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                                                    Abstract 

In this paper we have described and analyzed some Ramanujan equations. 
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We want to highlight that the development of the various equations was carried 
out according an our possible logical and original interpretation 
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If  L = 8, we obtain: 

[((64/24+(pi^2)/6))] 

Input: 

 

Result: 

 

Decimal approximation: 

 

4.3116007335…. 
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Property: 

 

Alternate form: 
 

 

Alternative representations: 
 

 

 

 

 
Series representations: 
 

 

 

 

 
Integral representations: 
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Raising this expression to the fourth power, multiplying by 1/3, adding 11 and 
subtracting the conjugate of the golden ratio, we obtain: 

 

1/3 [((64/24+(pi^2)/6))]^4 + 11 - 1/golden ratio 

Input: 

 

 

Result: 

 

Decimal approximation: 

 

125.576770985…. 

 

Property: 

 

Alternate forms: 
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Alternative representations: 

 

 

 

 
Series representations: 
 

 

 

 

 
Integral representations: 
 

 

 

 

 

Raising this expression to the fourth power, multiplying by 1/3, adding 21, adding the 
square of golden ratio and 1, we obtain: 
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1/3 [((64/24+(pi^2)/6))]^4 + 21 + golden ratio^2+1 

Input: 

 

 

Result: 

 

Decimal approximation: 

 

139.8128389631….. 

 

Property: 

 

Alternate forms: 

 

 

 

 
Alternative representations: 
 

 

 

 

 



9 
 

Series representations: 
 

 

 

 

 
Integral representations: 
 

 

 

 

 

 

Raising this expression to the fifth power, adding 256,  subtracting 16 and subtracting 
1, (note that √256 = 16) we get: 

 

[((64/24+(pi^2)/6))^5+256-16]-1 

Input: 

 

Result: 
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Decimal approximation: 

 

1729.02201687… 
 
 
Property: 

 

Alternate forms: 

 

 

 

Alternative representations: 
 

 

 

 

 
 
Series representations: 
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Integral representations: 
 

 

 

 

 

 

Performing the 15th root, we obtain: 

((([((64/24+(pi^2)/6))^5+256-16]-1)))^1/15 

Input: 

 

Exact result: 

 

Decimal approximation: 

 

1.643816624216…. 

 

Property: 

 

Alternate form: 
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All 15th roots of 239 + (8/3 + π^2/6)^5: 
 

 

 

 

 

 

 
Alternative representations: 
 

 

 

 

 
Series representations: 
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Integral representations: 
 

 

 

 

 

Performing the 15th root and subtracting (21+5)/103, we obtain: 

 

((([((64/24+(pi^2)/6))^5+256-16]-1)))^1/15 - (21+5)1/10^3 

Input: 

 

Exact result: 

 

Decimal approximation: 

 

1.6178166242165…. 
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Property: 

 

Alternate forms: 

 

 

 
Alternative representations: 

 

 

 

 
Series representations: 
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Integral representations: 

 

 

 

 

Now, we have that: 
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For k = 0  and  t = 2, we obtain: 

(2^2) / 2! + sum(((((((2^(2-2i)*zeta(2i) (2^(2i+1)-4)))/(2-2i)!)))), i = 1..1 

Input interpretation: 

 

 
 

Result: 

 
8.57974 

 

 
Alternate form: 

 
 

For k = 1, we obtain: 

(2^4) / 4! + sum(((((((2^(4-2i)*zeta(2i) (2^(2i+1)-4)))/(4-2i)!)))), i = 1..1 

Input interpretation: 

 

 
 

 
Result: 

 
13.8261 

 

Alternate form: 
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From the above expression, performing the root of 2e and subtracting 3/103, we 
obtain: 

((((2^4) / 4! + sum((((((2^(4-2i)*zeta(2i) (2^(2i+1)-4)))/(4-2i)!)))), i = 1..1)))^1/(2e) - 
3/10^3 

Input interpretation: 

 

 
 

Result: 
 

 
1.61814 

 

Alternate forms: 

 
 

 
 

Raising to the second power, the above expression, subtracting 55 and adding π, we 
obtain: 

((((2^4) / 4! + sum((((((2^(4-2i)*zeta(2i) (2^(2i+1)-4)))/(4-2i)!)))), i = 1..1)))^2-
55+Pi 

Input interpretation: 
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Result: 

 

139.304 

Alternate forms: 

 

 

 

 

And subtracting 55 and 13, and adding 2, we obtain: 

((((2^4) / 4! + sum((((((2^(4-2i)*zeta(2i) (2^(2i+1)-4)))/(4-2i)!)))), i = 1..1)))^2-55-
13+2 

Input interpretation: 

 

 
 

Result: 

 
 

125.162 

 
Alternate forms: 
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From this expression, subtracting 55 and 8, multiplying by 27*1/2 and, in conclusion, 
subtracting the golden ratio, we obtain: 

27*1/2(((((((2^4) / 4! + sum((((((2^(4-2i)*zeta(2i) (2^(2i+1)-4)))/(4-2i)!)))), i = 
1..1)))^2-55-8)))-golden ratio 

 
Input interpretation: 

 

 
 
 

Result: 

 
 

1728.57 

 
Alternate forms: 

 

 

 
  

And performing the 15th root, we have: 

 

((((27*1/2(((((((2^4) / 4! + sum((((((2^(4-2i)*zeta(2i) (2^(2i+1)-4)))/(4-2i)!)))), i = 
1..1)))^2-55-8)))-golden ratio))))^1/15 

Input interpretation: 
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Result: 

 
 

1.64379 

 
Alternate forms: 

 

 

 
 

Now, we have that: 

 

 

For x = 2, y = 3  and  z = 5, we obtain: 

 

2 ln(((e+e^4)/(e^(-1)+e^4))) 

Input: 
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Decimal approximation: 

 

0.083744006… 

Alternate forms: 

 

 

 

 
Alternative representations: 

 

 

 

Series representations: 
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Integral representations: 

 

 

 

 

2-ln((((cosh(3/2)+cosh(7/3))/(cosh(3/2)+cosh(-3/2))))) 

Input: 

 

 

 

Exact result: 

 

 

Decimal approximation: 

 

1.52610977722… 

Alternate forms: 
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Alternative representations: 

 

 

 

Series representation: 

 

 
Integral representations: 

 

 

 

 

 

 

 



24 
 

From the sum of the two results, adding 8/103, we obtain: 

(((2-ln((((cosh(3/2)+cosh(7/3))/(cosh(3/2)+cosh(-3/2)))))))) + (((2 ln(((e+e^4)/(e^(-
1)+e^4)))))) + 8/10^3 

Input: 

 

 

 

Exact result: 

 

 

Decimal approximation: 

 

1.617853783389… 

Alternate forms: 

 

 

 

 
Alternative representations: 
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Series representations: 

 

 

 
Integral representations: 
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With regard the first expression,  

 

 

0.083744006169…. 

 

we have that: 

MOCK THETA ORDER 6 

We have the following mock theta function: 
(https://en.wikipedia.org/wiki/Mock_modular_form#Order_6) 

 

 

That is: 
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(A053271  sequence OEIS) 

Sum_{n >= 0}  q^((n+1)(n+2)/2) (1+q)(1+q^2)...(1+q^n)/((1-q)(1-q^3)...(1-
q^(2n+1))) 

We have that: 

sum q^((n+1)(n+2)/2) (1+q)(1+q^2)(1+q^n)))/((1-q)(1-q^3)(1-q^(2n+1))), n = 0 to k 

Input interpretation: 

 
 
Result: 

 
 

For q = 0.498 and n = 2, we develop the above formula in the following way: 

((0.498^((2+1)(2+2)/2) (1+0.498)(1+0.498^2)(1+0.498^2)))/((1-0.498)(1-0.498^3)(1-
0.498^(2*2+1))) 

Input: 

 
 
Result: 

 
0.0834406295…. 

 

From 

Volumes And Random Matrices 
Edward Witten - arXiv:2004.05183v1 [math.SG] 10 Apr 2020 

 

 

We have that: 
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From (2.3),  

 

For C = (55+8+1/5)  and  β = 6, we obtain: 

(55+8+1/5)Exp(((pi^2)/6))/((4sqrtPi*6^1.5)) 

Input: 

 

 
Result: 

 

3.1422523764… ≈ π 

 
Series representations: 
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For C = (29+4), we obtain: 

(29+4)Exp(((pi^2)/6))/((4sqrtPi*6^1.5)) 

Input: 

 

 
Result: 

 

1.6407330446… 
 
Series representations: 

 

 

 

 

For C = 29 + √4π 

(29 + sqrt(4Pi))Exp(((pi^2)/6))/((4sqrtPi*6^1.5)) 

Input: 

 

Result: 

 

1.6181062273… 
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Series representations: 

 

 

 

 

 

From 

 

From 

Modular equations and approximations to π – Srinivasa Ramanujan 
Quarterly Journal of Mathematics, XLV, 1914, 350 – 372 

  

we have the following Ramanujan’s equation: 

 

that is: 



31 
 

(5sqrt5) / (2Pi*sqrt3) 

Input: 

 

Result: 

 

Decimal approximation: 

 

1.02734074010… 

Property: 

 

 
Series representations: 
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that is about equal to: 

1+12*5/72*(4/125)+23*3/8*7/72*55/72*(4/125)^2 

Input: 

 
 
Exact result: 

 
 
Decimal approximation: 

 
1.0273225925… 

 

We have that: 

(2Pi*sqrt3) * 1.02734074010249 

Input interpretation: 

 

Result: 

 

11.1803398874988… 

 
Series representations: 
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and: 

(5sqrt5) / 1.02734074010249 

Input interpretation: 

 
 
Result: 

 
10.8827961854054… 

 

Input interpretation: 
 

 
Possible closed forms: 

 

 
 

We have also: 

 

(2Pi*x) * 1.02734074010249  = 11.1803398874988 

 

Input interpretation: 
 

Result: 
 

Plot: 
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Alternate form: 
 

 
Solution: 

 

1.73205080756887 = √3 
 
 
Input interpretation: 

 
 

 
 

 

Thence, for E = 3  and  C = 5, from 

 

 
 

we obtain: 

 

((5 * sinh(2Pi*sqrt3)) / (4Pi^2) 

 

Input: 

 

 

Decimal approximation: 

 

3372.2409885 

Alternate forms: 
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Alternative representations: 

 

 

 

 
Series representations: 

 

 

 

 
Integral representations: 

 

 

 

 

Thence, from 
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For E = 3, β = 6  and  ρ(E) = 3372.2409885,  we obtain: 

 

Integrate (3372.2409885*exp(-6*3))dx, x = 0..12038 

 

Definite integral: 

 
 

0.61826159154 

 

From which: 

 

1 + Integrate (3372.2409885*exp(-6*3))dx, x = 0..12038 

 

Input interpretation: 

 
 
Result: 

 
 
Computation result: 

 
 

1.61826 

 

 

From 

 

 
 

For  E = 3,  eS = C = 5  and  β = 6,  we obtain: 

 

integrate(((5/(4Pi^2)*sinh(2Pi*sqrt3)*e^(-6*3))))dx, x=0..12038 
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Definite integral: 

 

 
0.61826  as above 
 
 
From the formula of coefficients of the '5th order' mock theta function 𝜓1(q): 
(A053261 OEIS Sequence) 

sqrt(golden ratio) * exp(Pi*sqrt(n/15)) / (2*5^(1/4)*sqrt(n)) ,  for n = 258, we obtain: 

sqrt(golden ratio) * exp(Pi*sqrt(258/15)) / (2*5^(1/4)*sqrt(258)) – 23 

where 23 is a Sophie Germain prime number 

Input: 

 

 

Exact result: 

 

Decimal approximation: 

 

12037.72789….  result very near to the value b of the integration interval [a, b ] = 
[0,..12038] 

Property: 

 

Alternate forms: 
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Series representations: 
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In number theory, a prime number p is a Sophie Germain prime if 2p + 1 is also 
prime. The number 2p + 1 associated with a Sophie Germain prime is called a safe 
prime. For example, 11 is a Sophie Germain prime and 2 × 11 + 1 = 23 is its 
associated safe prime 

From 
 

 
 
For  E = 3, we obtain: 
 
-1/(16Pi^2) sinh^2(2Pi*sqrt3) 
 
Input: 

 

 

Decimal approximation: 

 

-4.4894893154…*106 
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Alternate forms: 

 

 

 

 

 
 
Alternative representations: 

 

 

 

 
Series representations: 
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From which, performing the square root and changing the sign, we obtain: 
 
(((1/(16Pi^2) sinh^2(2Pi*sqrt3))))^1/2 
 
Input: 

 

 

Exact result: 

 

Decimal approximation: 

 

2118.8415031… result very near to the rest mass of strange D meson 2112.3 

Alternate forms: 

 

 

 

 
All 2nd roots of (sinh^2(2 sqrt(3) π))/(16 π^2): 

 

 

 
 
Alternative representations: 
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Series representations: 

 

 

 

 
Integral representations: 

 

 

 
 
 

From the formula of coefficients of the '5th order' mock theta function 𝜓1(q): 
(A053261 OEIS Sequence) 

sqrt(golden ratio) * exp(Pi*sqrt(n/15)) / (2*5^(1/4)*sqrt(n)) ,  for n = 188, we obtain 
 
sqrt(golden ratio) * exp(Pi*sqrt(188/15)) / (2*5^(1/4)*sqrt(188)) + 21  
 
where 21 is a Fibonacci number 
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Input: 

 

 

Exact result: 

 

Decimal approximation: 

 

2119.305446… as above 

Property: 

 

Alternate forms: 
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Series representations: 
 

 

 

 



45 
 

 
 
We have that: 
 

 
And 
 

 
 
For E = 3,  eS = C = 5 ,  β = 6  from 
 

 
 
we obtain: 
 
(5sqrt2)/Pi * (cosh(2Pi*sqrt3))/(sqrt3) 
 
Input: 

 

 

Exact result: 

 

Decimal approximation: 

 

34600.53688139… 

Alternate forms: 
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Alternative representations: 

 

 

 

 
Series representations: 

 

 

 

 
Integral representations: 
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From 
 

 
 
we obtain: 
 
integrate(((e^(-6*3) (5sqrt2)/Pi * (cosh(2Pi*sqrt3))/(sqrt3))))dx, x=0..3071 
 
Definite integral: 

 

 
 
1.61831 
 
 
We note that from From the formula of coefficients of the '5th order' mock theta 
function 𝜓1(q): (A053261 OEIS Sequence) 

sqrt(golden ratio) * exp(Pi*sqrt(n/15)) / (2*5^(1/4)*sqrt(n)) ,  for n = 202, we obtain 
 
sqrt(golden ratio) * exp(Pi*sqrt(202/15)) / (2*5^(1/4)*sqrt(202)) + 29+2  
 
where 29  and  2 are Lucas numbers 
 
sqrt(golden ratio) * exp(Pi*sqrt(202/15)) / (2*5^(1/4)*sqrt(202)) + 29+2  
 
Input: 
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Exact result: 

 

Decimal approximation: 

 

3071.126834588… 

Property: 

 

Alternate forms: 

 

 

 

 
Series representations: 
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From 
 

 
 
for E = 3,  we obtain: 
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-2/3 cosh^2(2Pi*sqrt3)  
 
Input: 

 

 

Decimal approximation: 

 

-4.726344914…*108 

Property: 

 

Alternate forms: 

 

 

 

 

 
Alternative representations: 

 

 

 

 
Series representations: 
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From which, performing the cubic root, changing the sign and adding π, we obtain: 
 
(((2/3 cosh^2(2Pi*sqrt3))))^1/3 + Pi 
 
Input: 

 

 

Exact result: 

 

Decimal approximation: 

 

782.08959994… result practically equal to the rest mass of Omega meson 782.65 

 
Alternate forms: 

 

 

 

 
Alternative representations: 
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Observations  

 

Figs. 
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The ratio between M0  and  q  
 
 

 
 

 
i.e. the gravitating mass M0  and the Wheelerian mass q of the wormhole, is equal to: 
 
  

 
 

 

 

1.7320507879 ≈ √3  that is the ratio between the gravitating mass M0  and the 
Wheelerian mass q of  the wormhole 
 

We note that: 
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1.73205 

 
This result is very near to the ratio between M0  and  q, that is equal to 1.7320507879 
≈ √3 
 
 
With regard √3 , we note that is a fundamental value of the formula structure that we 
need to calculate a Cubic Equation 
 

We have that the previous result 
 
 

  =   =  
 
=  
 

 
 
can be related with: 
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Considering:  
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Thence: 
 

  ⇒ 
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We observe how the graph above, concerning the cubic function, is very similar 
to the graph that represent the scalar field (in red). It is possible to hypothesize 
that cubic functions and cubic equations, with their roots, are connected to the 
scalar field. 

 

 
From: 
https://www.scientificamerican.com/article/mathematics-
ramanujan/?fbclid=IwAR2caRXrn_RpOSvJ1QxWsVLBcJ6KVgd_Af_hrmDYBNyU8m
pSjRs1BDeremA 
 
Ramanujan's statement concerned the deceptively simple concept of partitions—the 
different ways in which a whole number can be subdivided into smaller numbers. 
Ramanujan's original statement, in fact, stemmed from the observation of patterns, 
such as the fact that p(9) = 30, p(9 + 5) = 135, p(9 + 10) = 490, p(9 + 15) = 1,575 
and so on are all divisible by 5. Note that here the n's come at intervals of five units. 
 
Ramanujan posited that this pattern should go on forever, and that similar patterns 
exist when 5 is replaced by 7 or 11—there are infinite sequences of p(n) that are all 
divisible by 7 or 11, or, as mathematicians say, in which the "moduli" are 7 or 11. 
 
Then, in nearly oracular tone Ramanujan went on: "There appear to be 
corresponding properties," he wrote in his 1919 paper, "in which the moduli are 
powers of 5, 7 or 11...and no simple properties for any moduli involving primes other 
than these three." (Primes are whole numbers that are only divisible by themselves or 
by 1.) Thus, for instance, there should be formulas for an infinity of n's separated by 
5^3 = 125 units, saying that the corresponding p(n)'s should all be divisible by 125. 
In the past methods developed to understand partitions have later been applied to 
physics problems such as the theory of the strong nuclear force or the entropy of 
black holes. 
 
From Wikipedia 
 
In particle physics, Yukawa's interaction or Yukawa coupling, named after Hideki 
Yukawa, is an interaction between a scalar field ϕ and a Dirac field ψ. The Yukawa 
interaction can be used to describe the nuclear force between nucleons (which 
are fermions), mediated by pions (which are pseudoscalar mesons). The Yukawa 
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interaction is also used in the Standard Model to describe the coupling between 
the Higgs field and massless quark and lepton fields (i.e., the fundamental fermion 
particles). Through spontaneous symmetry breaking, these fermions acquire a mass 
proportional to the vacuum expectation value of the Higgs field.  
 
 

Can be this the motivation that from the development of the Ramanujan’s equations 
we obtain results very near to the dilaton mass calculated as a type of Higgs boson: 
125 GeV for T = 0 and to the Higgs boson mass 125.18 GeV and practically equal to 
the rest mass of  Pion meson 139.57 MeV 

 

 

Note that: 

 

Thence: 

 

And 

 

That are connected with 64, 128, 256, 512, 1024 and 4096 = 642 
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(Modular equations and approximations to π - S. Ramanujan - Quarterly Journal of 
Mathematics, XLV, 1914, 350 – 372) 
 
 
All the results of the most important connections are signed in blue throughout the 
drafting of the paper. We highlight as in the development of the various equations we 
use always the constants π, ϕ, 1/ϕ, the Fibonacci and Lucas numbers, linked to the 
golden ratio, that play a fundamental role in the development, and therefore, in the 
final results of the analyzed expressions. 
 
In mathematics, the Fibonacci numbers, commonly denoted Fn, form a sequence, 
called the Fibonacci sequence, such that each number is the sum of the two preceding 
ones, starting from 0 and 1. Fibonacci numbers are strongly related to the golden 
ratio: Binet's formula expresses the nth Fibonacci number in terms of n and the 
golden ratio, and implies that the ratio of two consecutive Fibonacci numbers tends 
to the golden ratio as n increases. 
Fibonacci numbers are also closely related to Lucas numbers ,in that the Fibonacci 
and Lucas numbers form a complementary pair of Lucas sequences  

The beginning of the sequence is thus: 

 
 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 
10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 
1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 
63245986, 102334155...  

 

The Lucas numbers or Lucas series are an integer sequence named after the 
mathematician François Édouard Anatole Lucas (1842–91), who studied both that 
sequence and the closely related Fibonacci numbers. Lucas numbers and Fibonacci 
numbers form complementary instances of Lucas sequences. 

The Lucas sequence has the same recursive relationship as the Fibonacci sequence, 
where each term is the sum of the two previous terms, but with different starting 
values. This produces a sequence where the ratios of successive terms approach 
the golden ratio, and in fact the terms themselves are roundings of integer powers of 
the golden ratio.[1] The sequence also has a variety of relationships with the 
Fibonacci numbers, like the fact that adding any two Fibonacci numbers two terms 
apart in the Fibonacci sequence results in the Lucas number in between. 

The sequence of Lucas numbers is: 
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2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 
9349, 15127, 24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 
1149851, 1860498, 3010349, 4870847, 7881196, 12752043, 20633239, 33385282, 
54018521, 87403803…… 

All Fibonacci-like integer sequences appear in shifted form as a row of the Wythoff 
array; the Fibonacci sequence itself is the first row and the Lucas sequence is the 
second row. Also like all Fibonacci-like integer sequences, the ratio between two 
consecutive Lucas numbers converges to the golden ratio. 

 

A Lucas prime is a Lucas number that is prime. The first few Lucas primes are: 

2, 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 
6643838879, ... (sequence A005479 in the OEIS). 

 
In geometry, a golden spiral is a logarithmic spiral whose growth factor is φ, 
the golden ratio.[1] That is, a golden spiral gets wider (or further from its origin) by a 
factor of φ for every quarter turn it makes. Approximate logarithmic spirals can 
occur in nature, for example the arms of spiral galaxies[3] - golden spirals are one 
special case of these logarithmic spirals 

 

We observe that 1728 and 1729 are results very near to the mass of candidate glueball 
f0(1710) scalar meson. Furthermore, 1728 occurs in the algebraic formula for the j-
invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a 
pun on the Gross–Zagier theorem. The number 1728 is one less than the Hardy–
Ramanujan number 1729  (taxicab number). 

 

Furthermore, we obtain as results of our computations, always values very near to the 
Higgs boson mass 125.18 GeV and practically equals to the rest mass of  Pion meson 
139.57 MeV. In conclusion we obtain also many results that are very good 
approximations to the value of the golden ratio 1.618033988749... and to ζ(2) = 
గమ

଺
= 1.644934… 
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We note how the following three values: 137.508 (golden angle), 139.57 (mass of 
the Pion - meson Pi) and 125.18 (mass of the Higgs boson), are connected to each 
other. In fact, just add 2 to 137.508 to obtain a result very close to the mass of 
the Pion and subtract 12 to 137.508 to obtain a result that is also very close to 
the mass of the Higgs boson. We can therefore hypothesize that it is the golden 
angle (and the related golden ratio inherent in it) to be a fundamental ingredient 
both in the structures of the microcosm and in those of the macrocosm. 
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