of handwritten digits 

http://yann.lecun.com/exdb/mnist/ 

 

[6] JeongIk Cho, Kyoungro Yoon 

Conditional Activation GAN: Improved Auxiliary 

Classifier GAN 

http://vixra.org/abs/1912.0204 

 

[7] Xudong Mao, Qing Li, Haoran Xie, Raymond 

Y.K. Lau, Zhen Wang, Stephen Paul Smolley 

Least Squares Generative Adversarial Networks 

The IEEE International Conference on Computer 

https://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models
https://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models
https://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1712.07107
https://arxiv.org/abs/1312.6199
http://yann.lecun.com/exdb/mnist/
http://vixra.org/abs/1912.0204


Vision (ICCV), 2017, pp. 2794-2802 

https://ieeexplore.ieee.org/document/8237566 

 

[8] Heusel, Martin and Ramsauer, Hubert and 

Unterthiner, Thomas and Nessler, Bernhard and 

Hochreiter, Sepp  

GANs Trained by a Two Time-Scale Update Rule 

Converge to a Local Nash Equilibrium Advances 

in Neural Information Processing Systems 30 

(NIPS), 2017, pp. 6626-6637  

https://papers.nips.cc/paper/7240-gans-

trained-by-a-two-time-scale-update-rule-

converge-to-a-local-nash-equilibrium 

 

[9] Diederik P. Kingma, Jimmy Ba  

Adam: A Method for Stochastic Optimization 

https://arxiv.org/abs/1412.6980 

 

[10] Ian J. Goodfellow, Jonathon Shlens, 

Christian Szegedy 

Explaining and Harnessing Adversarial 

Examples 

https://arxiv.org/abs/1412.6572 

 

 

https://ieeexplore.ieee.org/document/8237566
https://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium
https://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium
https://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6572

