
Inverted Conditional Generator Classifier

Slow but accurate and robust gradient-descent based prediction classifier

Jeongik Cho1

Dept. of Computer Science and Engineering1

College of Engineering1

Konkuk University, Seoul, Korea1

jeongik. jo. 01@gmail. com1

Abstract

 Traditional deep neural network classifier

receives input data and passes through hidden

layers to output predicted labels. In this paper,

I propose an Inverted Conditional Generator

Classifier that uses conditional generators to

find a pair of condition vector and latent vector

that can generate the data closest to the input

data, and predict the label of the input data.

 The conditional generator is a generative

model that receives latent vector and condition

vector, and generates data with desired

conditions. A decoder of conditional VAE [1] or

a generator of conditional GAN [2] can be a

conditional generator.

The inverted Conditional Generator Classifier

uses a trained conditional generator as it is.

 The inverted conditional generator classifier

repeatedly performs gradient descent by taking

the latent vector for each condition as a

variable and the model parameter as a constant

to find the data closest to the input data. Then,

among the data generated for each condition,

the condition vector of the data closest to the

input data becomes the predicted label.

 Inverted Conditional Generator Classifier is

slow to predict because prediction is based on

gradient descent, but has high accuracy and is

very robust against adversarial attacks [3] such

as noise.

 In addition, the Inverted Conditional

Generator Classifier can measure the degree of

out-of-class through the difference between the

generated nearest data and input data. A high

degree of out-of-class means that the input

data is separate from the cluster of each class,

or Inverted Conditional Generator Classifier has

little confidence in prediction. Through this,

Inverted Conditional Generator Classifier can

classify the input data as out-of-class or defer

classification due to the lack of confidence in

prediction.

Abbreviations

Inverted Conditional Generator Classifier: ICGC

mailto:jeongik.jo.01@gmail.com

Deep Neural Network: DNN

Index Terms

Supervised learning, Artificial neural networks

Multi-layer neural network, Feedforward neural

networks,

1. Introduction

Recently, the DNN classifier is used in areas

where accuracy is critical, such as autonomous

vehicles. However, DNN is very susceptible to

adversarial attacks because it can react very

sensitively to small changes [4]. In recent years,

many adversarial attack methods have been

studied to deceive the classifier using the

instability of DNN.

 In this paper, I propose a new classifier called

ICGC that performs gradient descent-based

prediction using a conditional generator, rather

than a traditional deep neural network classifier

that outputs a predicted label through a hidden

layer.

 The conditional generator is a generator that

receives condition vector and latent vector, and

generates data with the desired conditions.

Conditional
Generator

Latent
Vector

Condition
Vector

Generated data
With input
condition

Fig.1 Conditional Generator

A decoder of conditional VAE or a generator

of conditional GAN, or other conditional

generative models can be a conditional

generator. ICGC uses a conditional generator to

find a pair of condition vectors and latent

vectors that can generate the data closest to

the input data through iterative gradient

descent and outputs the condition vector of the

data as a predicted label.

 Since ICGC classifies the data by generating

the data closest to the input data, it is not

sensitive to small changes like the traditional

DNN classifier, so it is very resistant to

adversarial attacks such as noise. In particular,

ICGC cannot be applied with a white-box

adversarial attack that assumes a traditional

DNN classifier.

 The DNN classifier cannot classify the input

data as out-of-class even if it belongs to out-

of-class. For example, in the case of a DNN

classifier that classifies the numbers 0 to 9,

when a noise image is input, it cannot be

predicted as out-of-class. However, since ICGC

generates the data closest to the input data

among the data that the conditional generator

can generate, the degree of out-of-class can be

measured through the difference between the

generated data and the input data.

 If the input data does not belong to any class

due to data modification or else, the degree of

out-of-class may be high. In this case, ICGC can

classify the data as out-of-class.

 Or, the degree of out-of-class may be high

even if the conditional generator of ICGC is not

sufficiently trained or gradient descent is not

sufficiently performed during prediction. In

such cases, ICGC may suspend classification of

the input data.

 ICGC is structurally robust to adversarial attack,

and can use out-of-class degree to classify

modified input data as out-of-class, or withhold

classification for input data with low confidence.

Therefore, ICGC can be exposed to adversarial

attack or can be utilized in applications where

accuracy is important.

2. Inverted Conditional Generator Classifier

2.1 Training

 ICGC uses trained conditional generators such

as Conditional VAE or Conditional GAN as

models. For conditional VAE, a decoder is used,

and for conditional GAN, a generator is used as

a model for ICGC. No additional training is

required after training the conditional generator.

2.2 Prediction

 First, ICGC finds a pair of condition vectors and

latent vectors that generate data closest to

input data through a latent space search. Then,

among the data generated for each condition,

the condition vector of the data closest to the

input data becomes the predicted label.

 The latent space search is to perform multiple

gradient descents taking the latent vector for

each condition as a variable, the model

parameter as a constant, and using two losses:

data difference loss and latent restriction loss.

Through this, a pair of condition vectors and

latent vectors that generate data close to the

input data can be found.

 The data difference loss is the loss to find the

latent vector that can generate the data closest

to the input data for each condition.

 The latent restriction loss is a loss to prevent

the latent vector from searching too far from

the latent space used for conditional generator

training.

 The loss for ICGC to perform latent space

search is as follows.

𝐿 = 𝐿𝐷𝐷 + λ𝐿𝑅𝐿𝐿𝑅

𝐿𝐷𝐷 = ∑ 𝑑𝑖𝑓(𝐺(𝑐𝑛𝑑, 𝑙𝑡𝑛), 𝑖𝑛_𝑑)
(𝑐𝑛𝑑,𝑙𝑡𝑛)∈𝑆𝑖𝑛_𝑣𝑒𝑐

𝐿𝐿𝑅 = ∑ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑎𝑏𝑠(𝑧_𝑠𝑐𝑜𝑟𝑒(𝑙𝑡𝑛)))
(𝑐𝑛𝑑,𝑙𝑡𝑛)∈𝑆𝑖𝑛_𝑣𝑒𝑐

𝐿 is the loss for ICGC to perform latent space

search through gradient descent. 𝐿𝐷𝐷 is data

difference loss, and 𝐿𝐿𝑅 is latent restriction loss.

λ𝐿𝑅 is the weight of latent restriction loss.

𝑆𝑖𝑛_𝑣𝑒𝑐 is a set of pairs having a 𝑐𝑛𝑑 (condition

vector) and a 𝑙𝑡𝑛 (latent vector). 𝑆𝑖𝑛_𝑣𝑒𝑐 has a

pair of 𝑐𝑛𝑑 corresponding to each class and

𝑙𝑡𝑛 corresponding to the 𝑐𝑛𝑑 as many as the

number of classes. For example, if there are 10

classes, 𝑆𝑖𝑛_𝑣𝑒𝑐 has 10 (𝑐𝑛𝑑, 𝑙𝑡𝑛) pairs. 𝐺 is a

trained conditional generator. 𝐺(𝑐𝑛𝑑, 𝑙𝑡𝑛) is

one data generated by 𝐺 by receiving 𝑐𝑛𝑑

and 𝑙𝑡𝑛 . 𝑖𝑛_𝑑 is one input data. 𝑑𝑖𝑓 is a

function that measures the difference between

two data. 𝑧_𝑠𝑐𝑜𝑟𝑒 is a function that calculates

the z score of each element of the input vector

based on the distribution of latent vector used

when training 𝐺 . For example, when 𝐺 is

trained using a latent vector that follows a

Gaussian distribution with mean 0 and standard

deviation 1, 𝑧_𝑠𝑐𝑜𝑟𝑒([1,2, −3]) is [1,2, −3]. 𝑎𝑏𝑠

is a function that converts each element of the

input vector to an absolute value. 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 is a

function to find the average of each element of

the input vector.

 To reduce 𝐿, gradient descent is performed by

taking the latent vector for each condition as

variables and the model parameters as

constants. If gradient descent is repeatedly

performed a certain number of times, the latent

space search ends. Then, the difference

between the data generated for each condition

and the input data is measured using the 𝑑𝑖𝑓

function, and the condition with the smallest

difference is determined as the predicted label.

(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑙𝑎𝑏𝑒𝑙, 𝑙𝑎𝑡𝑒𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟)

= arg min
(𝑐𝑛𝑑,𝑙𝑡𝑛)∈𝑆𝑖𝑛_𝑣𝑒𝑐

𝑑𝑖𝑓(𝐺(𝑐𝑛𝑑, 𝑙𝑡𝑛), 𝑖𝑛_𝑑)

Label Condition Vector Latent vector

num

0

1

(untrainable)

0

(untrainable)

0

(untrainable)

… 0.3

(trainable)

-1.0

(trainable)

…

num

1

0

(untrainable)

1

(untrainable)

0

(untrainable)

… -0.2

(trainable)

0.1

(trainable)

…

num

2

0

(untrainable)

0

(untrainable)

1

(untrainable)

… 0.7

(trainable)

-0.3

(trainable)

…

… … … … … … … …

Fig.2 Example of input vectors of ICGC

Fig.3 Prediction process of ICGC

Fig.2 is an example of an input vectors of ICGC.

The condition vector, which is an untrainable

variable, does not change when performing

gradient descent. However, the latent vector,

which is a trainable variable, changes with every

gradient descent.

 Fig.3 shows the process of ICGC prediction.

Initially, all latent vector is initialized with the

average of the latent vector distribution used

during generator training. That is, at first, all

latent vector for each condition are the same.

Later, the latent vector changes to generate an

image close to the input image. The leftmost

column in Fig.3 is data generated for each

condition before performing gradient descent,

and the rightmost column is after gradient

descent is performed 900 times. After

performing a gradient descent to some extent,

the input condition vector to generate data

with the closest distance to the input image be

the predicted label of the ICGC.

2.3 Out-of-class

 DNN classifier cannot distinguish data that

does not belong to any class. For example, in

the case of a classifier that classifies the

numbers 0 to 9, the classifier will predict the

class as one of the numbers 0 to 9 even if noise

is input instead of numbers.

 However, since ICGC generates the data

closest to the input data among the data that

the conditional generator can generate, the

degree of out-of-class can be measured

through the difference between the generated

data and the input data.

𝑜𝑜𝑐 = min
(𝑐𝑛𝑑,𝑙𝑡𝑛)∈𝑆𝑖𝑛_𝑣𝑒𝑐

𝑑𝑖𝑓(𝐺(𝑐𝑛𝑑, 𝑙𝑡𝑛), 𝑖𝑛_𝑑)

 𝑜𝑜𝑐 is the degree of out-of-class. If the

conditional generator of ICGC is sufficiently

trained and sufficient gradient descent is

achieved during prediction, ICGC can classify

data with large 𝑜𝑜𝑐 as out-of-class. If ICGC

performance is considered insufficient, ICGC

may withhold classification for data with large

𝑜𝑜𝑐.

2.4 Multi-label classification

 In multi-class classification with one label,

ICGC can predict the label of one data by

creating pairs of condition vector and latent

vector as many as the number of classes of the

label. However, in the case of multi-label

classification, the time required for prediction

may be too long because there are so many

possible combinations of condition vectors.

 Instead, the ICGC can shorten the time for

prediction by repeating prediction for each

label. That is, when performing prediction on

one label, the condition vector for the label to

be predicted is set as an untrainable variable,

and the condition vectors for the remaining

labels and latent vector are set as trainable

variables to perform latent space search. This

prediction must be repeated as many as the

number of labels.

2.5 Parallel ICGC

Gradient descent-based search always has the

potential to converge to local optima, not

global optima. Likewise, there is a possibility

that during the latent space search by ICGC, the

latent vector falls into the local optima, not the

global optima.

 To increase the probability that the ICGC finds

a latent vector falling into the global optima, or

even a little better local optima, Parallel ICGC

can be used. ICGC searched one latent vector

per condition, but Parallel ICGC searched

multiple latent vectors per condition to perform

a latent space search. In addition, a latent vector

corresponding to each condition of ICGC is

initialized with the average of latent vectors

used in conditional generator training, but

parallel ICGC latent vectors are randomly

initialized with the latent vector of ICGC to find

different local optima.

Label Condition Vector Latent Vector

num

0

1

(untrainable)

0

(untrainable)

0

(untrainable)

… 0.0 (average)

(trainable)

0.0 (average)

(trainable)

…

num

0

1

(untrainable)

0

(untrainable)

0

(untrainable)

… 0.7 (random)

(trainable)

-0.2 (random)

(trainable)

…

num

0

1

(untrainable)

0

(untrainable)

0

(untrainable)

… -0.6 (random)

(trainable)

0.1 (random)

(trainable)

…

num

1

0

(untrainable)

1

(untrainable)

0

(untrainable)

… 0.0 (average)

(trainable)

0.0 (average)

(trainable)

…

num

1

0

(untrainable)

1

(untrainable)

0

(untrainable)

… 0.7 (random)

(trainable)

-0.8 (random)

(trainable)

…

… … … … … … … …

Fig.4 Example of initialized input vectors of Parallel ICGC

3. Experiment

In this experiment, the MNIST handwriting

number dataset [5] was used (60000 images for

training, 10000 images for test, 28x28x1

resolution). Tensorflow 2.1 without compile

option and rtx2080ti was used for the

experiment.

3.1 Training

3.1.1 ICGC Training

 I used conditional activation GAN [6] with

LSGAN [7] adversarial loss to train conditional

generator. The generator receives a 10-

dimensional condition vector and a 256-

dimensional latent vector. All elements of the

latent vector used in training follow the

Gaussian distribution with mean = 0 and

standard deviation = 1. The average FID [8] for

each condition of the generator after training

was measured to be 2.0. Since the MNIST

dataset has one channel and their resolution is

too low for the inception network, the width,

height, and channel are tripled for the FID

evaluation (84 × 84 × 3).

3.1.2 DNN classifier Training

 The DNN classifier is a general classifier that

consists of a convolution layer for all hidden

layers except the output layer and uses cross-

entropy as a loss function. The trained DNN

classifier showed 99.43% accuracy for the

MNIST test dataset.

3.2 Evaluation

I evaluated the accuracy of ICGC and DNN

classifier according to the intensity of gaussian

noise and FGSM [10] noise. The original image

is normalized from -0.5 to 0.5. The Gaussian

noised image is as follows.

𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑛𝑜𝑖𝑠𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 =

𝑐𝑙𝑖𝑝(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 + 𝜎 ∗ 𝑐𝑙𝑖𝑝(𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑛𝑜𝑖𝑠𝑒))

𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑛𝑜𝑖𝑠𝑒 is gaussian noise with an

average of 0 and a standard deviation of 1, and

a 𝑐𝑙𝑖𝑝 is a function that clips the input to

maintain a range of -0.5 to 0.5. 𝜎 represents

the intensity of noise.

 The FGSM noised image of the DNN classifier

is as follows.

𝐹𝐺𝑆𝑀 𝑙𝑜𝑠𝑠 = 𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝐶(𝑖𝑛_𝑑), 𝑙𝑎𝑏𝑒𝑙)

𝐹𝐺𝑆𝑀 𝑛𝑜𝑖𝑠𝑒 = 𝑠𝑔𝑛 (
∆𝐹𝐺𝑆𝑀 𝑙𝑜𝑠𝑠

∆𝑖𝑛_𝑑
) ÷ 2

𝐹𝐺𝑆𝑀 𝑛𝑜𝑖𝑠𝑒𝑑 𝑖𝑚𝑎𝑔𝑒

= 𝑐𝑙𝑖𝑝(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 + 𝜎

∗ 𝐹𝐺𝑆𝑀 𝑛𝑜𝑖𝑠𝑒)

𝑖𝑛_𝑑 is input data. 𝐶 is a classifier. The 𝑙𝑎𝑏𝑒𝑙 is

the label of 𝑖𝑛_𝑑. 𝑠𝑔𝑛 is sign function.

 In the case of ICGC, noise that fits the

definition of FGSM cannot be implemented, so

FGSM loss for ICGC predict was used.

𝐹𝐺𝑆𝑀 𝑙𝑜𝑠𝑠

= −𝐿𝐷𝐷 − λ𝐿𝑅𝐿𝐿𝑅

+ 2

× (𝑑𝑖𝑓(𝐺(𝑙𝑎𝑏𝑒𝑙, 𝑙𝑡𝑛), 𝑖𝑛_𝑑)

+ λ𝐿𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑎𝑏𝑠(𝑧_𝑠𝑐𝑜𝑟𝑒(𝑙𝑡𝑛))))

𝐹𝐺𝑆𝑀 𝑛𝑜𝑖𝑠𝑒 = 𝑠𝑔𝑛 (
∆𝐹𝐺𝑆𝑀 𝑙𝑜𝑠𝑠

∆𝑖𝑛_𝑑
) ÷ 2

𝐹𝐺𝑆𝑀 𝑛𝑜𝑖𝑠𝑒𝑑 𝑖𝑚𝑎𝑔𝑒

= 𝑐𝑙𝑖𝑝(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 + 𝜎

∗ 𝐹𝐺𝑆𝑀 𝑛𝑜𝑖𝑠𝑒)

 𝑙𝑡𝑛 is a latent vector corresponding to the

label after ICGC performs prediction. ICGC's

FGSM noise increases ICGC's loss on real labels

and lowers ICGC's loss on other labels.

 For prediction of ICGC, gradient descent was

performed 100 times for each image, and Adam

optimizer [9] (learning rate = 0.001, beta1=0.9,

beta2 = 0.999) was used. The latent restriction

loss (λ𝐿𝑅) is 0.03 and the 𝑑𝑖𝑓 function is mean

absolute error.

 Since the prediction of ICGC is slow, for fast

experiment, ICGC used only 1000 randomly

selected data from the MNIST test dataset for

evaluation. The prediction of the DNN classifier

was fast enough, so all 10000 MNIST test data

were used for evaluation.

Fig.5 Gaussian noised images examples. 𝜎 = 0.0, 𝜎 = 1.0, 𝜎 = 1.3 in turn

3.2.1 Parallel ICGC test I compared the accuracy of parallel ICGC and

non-parallel ICGC for Gaussian noised images.

Gaussian noise

Sigma 0 0 0.2 0.2 0.4 0.4 1 1

ICGC Latent vector / condition vector 1 10 1 10 1 10 1 10

ICGC accuracy (%) 94.2 95.9 91.5

ICGC average ooc 0.028786 0.025318 0.212831

ICGC time (sec) 2627 6668 6612

Fig.6 Gaussian noised image test

Fig. 6 shows that parallel ICGC has better

performance than normal ICGC.

3.2.2 ICGC test

 Next, I compared the accuracy of parallel ICGC

and DNN classifiers for gaussian noise and

FGSM noise.

Fig.7 Gaussian noise compare

Fig.8 FGSM noise compare

Fig.9 FGSM swap noise

Gaussian noise

Sigma 0 0.2 0.4 0.6 0.8 1 1.2

ICGC Latent vector / condition vector 10 10 10

ICGC accuracy (%) 95.9 91.5 87.9

DNN classifier accuracy (%) 99.43 99.37 99.27 99.09 97.61 93.63 84.39

ICGC average ooc 0.025318 0.212831 0.250656

ICGC time (sec) 6668 6612 6598

DNN classifier time (sec) 17 17 17 17 17 17 17

FGSM noise

Sigma 0 0.1 0.2 0.3 0.4

ICGC Latent vector / condition vector 10 10 10 10 10

ICGC accuracy (%) 95.9 95.3 92.4

DNN classifier accuracy (%) 99.43 96.15 82.28 54.12 27.49

ICGC average ooc 0.025318 0.109149 0.195751

ICGC time (sec) 6668 13308 12911

DNN classifier time (sec) 17 26 26 26 27

FGSM swap noise

Sigma 0 0.4 0.6

ICGC Latent vector / condition vector 10 10 10

ICGC accuracy (%) 95.9 90.2 79.5

DNN classifier accuracy (%) 99.43 98.7 95.4

ICGC average ooc 0.025318 0.108271 0.149172

Time (sec) 6668 13751 13659.39

Fig.7 and Fig.8 show the accuracy of parallel

ICGC and DNN classifier for Gaussian noise and

FGSM noise. Fig. 9 shows the accuracy

measured by swapping the FGSM noised

images of ICGC and DNN classifier for the same

data. In Fig.7, Fig.8, and Fig.9, the accuracy of

DNN classifier is higher when sigma is low, but

ICGC accuracy is higher when sigma is over a

certain value.

Fig.10 Original image, ICGC FGSM noise, noised

image in turn. 𝜎 = 0.4

Fig.11 Original image, DNN classifier FGSM

noise, noised image in turn. 𝜎 = 0.4

Fig. 10 and Fig. 11 show examples of FGSM

noise and noised images of ICGC and DNN

classifiers. The FGSM noise of the DNN classifier

is noise that humans cannot understand, but

the FGSM noise of ICGC is similar to the

inverted image of the original image.

Fig.12 ICGC prediction

Fig. 12 shows the images generated by ICGC to

predict the gaussian noised image on the right.

Fig.13 Parallel ICGC prediction

Fig. 13 shows images generated by parallel

ICGC with
𝑙𝑎𝑡𝑒𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟
= 10 to predict the

label of the gaussian noised image on the right.

3.2.3 𝑜𝑜𝑐 test

Fig.14 𝑜𝑜𝑐 test

Fig. 14 shows the accuracy when ICGC classified

data with 𝑜𝑜𝑐 over the threshold as 𝑜𝑜𝑐. When

holding or discarding data with high 𝑜𝑜𝑐 ,

accuracy (
𝑐𝑜𝑟𝑟𝑒𝑐𝑡

(𝑤𝑟𝑜𝑛𝑔+𝑐𝑜𝑟𝑟𝑒𝑐𝑡)
∗ 100) is higher than

without 𝑜𝑜𝑐.

4. Conclusion

 ICGC is slow when predicting because it

predicts based on gradient descent, but

accuracy is high and very robust against

adversarial attacks. In particular, ICGC cannot be

applied with a white-box adversarial attack that

assumes a traditional DNN classifier. Also,

unlike DNN, by using the degree of out-of-class,

ICGC can classify the modified data as out-of-

class or withhold classification for data with low

confidence.

5. References

[1] Kihyuk Sohn, Honglak Lee, Xinchen Yan

Learning Structured Output Representation

using Deep Conditional Generative Models

https://papers.nips.cc/paper/5775-learning-

structured-output-representation-using-deep-

conditional-generative-models

[2] Mehdi Mirza, Simon Osindero

“Conditional Generative Adversarial Nets”, arXiv

preprint arXiv:1411.1784, 2014.

https://arxiv.org/abs/1411.1784 (accessed 16

February 2020)

[3] Xiaoyong Yuan, Pan He, Qile Zhu, Xiaolin Li

Adversarial Examples: Attacks and Defenses for

Deep Learning

https://arxiv.org/abs/1712.07107

[4] Christian Szegedy, Wojciech Zaremba, Ilya

Sutskever, Joan Bruna, Dumitru Erhan, Ian

Goodfellow, Rob Fergus

Intriguing properties of neural networks

https://arxiv.org/abs/1312.6199

[dataset] [5] Yann LeCun, Corinna Cortes,

Christopher J.C. Burges

THE MNIST DATABASE of handwritten digits

http://yann.lecun.com/exdb/mnist/

Gaussian ooc

Threshold INF 0.06 INF 0.06 INF 0.06 INF 0.06

ICGC Latent vector / condition vector 10 10 10 10 10 10 10 10

Sigma 0 0 0.1 0.1 0.2 0.2 0.4 0.4

Correct 959 944 917 567 0

Wrong 41 39 18 5 0

ooc 0 17 65 428 1000

correct / (wrong + correct) * 100 95.9 96.03 98.07 99.13 NAN

ooc / (wrong + correct + ooc) * 100 0 1.7 0 6.5 0 42.8 0 NAN

https://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models
https://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models
https://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1712.07107
https://arxiv.org/abs/1312.6199
http://yann.lecun.com/exdb/mnist/

[6] JeongIk Cho, Kyoungro Yoon

Conditional Activation GAN: Improved Auxiliary

Classifier GAN

http://vixra.org/abs/1912.0204

[7] Xudong Mao, Qing Li, Haoran Xie, Raymond

Y.K. Lau, Zhen Wang, Stephen Paul Smolley

Least Squares Generative Adversarial Networks

The IEEE International Conference on Computer

Vision (ICCV), 2017, pp. 2794-2802

https://ieeexplore.ieee.org/document/8237566

[8] Heusel, Martin and Ramsauer, Hubert and

Unterthiner, Thomas and Nessler, Bernhard and

Hochreiter, Sepp

GANs Trained by a Two Time-Scale Update Rule

Converge to a Local Nash Equilibrium Advances

in Neural Information Processing Systems 30

(NIPS), 2017, pp. 6626-6637

https://papers.nips.cc/paper/7240-gans-

trained-by-a-two-time-scale-update-rule-

converge-to-a-local-nash-equilibrium

[9] Diederik P. Kingma, Jimmy Ba

Adam: A Method for Stochastic Optimization

https://arxiv.org/abs/1412.6980

[10] Ian J. Goodfellow, Jonathon Shlens,

Christian Szegedy

Explaining and Harnessing Adversarial

Examples

https://arxiv.org/abs/1412.6572

http://vixra.org/abs/1912.0204
https://ieeexplore.ieee.org/document/8237566
https://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium
https://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium
https://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6572

