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Abstract 

 Traditional deep neural network classifier 

receives input data and passes through hidden 

layers to output predicted labels. In this paper, 

I propose an Inverted Conditional Generator 

Classifier that uses conditional generators to 

find a pair of condition vector and latent vector 

that can generate the data closest to the input 

data, and predict the label of the input data. 

 The conditional generator is a generative 

model that receives latent vector and condition 

vector, and generates data with desired 

conditions. A decoder of conditional VAE [1] or 

a generator of conditional GAN [2] can be a 

conditional generator. 

The inverted Conditional Generator Classifier 

uses a trained conditional generator as it is. 

 The inverted conditional generator classifier 

repeatedly performs gradient descent by taking 

the latent vector for each condition as a 

variable and the model parameter as a constant 

to find the data closest to the input data. Then, 

among the data generated for each condition, 

the condition vector of the data closest to the 

input data becomes the predicted label. 

 Inverted Conditional Generator Classifier is 

slow to predict because prediction is based on 

gradient descent, but has high accuracy and is 

very robust against adversarial attacks [3] such 

as noise. 

 In addition, the Inverted Conditional 

Generator Classifier can measure the degree of 

out-of-class through the difference between the 

generated nearest data and input data. A high 

degree of out-of-class means that the input 

data is separate from the cluster of each class, 

or Inverted Conditional Generator Classifier has 

little confidence in prediction. Through this, 

Inverted Conditional Generator Classifier can 

classify the input data as out-of-class or defer 

classification due to the lack of confidence in 

prediction. 

 

Abbreviations 

Inverted Conditional Generator Classifier: ICGC 
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Deep Neural Network: DNN 

 

Index Terms 

Supervised learning, Artificial neural networks 

Multi-layer neural network, Feedforward neural 

networks,  

 

1. Introduction 

Recently, the DNN classifier is used in areas 

where accuracy is critical, such as autonomous 

vehicles. However, DNN is very susceptible to 

adversarial attacks because it can react very 

sensitively to small changes [4]. In recent years, 

many adversarial attack methods have been 

studied to deceive the classifier using the 

instability of DNN. 

 In this paper, I propose a new classifier called 

ICGC that performs gradient descent-based 

prediction using a conditional generator, rather 

than a traditional deep neural network classifier 

that outputs a predicted label through a hidden 

layer.  

 The conditional generator is a generator that 

receives condition vector and latent vector, and 

generates data with the desired conditions. 
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Fig.1 Conditional Generator 

A decoder of conditional VAE or a generator 

of conditional GAN, or other conditional 

generative models can be a conditional 

generator. ICGC uses a conditional generator to 

find a pair of condition vectors and latent 

vectors that can generate the data closest to 

the input data through iterative gradient 

descent and outputs the condition vector of the 

data as a predicted label. 

 Since ICGC classifies the data by generating 

the data closest to the input data, it is not 

sensitive to small changes like the traditional 

DNN classifier, so it is very resistant to 

adversarial attacks such as noise. In particular, 

ICGC cannot be applied with a white-box 

adversarial attack that assumes a traditional 

DNN classifier. 

 The DNN classifier cannot classify the input 

data as out-of-class even if it belongs to out-



of-class. For example, in the case of a DNN 

classifier that classifies the numbers 0 to 9, 

when a noise image is input, it cannot be 

predicted as out-of-class. However, since ICGC 

generates the data closest to the input data 

among the data that the conditional generator 

can generate, the degree of out-of-class can be 

measured through the difference between the 

generated data and the input data. 

 If the input data does not belong to any class 

due to data modification or else, the degree of 

out-of-class may be high. In this case, ICGC can 

classify the data as out-of-class. 

 Or, the degree of out-of-class may be high 

even if the conditional generator of ICGC is not 

sufficiently trained or gradient descent is not 

sufficiently performed during prediction. In 

such cases, ICGC may suspend classification of 

the input data.  

 ICGC is structurally robust to adversarial attack, 

and can use out-of-class degree to classify 

modified input data as out-of-class, or withhold 

classification for input data with low confidence. 

Therefore, ICGC can be exposed to adversarial 

attack or can be utilized in applications where 

accuracy is important. 

 

2.  Inverted Conditional Generator Classifier 

2.1 Training 

 ICGC uses trained conditional generators such 

as Conditional VAE or Conditional GAN as 

models. For conditional VAE, a decoder is used, 

and for conditional GAN, a generator is used as 

a model for ICGC. No additional training is 

required after training the conditional generator. 

 

2.2 Prediction 

 First, ICGC finds a pair of condition vectors and 

latent vectors that generate data closest to 

input data through a latent space search. Then, 

among the data generated for each condition, 

the condition vector of the data closest to the 

input data becomes the predicted label. 

 The latent space search is to perform multiple 

gradient descents taking the latent vector for 

each condition as a variable, the model 

parameter as a constant, and using two losses: 

data difference loss and latent restriction loss. 

Through this, a pair of condition vectors and 

latent vectors that generate data close to the 

input data can be found. 

 The data difference loss is the loss to find the 

latent vector that can generate the data closest 

to the input data for each condition. 

 The latent restriction loss is a loss to prevent 

the latent vector from searching too far from 

the latent space used for conditional generator 

training. 

 The loss for ICGC to perform latent space 

search is as follows. 

𝐿 = 𝐿𝐷𝐷 + λ𝐿𝑅𝐿𝐿𝑅 

𝐿𝐷𝐷 = ∑ 𝑑𝑖𝑓(𝐺(𝑐𝑛𝑑, 𝑙𝑡𝑛), 𝑖𝑛_𝑑)
(𝑐𝑛𝑑,𝑙𝑡𝑛)∈𝑆𝑖𝑛_𝑣𝑒𝑐

 

𝐿𝐿𝑅 = ∑ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑎𝑏𝑠(𝑧_𝑠𝑐𝑜𝑟𝑒(𝑙𝑡𝑛)))
(𝑐𝑛𝑑,𝑙𝑡𝑛)∈𝑆𝑖𝑛_𝑣𝑒𝑐

 



𝐿 is the loss for ICGC to perform latent space 

search through gradient descent. 𝐿𝐷𝐷 is data 

difference loss, and 𝐿𝐿𝑅 is latent restriction loss. 

λ𝐿𝑅  is the weight of latent restriction loss. 

𝑆𝑖𝑛_𝑣𝑒𝑐 is a set of pairs having a 𝑐𝑛𝑑 (condition 

vector) and a 𝑙𝑡𝑛 (latent vector). 𝑆𝑖𝑛_𝑣𝑒𝑐 has a 

pair of 𝑐𝑛𝑑 corresponding to each class and 

𝑙𝑡𝑛 corresponding to the 𝑐𝑛𝑑 as many as the 

number of classes. For example, if there are 10 

classes, 𝑆𝑖𝑛_𝑣𝑒𝑐  has 10 (𝑐𝑛𝑑, 𝑙𝑡𝑛) pairs. 𝐺  is a 

trained conditional generator. 𝐺(𝑐𝑛𝑑, 𝑙𝑡𝑛)  is 

one data generated by 𝐺  by receiving 𝑐𝑛𝑑 

and 𝑙𝑡𝑛 . 𝑖𝑛_𝑑  is one input data. 𝑑𝑖𝑓  is a 

function that measures the difference between 

two data. 𝑧_𝑠𝑐𝑜𝑟𝑒 is a function that calculates 

the z score of each element of the input vector 

based on the distribution of latent vector used 

when training 𝐺 . For example, when 𝐺  is 

trained using a latent vector that follows a 

Gaussian distribution with mean 0 and standard 

deviation 1, 𝑧_𝑠𝑐𝑜𝑟𝑒([1,2, −3]) is [1,2, −3]. 𝑎𝑏𝑠 

is a function that converts each element of the 

input vector to an absolute value. 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 is a 

function to find the average of each element of 

the input vector. 

 To reduce 𝐿, gradient descent is performed by 

taking the latent vector for each condition as 

variables and the model parameters as 

constants. If gradient descent is repeatedly 

performed a certain number of times, the latent 

space search ends. Then, the difference 

between the data generated for each condition 

and the input data is measured using the 𝑑𝑖𝑓 

function, and the condition with the smallest 

difference is determined as the predicted label. 

(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑙𝑎𝑏𝑒𝑙, 𝑙𝑎𝑡𝑒𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟)

= arg min
(𝑐𝑛𝑑,𝑙𝑡𝑛)∈𝑆𝑖𝑛_𝑣𝑒𝑐

𝑑𝑖𝑓(𝐺(𝑐𝑛𝑑, 𝑙𝑡𝑛), 𝑖𝑛_𝑑)

 

Label Condition Vector Latent vector 

num 

0 

1 

(untrainable) 

0 

(untrainable) 

0 

(untrainable) 

… 0.3 

(trainable) 

-1.0 

(trainable) 

… 

num 

1 

0 

(untrainable) 

1 

(untrainable) 

0 

(untrainable) 

… -0.2 

(trainable) 

0.1 

(trainable) 

… 

num 

2 

0 

(untrainable) 

0 

(untrainable) 

1 

(untrainable) 

… 0.7 

(trainable) 

-0.3 

(trainable) 

… 

… … … … … … … … 

Fig.2 Example of input vectors of ICGC 



 

Fig.3 Prediction process of ICGC 

Fig.2 is an example of an input vectors of ICGC. 

The condition vector, which is an untrainable 

variable, does not change when performing 

gradient descent. However, the latent vector, 

which is a trainable variable, changes with every 

gradient descent. 

 Fig.3 shows the process of ICGC prediction. 

Initially, all latent vector is initialized with the 

average of the latent vector distribution used 

during generator training. That is, at first, all 

latent vector for each condition are the same. 

Later, the latent vector changes to generate an 

image close to the input image. The leftmost 

column in Fig.3 is data generated for each 

condition before performing gradient descent, 

and the rightmost column is after gradient 

descent is performed 900 times. After 

performing a gradient descent to some extent, 

the input condition vector to generate data 

with the closest distance to the input image be 

the predicted label of the ICGC. 

 

2.3 Out-of-class 

 DNN classifier cannot distinguish data that 

does not belong to any class. For example, in 

the case of a classifier that classifies the 

numbers 0 to 9, the classifier will predict the 

class as one of the numbers 0 to 9 even if noise 

is input instead of numbers. 

 However, since ICGC generates the data 

closest to the input data among the data that 

the conditional generator can generate, the 

degree of out-of-class can be measured 

through the difference between the generated 

data and the input data. 



𝑜𝑜𝑐 = min
(𝑐𝑛𝑑,𝑙𝑡𝑛)∈𝑆𝑖𝑛_𝑣𝑒𝑐

𝑑𝑖𝑓(𝐺(𝑐𝑛𝑑, 𝑙𝑡𝑛), 𝑖𝑛_𝑑) 

 

 𝑜𝑜𝑐  is the degree of out-of-class. If the 

conditional generator of ICGC is sufficiently 

trained and sufficient gradient descent is 

achieved during prediction, ICGC can classify 

data with large 𝑜𝑜𝑐  as out-of-class. If ICGC 

performance is considered insufficient, ICGC 

may withhold classification for data with large 

𝑜𝑜𝑐. 

 

2.4 Multi-label classification 

 In multi-class classification with one label, 

ICGC can predict the label of one data by 

creating pairs of condition vector and latent 

vector as many as the number of classes of the 

label. However, in the case of multi-label 

classification, the time required for prediction 

may be too long because there are so many 

possible combinations of condition vectors. 

 Instead, the ICGC can shorten the time for 

prediction by repeating prediction for each 

label. That is, when performing prediction on 

one label, the condition vector for the label to 

be predicted is set as an untrainable variable, 

and the condition vectors for the remaining 

labels and latent vector are set as trainable 

variables to perform latent space search. This 

prediction must be repeated as many as the 

number of labels. 

 

2.5 Parallel ICGC 

Gradient descent-based search always has the 

potential to converge to local optima, not 

global optima. Likewise, there is a possibility 

that during the latent space search by ICGC, the 

latent vector falls into the local optima, not the 

global optima. 

 To increase the probability that the ICGC finds 

a latent vector falling into the global optima, or 

even a little better local optima, Parallel ICGC 

can be used. ICGC searched one latent vector 

per condition, but Parallel ICGC searched 

multiple latent vectors per condition to perform 

a latent space search. In addition, a latent vector 

corresponding to each condition of ICGC is 

initialized with the average of latent vectors 

used in conditional generator training, but 

parallel ICGC latent vectors are randomly 

initialized with the latent vector of ICGC to find 

different local optima. 

 

Label Condition Vector Latent Vector 

num 

0 

1 

(untrainable) 

0 

(untrainable) 

0 

(untrainable) 

… 0.0 (average) 

(trainable) 

0.0 (average) 

(trainable) 

… 

num 

0 

1 

(untrainable) 

0 

(untrainable) 

0 

(untrainable) 

… 0.7 (random) 

(trainable) 

-0.2 (random) 

(trainable) 

… 

num 

0 

1 

(untrainable) 

0 

(untrainable) 

0 

(untrainable) 

… -0.6 (random) 

(trainable) 

0.1 (random) 

(trainable) 

… 



num 

1 

0 

(untrainable) 

1 

(untrainable) 

0 

(untrainable) 

… 0.0 (average) 

(trainable) 

0.0 (average) 

(trainable) 

… 

num 

1 

0 

(untrainable) 

1 

(untrainable) 

0 

(untrainable) 

… 0.7 (random) 

(trainable) 

-0.8 (random) 

(trainable) 

… 

… … … … … … … … 

Fig.4 Example of initialized input vectors of Parallel ICGC 

 

3. Experiment 

In this experiment, the MNIST handwriting 

number dataset [5] was used (60000 images for 

training, 10000 images for test, 28x28x1 

resolution). Tensorflow 2.1 without compile 

option and rtx2080ti was used for the 

experiment.  

 

3.1 Training 

3.1.1 ICGC Training 

 I used conditional activation GAN [6] with 

LSGAN [7] adversarial loss to train conditional 

generator. The generator receives a 10-

dimensional condition vector and a 256-

dimensional latent vector. All elements of the 

latent vector used in training follow the 

Gaussian distribution with mean = 0 and 

standard deviation = 1. The average FID [8] for 

each condition of the generator after training 

was measured to be 2.0. Since the MNIST 

dataset has one channel and their resolution is 

too low for the inception network, the width, 

height, and channel are tripled for the FID 

evaluation (84 × 84 × 3). 

 

3.1.2 DNN classifier Training 

 The DNN classifier is a general classifier that 

consists of a convolution layer for all hidden 

layers except the output layer and uses cross-

entropy as a loss function. The trained DNN 

classifier showed 99.43% accuracy for the 

MNIST test dataset. 

 

3.2 Evaluation 

I evaluated the accuracy of ICGC and DNN 

classifier according to the intensity of gaussian 

noise and FGSM [10] noise. The original image 

is normalized from -0.5 to 0.5. The Gaussian 

noised image is as follows. 

𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑛𝑜𝑖𝑠𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 = 

𝑐𝑙𝑖𝑝(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 + 𝜎 ∗ 𝑐𝑙𝑖𝑝(𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑛𝑜𝑖𝑠𝑒)) 

 

𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑛𝑜𝑖𝑠𝑒  is gaussian noise with an 

average of 0 and a standard deviation of 1, and 

a 𝑐𝑙𝑖𝑝  is a function that clips the input to 

maintain a range of -0.5 to 0.5. 𝜎 represents 

the intensity of noise. 

 The FGSM noised image of the DNN classifier 

is as follows. 

𝐹𝐺𝑆𝑀 𝑙𝑜𝑠𝑠 = 𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝐶(𝑖𝑛_𝑑), 𝑙𝑎𝑏𝑒𝑙) 

𝐹𝐺𝑆𝑀 𝑛𝑜𝑖𝑠𝑒 = 𝑠𝑔𝑛 (
∆𝐹𝐺𝑆𝑀 𝑙𝑜𝑠𝑠

∆𝑖𝑛_𝑑
) ÷ 2 



𝐹𝐺𝑆𝑀 𝑛𝑜𝑖𝑠𝑒𝑑 𝑖𝑚𝑎𝑔𝑒

= 𝑐𝑙𝑖𝑝(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 + 𝜎

∗ 𝐹𝐺𝑆𝑀 𝑛𝑜𝑖𝑠𝑒) 

𝑖𝑛_𝑑 is input data. 𝐶 is a classifier. The 𝑙𝑎𝑏𝑒𝑙 is 

the label of 𝑖𝑛_𝑑. 𝑠𝑔𝑛 is sign function. 

 In the case of ICGC, noise that fits the 

definition of FGSM cannot be implemented, so 

FGSM loss for ICGC predict was used. 

 

𝐹𝐺𝑆𝑀 𝑙𝑜𝑠𝑠

= −𝐿𝐷𝐷 − λ𝐿𝑅𝐿𝐿𝑅

+ 2

× (𝑑𝑖𝑓(𝐺(𝑙𝑎𝑏𝑒𝑙, 𝑙𝑡𝑛), 𝑖𝑛_𝑑)

+ λ𝐿𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑎𝑏𝑠(𝑧_𝑠𝑐𝑜𝑟𝑒(𝑙𝑡𝑛)))) 

𝐹𝐺𝑆𝑀 𝑛𝑜𝑖𝑠𝑒 = 𝑠𝑔𝑛 (
∆𝐹𝐺𝑆𝑀 𝑙𝑜𝑠𝑠

∆𝑖𝑛_𝑑
) ÷ 2 

𝐹𝐺𝑆𝑀 𝑛𝑜𝑖𝑠𝑒𝑑 𝑖𝑚𝑎𝑔𝑒

= 𝑐𝑙𝑖𝑝(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 + 𝜎

∗ 𝐹𝐺𝑆𝑀 𝑛𝑜𝑖𝑠𝑒) 

 

 𝑙𝑡𝑛 is a latent vector corresponding to the 

label after ICGC performs prediction. ICGC's 

FGSM noise increases ICGC's loss on real labels 

and lowers ICGC's loss on other labels. 

 For prediction of ICGC, gradient descent was 

performed 100 times for each image, and Adam 

optimizer [9] (learning rate = 0.001, beta1=0.9, 

beta2 = 0.999) was used. The latent restriction 

loss (λ𝐿𝑅) is 0.03 and the 𝑑𝑖𝑓 function is mean 

absolute error. 

 Since the prediction of ICGC is slow, for fast 

experiment, ICGC used only 1000 randomly 

selected data from the MNIST test dataset for 

evaluation. The prediction of the DNN classifier 

was fast enough, so all 10000 MNIST test data 

were used for evaluation. 

 

Fig.5 Gaussian noised images examples. 𝜎 = 0.0, 𝜎 = 1.0, 𝜎 = 1.3 in turn 

 

3.2.1 Parallel ICGC test  I compared the accuracy of parallel ICGC and 

non-parallel ICGC for Gaussian noised images.  

 

Gaussian noise

Sigma 0 0 0.2 0.2 0.4 0.4 1 1

ICGC Latent vector / condition vector 1 10 1 10 1 10 1 10

ICGC accuracy (%) 94.2 95.9 91.5

ICGC average ooc 0.028786 0.025318 0.212831

ICGC time (sec) 2627 6668 6612



Fig.6 Gaussian noised image test 

Fig. 6 shows that parallel ICGC has better 

performance than normal ICGC. 

 

3.2.2 ICGC test 

 Next, I compared the accuracy of parallel ICGC 

and DNN classifiers for gaussian noise and 

FGSM noise. 

 

Fig.7 Gaussian noise compare 

 

 

Fig.8 FGSM noise compare 

 

 

Fig.9 FGSM swap noise 

 

Gaussian noise

Sigma 0 0.2 0.4 0.6 0.8 1 1.2

ICGC Latent vector / condition vector 10 10 10

ICGC accuracy (%) 95.9 91.5 87.9

DNN classifier accuracy (%) 99.43 99.37 99.27 99.09 97.61 93.63 84.39

ICGC average ooc 0.025318 0.212831 0.250656

ICGC time (sec) 6668 6612 6598

DNN classifier time (sec) 17 17 17 17 17 17 17

FGSM noise

Sigma 0 0.1 0.2 0.3 0.4

ICGC Latent vector / condition vector 10 10 10 10 10

ICGC accuracy (%) 95.9 95.3 92.4

DNN classifier accuracy (%) 99.43 96.15 82.28 54.12 27.49

ICGC average ooc 0.025318 0.109149 0.195751

ICGC time (sec) 6668 13308 12911

DNN classifier time (sec) 17 26 26 26 27

FGSM swap noise

Sigma 0 0.4 0.6

ICGC Latent vector / condition vector 10 10 10

ICGC accuracy (%) 95.9 90.2 79.5

DNN classifier accuracy (%) 99.43 98.7 95.4

ICGC average ooc 0.025318 0.108271 0.149172

Time (sec) 6668 13751 13659.39



Fig.7 and Fig.8 show the accuracy of parallel 

ICGC and DNN classifier for Gaussian noise and 

FGSM noise. Fig. 9 shows the accuracy 

measured by swapping the FGSM noised 

images of ICGC and DNN classifier for the same 

data. In Fig.7, Fig.8, and Fig.9, the accuracy of 

DNN classifier is higher when sigma is low, but 

ICGC accuracy is higher when sigma is over a 

certain value.  

 

 

Fig.10 Original image, ICGC FGSM noise, noised 

image in turn. 𝜎 = 0.4 

 

 

Fig.11 Original image, DNN classifier FGSM 

noise, noised image in turn. 𝜎 = 0.4 

Fig. 10 and Fig. 11 show examples of FGSM 

noise and noised images of ICGC and DNN 

classifiers. The FGSM noise of the DNN classifier 

is noise that humans cannot understand, but 

the FGSM noise of ICGC is similar to the 

inverted image of the original image. 

 

Fig.12 ICGC prediction 

Fig. 12 shows the images generated by ICGC to 

predict the gaussian noised image on the right. 

 

 

Fig.13 Parallel ICGC prediction 

Fig. 13 shows images generated by parallel 

ICGC with 
𝑙𝑎𝑡𝑒𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟
= 10  to predict the 

label of the gaussian noised image on the right. 

 

3.2.3 𝑜𝑜𝑐 test

 



 

Fig.14 𝑜𝑜𝑐 test

Fig. 14 shows the accuracy when ICGC classified 

data with 𝑜𝑜𝑐 over the threshold as 𝑜𝑜𝑐. When 

holding or discarding data with high 𝑜𝑜𝑐 , 

accuracy (
𝑐𝑜𝑟𝑟𝑒𝑐𝑡

(𝑤𝑟𝑜𝑛𝑔+𝑐𝑜𝑟𝑟𝑒𝑐𝑡)
∗ 100)  is higher than 

without 𝑜𝑜𝑐. 

 

4. Conclusion 

 ICGC is slow when predicting because it 

predicts based on gradient descent, but 

accuracy is high and very robust against 

adversarial attacks. In particular, ICGC cannot be 

applied with a white-box adversarial attack that 

assumes a traditional DNN classifier. Also, 

unlike DNN, by using the degree of out-of-class, 

ICGC can classify the modified data as out-of-

class or withhold classification for data with low 

confidence. 
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