On some Ramanujan integrals concerning Riemann's functions $\boldsymbol{\xi}(\mathbf{s})$ and $\Xi(t)$: mathematical connections with $\phi, \zeta(2)$ and various parameters of Particle Physics. II

Michele Nardelli ${ }^{1}$, Antonio Nardelli ${ }^{2}$

Abstract

In this paper we have described and analyzed some Ramanujan integrals concerning Riemann's functions $\xi(\mathrm{s})$ and $\Xi(\mathrm{t})$. Furthermore, we have obtained several mathematical connections between $\phi, \zeta(2)$ and various parameters of Particle Physics.

[^0]
https://mobygeek.com/features/indian-mathematician-srinivasa-ramanujan-quotes-11012

We want to highlight that the development of the various equations was carried out according an our possible logical and original interpretation

From:

New expressions for Riemann's functions $\boldsymbol{\xi}(\mathbf{s})$ and $\boldsymbol{\Xi}(\mathbf{t})$ - Srinivasa Ramanujan Quarterly Journal of Mathematics, XLVI, 1915, 253 - 260

We have that:

For:

$$
\begin{aligned}
& \xi(s)=(s-1) \Gamma\left(1+\frac{1}{2} s\right) \pi^{-\frac{1}{2} s} \zeta(s) \\
& \xi\left(\frac{1}{2}+\frac{1}{2} i t\right)=\Xi\left(\frac{1}{2} t\right)
\end{aligned}
$$

Thence, for $\mathrm{t}=1$:
$(1 / 2+1 / 2 \mathrm{i}-1)$ gamma $(1+1 / 2 *(1 / 2+1 / 2 \mathrm{i}))^{*} \operatorname{Pi}^{\wedge}(-1 / 2 *(1 / 2+1 / 2 \mathrm{i}))^{*} \operatorname{zeta}(1 / 2+1 / 2 \mathrm{i})$
Input:
$\left(\frac{1}{2}+\frac{1}{2} i-1\right) \Gamma\left(1+\frac{1}{2}\left(\frac{1}{2}+\frac{1}{2} i\right)\right) \pi^{-1 / 2(1 / 2+1 / 2 i)} \zeta\left(\frac{1}{2}+\frac{1}{2} i\right)$
$\Gamma(x)$ is the gamma function

Exact result:

$\left(-\frac{1}{2}+\frac{i}{2}\right) \pi^{-1 / 4-i / 4} \zeta\left(\frac{1}{2}+\frac{i}{2}\right) \Gamma\left(\frac{5}{4}+\frac{i}{4}\right)$

Decimal approximation:

$0.494256987910076300380568818360138186867976223134574011846 \ldots$
(using the principal branch of the logarithm for complex exponentiation)
$0.49425698791 \ldots .$.

Alternate forms:

$-\frac{1}{4} \pi^{-1 / 4-i / 4} \zeta\left(\frac{1}{2}+\frac{i}{2}\right) \Gamma\left(\frac{1}{4}+\frac{i}{4}\right)$
$\left(-\frac{4}{13}+\frac{6 i}{13}\right) \pi^{-1 / 4-i / 4}\left(\frac{5}{4}+\frac{i}{4}\right)!\zeta\left(\frac{1}{2}+\frac{i}{2}\right)$
$n!$ is the factorial function

Alternative representations:

$$
\begin{aligned}
& \left(\frac{1}{2}+\frac{i}{2}-1\right) \Gamma\left(1+\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right) \pi^{1 / 2(1 / 2+i / 2)(-1)} \zeta\left(\frac{1}{2}+\frac{i}{2}\right)= \\
& \left(-\frac{1}{2}+\frac{i}{2}\right) \exp \left(-\log G\left(1+\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)+\log \left(2+\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\right) \pi^{1 / 2(-1 / 2-i / 2)} \zeta\left(\frac{1}{2}+\frac{i}{2}, 1\right)
\end{aligned}
$$

$$
\left(\frac{1}{2}+\frac{i}{2}-1\right) \Gamma\left(1+\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right) \pi^{1 / 2(1 / 2+i / 2)(-1)} \zeta\left(\frac{1}{2}+\frac{i}{2}\right)=
$$

$$
\left(-\frac{1}{2}+\frac{i}{2}\right)(1)_{\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)} \pi^{1 / 2(-1 / 2-i / 2)} \zeta\left(\frac{1}{2}+\frac{i}{2}, 1\right)
$$

$$
\left(\frac{1}{2}+\frac{i}{2}-1\right) \Gamma\left(1+\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right) \pi^{1 / 2(1 / 2+i / 2)(-1)} \zeta\left(\frac{1}{2}+\frac{i}{2}\right)=
$$

$$
\left(-\frac{1}{2}+\frac{i}{2}\right) G\left(2+\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right) \pi^{1 / 2(-1 / 2-i / 2)} \zeta\left(\frac{1}{2}+\frac{i}{2}, 1\right)
$$

$$
G\left(1+\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)
$$

Series representations:

$$
\begin{aligned}
& \left(\frac{1}{2}+\frac{i}{2}-1\right) \Gamma\left(1+\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right) \pi^{1 / 2(1 / 2+i / 2)(-1)} \zeta\left(\frac{1}{2}+\frac{i}{2}\right)= \\
& \pi^{-1 / 4-i / 4} \Gamma\left(\frac{5}{4}+\frac{i}{4}\right) \sum_{n=0}^{\infty} \frac{\sum_{k=0}^{n}(-1)^{k}(1+k)^{1 / 2-i / 2}\binom{n}{k}}{1+n} \\
& \frac{\left(\frac{1}{2}+\frac{i}{2}-1\right) \Gamma\left(1+\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right) \pi^{1 / 2(1 / 2+i / 2)(-1)} \zeta\left(\frac{1}{2}+\frac{i}{2}\right)=}{(1-i) 2^{-1+i / 2} \pi^{-1 / 4-i / 4} \Gamma\left(\frac{5}{4}+\frac{i}{4}\right) \sum_{n=0}^{\infty} 2^{-1-n} \sum_{k=0}^{n}(-1)^{k}(1+k)^{-1 / 2-i / 2}\binom{n}{k}}
\end{aligned}
$$

$$
\left(\frac{1}{2}+\frac{i}{2}-1\right) \Gamma\left(1+\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right) \pi^{1 / 2(1 / 2+i / 2)(-1)} \zeta\left(\frac{1}{2}+\frac{i}{2}\right)=
$$

$$
\left(-\frac{1}{2}+\frac{i}{2}\right) \pi^{-1 / 4-i / 4} \Gamma\left(\frac{5}{4}+\frac{i}{4}\right) \sum_{k=0}^{\infty} \frac{\left(\left(\frac{1}{2}+\frac{i}{2}\right)-s_{0}\right)^{k} \zeta^{(k)}\left(s_{0}\right)}{k!} \text { for } s_{0} \neq 1
$$

Integral representations:

$$
\begin{aligned}
& \left(\frac{1}{2}+\frac{i}{2}-1\right) \Gamma\left(1+\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right) \pi^{1 / 2(1 / 2+i / 2)(-1)} \zeta\left(\frac{1}{2}+\frac{i}{2}\right)= \\
& -\frac{\left(\frac{1}{2}-\frac{i}{2}\right) \pi^{-1 / 4-i / 4} \Gamma\left(\frac{5}{4}+\frac{i}{4}\right)}{\left(1-2^{1 / 2-i / 2}\right) \Gamma\left(\frac{1}{2}+\frac{i}{2}\right)} \int_{0}^{\infty} \frac{t^{-1 / 2+i / 2}}{1+e^{t}} d t \\
& \left(\frac{1}{2}+\frac{i}{2}-1\right) \Gamma\left(1+\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right) \pi^{1 / 2(1 / 2+i / 2)(-1)} \zeta\left(\frac{1}{2}+\frac{i}{2}\right)= \\
& \frac{(1-i) 2^{-1+i / 2} \pi^{-1 / 4-i / 4}\left(\int_{0}^{\infty} \frac{t^{-1 / 2+i / 2}}{1+e^{t}} d t\right) \int_{0}^{1} \log ^{1 / 4+i / 4}\left(\frac{1}{t}\right) d t}{\left(-2^{i / 2}+\sqrt{2}\right) \Gamma\left(\frac{1}{2}+\frac{i}{2}\right)} \\
& \left(\frac{1}{2}+\frac{i}{2}-1\right) \Gamma\left(1+\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right) \pi^{1 / 2(1 / 2+i / 2)(-1)} \zeta\left(\frac{1}{2}+\frac{i}{2}\right)= \\
& \frac{(1-i) 2^{-3 / 2+i} \pi^{-1 / 4-i / 4}\left(\int_{0}^{1} \log ^{1 / 4+i / 4}\left(\frac{1}{t}\right) d t\right) \int_{0}^{\infty} t^{1 / 2+i / 2} \operatorname{sech}^{2}(t) d t}{\left(-2^{i / 2}+\sqrt{2}\right) \Gamma\left(\frac{3}{2}+\frac{i}{2}\right)}
\end{aligned}
$$

From

$$
\begin{align*}
& \alpha^{-\frac{1}{4}}\left\{\frac{1}{1+t^{2}}-4 \alpha \int_{0}^{\infty}\left(\frac{3}{3^{2}+t^{2}}-\frac{\alpha}{1!} \frac{7 x^{2}}{7^{2}+t^{2}}+\frac{\alpha^{2}}{2!} \frac{11 x^{4}}{11^{2}+t^{2}}-\cdots\right) \frac{x d x}{e^{2 \pi x}-1}\right\} \\
& \quad+\beta^{-\frac{1}{4}}\left\{\frac{1}{1+t^{2}}-4 \beta \int_{0}^{\infty}\left(\frac{3}{3^{2}+t^{2}}-\frac{\beta}{1!} \frac{7 x^{2}}{7^{2}+t^{2}}+\frac{\beta^{2}}{2!} \frac{11 x^{4}}{11^{2}+t^{2}}-\cdots\right) \frac{x d x}{e^{2 \pi x}-1}\right\} \\
& \quad=\frac{1}{4} \pi^{-\frac{3}{4}} \Gamma\left(\frac{-1+i t}{4}\right) \Gamma\left(\frac{-1-i t}{4}\right) \Xi\left(\frac{1}{2} t\right) \cos \left(\frac{t}{8} \log \frac{\alpha}{\beta}\right) . \tag{9}
\end{align*}
$$

For $t=1, \alpha=2, \beta=\pi^{2} / 2$, and $\Xi(1 / 2 t)=0.49425698791$, we obtain:
$1 / 4 * \operatorname{Pi}^{\wedge}(-3 / 4) * \operatorname{gamma}((-1+\mathrm{i}) / 4) * \operatorname{gamma}((-1-\mathrm{i}) / 4) * 0.49425698791 *$ $\cos \left(1 / 8^{*} \ln \left(\mathrm{Pi}^{\wedge} 2\right)\right)$

Input interpretation:

$\frac{1}{4} \pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) \times 0.49425698791 \cos \left(\frac{1}{8} \log \left(\pi^{2}\right)\right)$

Result:

0.51792798277...
$0.51792798277 \ldots$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{4}\left(\pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right)\right) \Gamma\left(\frac{1}{4}(-1-i)\right)\left(0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)= \\
& \frac{1}{4} \times 0.494256987910000 \cosh \left(\frac{1}{8} i \log \left(\pi^{2}\right)\right) \\
& \quad \exp \left(-\log G\left(\frac{1}{4}(-1-i)\right)+\log G\left(1+\frac{1}{4}(-1-i)\right)\right) \\
& \quad \exp \left(-\log G\left(\frac{1}{4}(-1+i)\right)+\log G\left(1+\frac{1}{4}(-1+i)\right)\right) \pi^{-3 / 4}
\end{aligned}
$$

$$
\frac{1}{4}\left(\pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right)\right) \Gamma\left(\frac{1}{4}(-1-i)\right)\left(0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)=
$$

$$
0.494256987910000 G\left(1+\frac{1}{4}(-1-i)\right) G\left(1+\frac{1}{4}(-1+i)\right) \cosh \left(\frac{1}{8} i \log \left(\pi^{2}\right)\right) \pi^{-3 / 4}
$$

$$
4 G\left(\frac{1}{4}(-1-i)\right) G\left(\frac{1}{4}(-1+i)\right)
$$

$$
\frac{1}{4}\left(\pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right)\right) \Gamma\left(\frac{1}{4}(-1-i)\right)\left(0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)=
$$

$$
0.494256987910000 G\left(1+\frac{1}{4}(-1-i)\right) G\left(1+\frac{1}{4}(-1+i)\right) \cosh \left(-\frac{1}{8} i \log \left(\pi^{2}\right)\right) \pi^{-3 / 4}
$$

$$
4 G\left(\frac{1}{4}(-1-i)\right) G\left(\frac{1}{4}(-1+i)\right)
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{4}\left(\pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right)\right) \Gamma\left(\frac{1}{4}(-1-i)\right)\left(0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)= \\
& -\left(\left(1.9770279516400 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty}\right.\right. \\
& \left.\frac{(-1)^{k_{1}} 4^{-3 k_{1}-k_{2}-k_{3}}(-1-i)^{k_{2}}(-1+i)^{k_{3}} \log ^{2 k_{1}}\left(\pi^{2}\right) \Gamma^{\left(k_{2}\right)}(1) \Gamma^{\left(k_{3}\right)}(1)}{\left(2 k_{1}\right)!k_{2}!k_{3}!}\right) / \\
& \quad((-1.00000000000000+1.00000000000000 i)
\end{aligned}
$$

$$
\left.(1.00000000000000+1.00000000000000 i) \pi^{3 / 4}\right)
$$

$$
\frac{1}{4}\left(\pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right)\right) \Gamma\left(\frac{1}{4}(-1-i)\right)\left(0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)=
$$

$$
\frac{1}{\pi^{3 / 4}} 0.123564246977500 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{\left(-\frac{1}{64}\right)^{k_{1}} \log ^{2 k_{1}}\left(\pi^{2}\right)\left(\frac{1}{4}(-1+i)-z_{0}\right)^{k_{2}}\left(-\frac{1}{4}-\frac{i}{4}-z_{0}\right)^{k_{3}} \Gamma^{\left(k_{2}\right)}\left(z_{0}\right) \Gamma^{\left(k_{3}\right)}\left(z_{0}\right)}{\left(2 k_{1}\right)!k_{2}!k_{3}!} \text { for }\left(z_{0} \notin Z \text { or } z_{0}>0\right)
$$

$$
\frac{1}{4}\left(\pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right)\right) \Gamma\left(\frac{1}{4}(-1-i)\right)\left(0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)=
$$

$$
-\left(\int 1 . 9 7 7 0 2 7 9 5 1 6 4 0 0 \left(1.00000000000000 J_{0}\left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right.\right.
$$

$$
\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{4^{-k_{1}-k_{2}}(-1-i)^{k_{1}}(-1+i)^{k_{2}} \Gamma^{\left(k_{1}\right)}(1) \Gamma^{\left(k_{2}\right)}(1)}{k_{1}!k_{2}!}+
$$

$$
2.0000000000000 \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{1}{k_{2}!k_{3}!}(-1)^{k_{1}} 4^{-k_{2}-k_{3}}
$$

$$
\left.\left.(-1-i)^{k_{2}}(-1+i)^{k_{3}} J_{2 k_{1}}\left(\frac{\log \left(\pi^{2}\right)}{8}\right) \Gamma^{\left(k_{2}\right)}(1) \Gamma^{\left(k_{3}\right)}(1)\right)\right) /
$$

$$
((-1.00000000000000+1.00000000000000 i)
$$

$\left.(1.00000000000000+1.00000000000000 i) \pi^{3 / 4}\right)$

$$
\begin{gathered}
\frac{1}{4}\left(\pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right)\right) \Gamma\left(\frac{1}{4}(-1-i)\right)\left(0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)= \\
\frac{1}{\pi^{3 / 4}} 0.123564246977500\left(1.00000000000000 J_{0}\left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right. \\
\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(\frac{1}{4}(-1+i)-z_{0}\right)^{k_{1}}\left(-\frac{1}{4}-\frac{i}{4}-z_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(z_{0}\right) \Gamma^{\left(k_{2}\right)}\left(z_{0}\right)}{k_{1}!k_{2}!}+ \\
2.0000000000000 \\
\sum_{k_{1}=1}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{1}{k_{2}!k_{3}!}(-1)^{k_{1}} J_{2 k_{1}}\left(\frac{\log \left(\pi^{2}\right)}{8}\right)\left(\frac{1}{4}(-1+i)-z_{0}\right)^{k_{2}} \\
\left.\left(-\frac{1}{4}-\frac{i}{4}-z_{0}\right)^{k_{3}} \Gamma^{\left(k_{2}\right)}\left(z_{0}\right) \Gamma^{\left(k_{3}\right)}\left(z_{0}\right)\right) \text { for }\left(z_{0} \notin \mathbb{Z} \text { or } z_{0}>0\right)
\end{gathered}
$$

Integral representations:

$$
\begin{aligned}
& \frac{1}{4}\left(\pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right)\right) \Gamma\left(\frac{1}{4}(-1-i)\right)\left(0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)= \\
& -\frac{0.494256987910000 \pi^{5 / 4} \mathcal{A}^{2}}{\oint_{L}^{t} e^{1 / 4+i / 4} d t \oint_{L} e^{t} t^{1 / 4-i / 4} d t} \int_{\frac{\pi}{2}}^{\frac{\log \left(\pi^{2}\right)}{8}} \sin (t) d t
\end{aligned}
$$

$$
\frac{1}{4}\left(\pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right)\right) \Gamma\left(\frac{1}{4}(-1-i)\right)\left(0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)=
$$

$$
-\int\left(0.0617821234887500 \pi^{5 / 4} \mathcal{A}^{2}(-8.00000000000000+\right.
$$

$$
\left.\left.\left.\log \left(\pi^{2}\right) \int_{0}^{1} \sin \left(\frac{1}{8} t \log \left(\pi^{2}\right)\right) d t\right)\right) /\left(\oint_{L} e^{t} t^{1 / 4+i / 4} d t \oint_{L} e^{t} t^{1 / 4-i / 4} d t\right)\right)
$$

$$
\frac{1}{4}\left(\pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right)\right) \Gamma\left(\frac{1}{4}(-1-i)\right)\left(0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)=
$$

$$
\frac{0.247128493955000 \sqrt[4]{\pi} \mathcal{A} \sqrt{\pi}}{\oint_{L} e^{t} t^{1 / 4+i / 4} d t \oint_{L} e^{t} t^{1 / 4-i / 4} d t} \int_{-\mathcal{A} \infty+\gamma}^{\mathcal{A} \infty+\gamma} \frac{e^{s-\log ^{2}\left(\pi^{2}\right) /(256 s)}}{\sqrt{s}} d s \text { for } \gamma>0
$$

Multiple-argument formulas:

$$
\begin{aligned}
& \frac{1}{4}\left(\pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right)\right) \Gamma\left(\frac{1}{4}(-1-i)\right)\left(0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)= \\
& \frac{1}{\pi^{3 / 4} \sqrt{\pi}^{2}} 0.0436865584749998 \\
& \quad\left(-0.500000000000000+1.00000000000000 \cos ^{2}\left(\frac{\log \left(\pi^{2}\right)}{16}\right)\right) \\
& \quad \Gamma\left(\frac{1}{8}(-1-i)\right) \Gamma\left(\frac{3}{8}-\frac{i}{8}\right) \Gamma\left(\frac{1}{8}(-1+i)\right) \Gamma\left(\frac{3+i}{8}\right)
\end{aligned}
$$

$$
\frac{1}{4}\left(\pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right)\right) \Gamma\left(\frac{1}{4}(-1-i)\right)\left(0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)=
$$

$$
-\frac{1}{\pi^{3 / 4} \sqrt{\pi}^{2}} 0.0436865584749998 \Gamma\left(\frac{1}{8}(-1-i)\right) \Gamma\left(\frac{3}{8}-\frac{i}{8}\right) \Gamma\left(\frac{1}{8}(-1+i)\right)
$$

$$
\Gamma\left(\frac{3+i}{8}\right)\left(-0.500000000000000+1.00000000000000 \sin ^{2}\left(\frac{\log \left(\pi^{2}\right)}{16}\right)\right)
$$

$\frac{1}{4}\left(\pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right)\right) \Gamma\left(\frac{1}{4}(-1-i)\right)\left(0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)=$ $\frac{1}{\pi^{3 / 4} \sqrt{\pi}^{2}} 0.0873731169499996$ $\left(-0.750000000000000 \cos \left(\frac{\log \left(\pi^{2}\right)}{24}\right)+1.00000000000000 \cos ^{3}\left(\frac{\log \left(\pi^{2}\right)}{24}\right)\right)$ $\Gamma\left(\frac{1}{8}(-1-i)\right) \Gamma\left(\frac{3}{8}-\frac{i}{8}\right) \Gamma\left(\frac{1}{8}(-1+i)\right) \Gamma\left(\frac{3+i}{8}\right)$

We note that, multiplying by π the above expression and subtracting $(7+2) / 10^{3}$ (where 7 and 2 are primes and Lucas numbers), we obtain:
$\operatorname{Pi}^{*}\left(\left(\left(1 / 4 * \operatorname{Pi}^{\wedge}(-3 / 4) * \operatorname{gamma}((-1+\mathrm{i}) / 4) * \operatorname{gamma}((-1-\mathrm{i}) / 4) * 0.49425698791 *\right.\right.\right.$ $\left.\left.\left.\cos \left(1 / 8^{*} \ln \left(\mathrm{Pi}^{\wedge} 2\right)\right)\right)\right)\right)-(7+2) 1 / 10^{\wedge} 3$

Input interpretation:

$$
\pi\left(\frac{1}{4} \pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) \times 0.49425698791 \cos \left(\frac{1}{8} \log \left(\pi^{2}\right)\right)\right)-(7+2) \times \frac{1}{10^{3}}
$$

Result:

1.6181187458...
1.6181187458...

Alternative representations:

$$
\begin{aligned}
& \frac{1}{4} \pi \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)-\frac{7+2}{10^{3}}= \\
& \frac{1}{4} \times 0.494256987910000 \pi \cosh \left(\frac{1}{8} i \log \left(\pi^{2}\right)\right) \\
& \quad \exp \left(-\operatorname{logG}\left(\frac{1}{4}(-1-i)\right)+\log G\left(1+\frac{1}{4}(-1-i)\right)\right) \\
& \quad \exp \left(-\operatorname{logG}\left(\frac{1}{4}(-1+i)\right)+\log G\left(1+\frac{1}{4}(-1+i)\right)\right) \pi^{-3 / 4}-\frac{9}{10^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{1}{4} \pi \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)\right)-\frac{7+2}{10^{3}}= \\
& \frac{0.494256987910000 \pi G\left(1+\frac{1}{4}(-1-i)\right) G\left(1+\frac{1}{4}(-1+i)\right) \cosh \left(\frac{1}{8} i \log \left(\pi^{2}\right)\right) \pi^{-3 / 4}}{4 G\left(\frac{1}{4}(-1-i)\right) G\left(\frac{1}{4}(-1+i)\right)}-\frac{9}{10^{3}}
\end{aligned}
$$

$$
\frac{1}{4} \pi \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)-\frac{7+2}{10^{3}}=
$$

$$
0.494256987910000 \pi G\left(1+\frac{1}{4}(-1-i)\right) G\left(1+\frac{1}{4}(-1+i)\right) \cosh \left(-\frac{1}{8} i \log \left(\pi^{2}\right)\right) \pi^{-3 / 4}
$$

$$
4 G\left(\frac{1}{4}(-1-i)\right) G\left(\frac{1}{4}(-1+i)\right)
$$

$\frac{9}{10^{3}}$

Series representations:

$$
\begin{aligned}
& \frac{1}{4} \pi \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)-\frac{7+2}{10^{3}}= \\
& -\left(\left(0 . 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 \left(-1.00000000000000+1.00000000000000 i^{2}+\right.\right.\right. \\
& 219.66977240444 \sqrt[4]{\pi} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{1}{\left(2 k_{1}\right)!k_{2}!k_{3}!}(-1)^{k_{1}} 4^{-3 k_{1}-k_{2}-k_{3}} \\
& \left.\left.(-1-i)^{k_{2}}(-1+i)^{k_{3}} \log ^{2 k_{1}}\left(\pi^{2}\right) \Gamma^{\left(k_{2}\right)}(1) \Gamma^{\left(k_{3}\right)}(1)\right)\right) /
\end{aligned}
$$

$$
((-1.00000000000000+1.00000000000000 i)
$$

$$
(1.00000000000000+1.00000000000000 i))
$$

$$
\begin{gathered}
\frac{1}{4} \pi \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)-\frac{7+2}{10^{3}}= \\
0.123564246977500(-0.072836602983052+1.00000000000000 \sqrt[4]{\pi} \\
\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{1}{\left(2 k_{1}\right)!k_{2}!k_{3}!}\left(-\frac{1}{64}\right)^{k_{1}} \log ^{2 k_{1}}\left(\pi^{2}\right)\left(\frac{1}{4}(-1+i)-z_{0}\right)^{k_{2}} \\
\left.\left(-\frac{1}{4}-\frac{i}{4}-z_{0}\right)^{k_{3}} \Gamma^{\left(k_{2}\right)}\left(z_{0}\right) \Gamma^{\left(k_{3}\right)}\left(z_{0}\right)\right) \text { for }\left(z_{0} \notin \mathbb{Z} \text { or } z_{0}>0\right)
\end{gathered}
$$

$$
\begin{aligned}
& \frac{1}{4} \pi \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)-\frac{7+2}{10^{3}}= \\
& \quad-((0.009000000000000
\end{aligned}
$$

$$
\left(-1.00000000000000+1.00000000000000 i^{2}+219.66977240444 \sqrt[4]{\pi}\right.
$$

$$
J_{0}\left(\frac{\log \left(\pi^{2}\right)}{8}\right) \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{4^{-k_{1}-k_{2}}(-1-i)^{k_{1}}(-1+i)^{k_{2}} \Gamma^{\left(k_{1}\right)}(1) \Gamma^{\left(k_{2}\right)}(1)}{k_{1}!k_{2}!}+
$$

$$
439.33954480889 \sqrt[4]{\pi} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{1}{k_{2}!k_{3}!}(-1)^{k_{1}} 4^{-k_{2}-k_{3}}
$$

$$
\left.\left.(-1-i)^{k_{2}}(-1+i)^{k_{3}} J_{2 k_{1}}\left(\frac{\log \left(\pi^{2}\right)}{8}\right) \Gamma^{\left(k_{2}\right)}(1) \Gamma^{\left(k_{3}\right)}(1)\right)\right) /
$$

$((-1.00000000000000+1.00000000000000 i)$
$(1.00000000000000+1.00000000000000 i))$

Integral representations:

$$
\begin{aligned}
& \frac{1}{4} \pi \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)-\frac{7+2}{10^{3}}= \\
& -\frac{9}{1000}-\frac{0.494256987910000 \pi^{9 / 4} \mathcal{A}^{2}}{\oint_{L} e^{t} t^{1 / 4+i / 4} d t \oint_{L} e^{t} t^{1 / 4-i / 4} d t} \int_{\frac{\pi}{2}}^{\frac{\log \left(\pi^{2}\right)}{8}} \sin (t) d t
\end{aligned}
$$

$$
\frac{1}{4} \pi \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)-\frac{7+2}{10^{3}}=
$$

$$
-\frac{9}{1000}+
$$

$$
\pi^{0 / 4} \mathcal{H}^{2}\left(0.49425698791000-0.061782123488750 \log \left(\pi^{2}\right) \int_{0}^{1} \sin \left(\frac{1}{8} t \log \left(\pi^{2}\right)\right) d t\right)
$$

$$
\oint_{L} e^{t} t^{1 / 4+i / 4} d t \oint_{L} e^{t} t^{1 / 4-i / 4} d t
$$

$$
\left.\begin{array}{l}
\frac{1}{4} \pi \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)-\frac{7+2}{10^{3}}= \\
-\frac{9}{1000}+\frac{0.247128493955000 \pi^{5 / 4} \mathcal{A} \sqrt{\pi}}{\oint_{L}^{t} e^{t} t^{1 / 4+i / 4} d t \oint_{L} e^{t} t^{1 / 4-i / 4} d t} \int_{-\mathcal{H} \infty+\gamma}^{\mathcal{H} \infty+\gamma} e^{s-\log ^{2}\left(\pi^{2}\right) /(256 s)} \\
\sqrt{s}
\end{array} s \text { for } \gamma>0\right)
$$

Multiple-argument formulas:

$$
\begin{aligned}
& \frac{1}{4} \pi \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)-\frac{7+2}{10^{3}}= \\
& -0.0090000000000000+ \\
& \frac{1}{\sqrt{\pi}^{2}} \sqrt[4]{\pi}\left(-0.0218432792374999+0.0436865584749998 \cos ^{2}\left(\frac{\log \left(\pi^{2}\right)}{16}\right)\right) \\
& \Gamma\left(\frac{1}{8}(-1-i)\right) \Gamma\left(\frac{3}{8}-\frac{i}{8}\right) \Gamma\left(\frac{1}{8}(-1+i)\right) \Gamma\left(\frac{3+i}{8}\right) \\
& \frac{1}{4} \pi \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)-\frac{7+2}{10^{3}}= \\
& -0.0090000000000000+\frac{1}{\sqrt{\pi}^{2}} \sqrt[4]{\pi} \Gamma\left(\frac{1}{8}(-1-i)\right) \Gamma\left(\frac{3}{8}-\frac{i}{8}\right) \Gamma\left(\frac{1}{8}(-1+i)\right) \\
& \Gamma\left(\frac{3+i}{8}\right)\left(0.0218432792374999-0.0436865584749998 \sin ^{2}\left(\frac{\log \left(\pi^{2}\right)}{16}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{4} \pi \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)-\frac{7+2}{10^{3}}= \\
& -\frac{9}{1000}+\frac{1}{\sqrt{\pi}^{2}} 0.0873731169499996 \sqrt[4]{\pi} \\
& \quad\left(-0.750000000000000 \cos \left(\frac{\log \left(\pi^{2}\right)}{24}\right)+1.00000000000000 \cos ^{3}\left(\frac{\log \left(\pi^{2}\right)}{24}\right)\right) \\
& \Gamma\left(\frac{1}{8}(-1-i)\right) \Gamma\left(\frac{3}{8}-\frac{i}{8}\right) \Gamma\left(\frac{1}{8}(-1+i)\right) \Gamma\left(\frac{3+i}{8}\right)
\end{aligned}
$$

From the same expression, we obtain also:
$10^{\wedge} 3\left(\left(\left(\mathrm{Pi}^{*}\left(\left(\left(1 / 4 * \mathrm{Pi}^{\wedge}(-3 / 4) * \operatorname{gamma}((-1+\mathrm{i}) / 4) * \operatorname{gamma}((-1-\mathrm{i}) / 4) * 0.49425698791 *\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\cos \left(1 / 8^{*} \ln \left(\mathrm{Pi}^{\wedge} 2\right)\right)\right)\right)\right)+(47-2) / 10^{\wedge} 3\right)\right)\right)$

Input interpretation:

$$
10^{3}\left(\pi\left(\frac{1}{4} \pi^{-3 / 4} r\left(\frac{1}{4}(-1+i)\right) r\left(\frac{1}{4}(-1-i)\right) \times 0.49425698791 \cos \left(\frac{1}{8} \log \left(\pi^{2}\right)\right)\right)+\frac{47-2}{10^{3}}\right)
$$

$\Gamma(x)$ is the gamma function
$\log (x)$ is the natural logarithm

Result:

1672.1187458...
1672.1187458 ... result practically equal to the rest mass of Omega baryon 1672.45

Alternative representations:

$$
\begin{gathered}
10^{3}\left(\frac{1}{4} \pi \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+\right. \\
\left.\frac{47-2}{10^{3}}\right)=10^{3}\left(\frac{1}{4} \times 0.494256987910000 \pi \cosh \left(\frac{1}{8} i \log \left(\pi^{2}\right)\right)\right. \\
\quad \exp \left(-\operatorname{logG}\left(\frac{1}{4}(-1-i)\right)+\operatorname{logG}\left(1+\frac{1}{4}(-1-i)\right)\right) \\
\left.\quad \exp \left(-\operatorname{logG}\left(\frac{1}{4}(-1+i)\right)+\operatorname{logG}\left(1+\frac{1}{4}(-1+i)\right)\right) \pi^{-3 / 4}+\frac{45}{10^{3}}\right)
\end{gathered}
$$

$$
\begin{aligned}
& 10^{3}\left(\frac{1}{4} \pi \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+\right. \\
& \left.\frac{47-2}{10^{3}}\right)= \\
& 10^{3}\left(\frac{0.494256987910000 \pi G\left(1+\frac{1}{4}(-1-i)\right) G\left(1+\frac{1}{4}(-1+i)\right) \cosh \left(\frac{1}{8} i \log \left(\pi^{2}\right)\right) \pi^{-3 / 4}}{4 G\left(\frac{1}{4}(-1-i)\right) G\left(\frac{1}{4}(-1+i)\right)}+\right. \\
& \left.\frac{45}{10^{3}}\right) \\
& 10^{3}\left(\frac{1}{4} \pi \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+\right. \\
& \left.\frac{47-2}{10^{3}}\right)=10^{3} \\
& \left(\frac{0.494256987910000 \pi G\left(1+\frac{1}{4}(-1-i)\right) G\left(1+\frac{1}{4}(-1+i)\right) \cosh \left(-\frac{1}{8} i \log \left(\pi^{2}\right)\right) \pi^{-3 / 4}}{4 G\left(\frac{1}{4}(-1-i)\right) G\left(\frac{1}{4}(-1+i)\right)}+\right. \\
& \left.\frac{45}{10^{3}}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& 10^{3}\left(\frac{1}{4} \pi \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+\right. \\
& \left.\frac{47-2}{10^{3}}\right)=\left(4 5 . 0 0 0 0 0 0 0 0 0 0 0 \left(-1.00000000000000+1.00000000000000 i^{2}-\right.\right. \\
& 43.933954480889 \sqrt[4]{\pi} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \\
& \left.\frac{(-1)^{k_{1}} 4^{-3 k_{1}-k_{2}-k_{3}}(-1-i)^{k_{2}}(-1+i)^{k_{3}} \log ^{2 k_{1}}\left(\pi^{2}\right) \Gamma^{\left(k_{2}\right)}(1) \Gamma^{\left(k_{3}\right)}(1)}{\left(2 k_{1}\right)!k_{2}!k_{3}!}\right)
\end{aligned}
$$

$$
/ /((-1.00000000000000+1.00000000000000 i)
$$

$(1.00000000000000+1.00000000000000 i))$

$$
\begin{aligned}
& 10^{3}\left(\frac{1}{4} \pi \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+\right. \\
& \left.\frac{47-2}{10^{3}}\right)= \\
& 123.564246977500(0.36418301491526+1.00000000000000 \sqrt[4]{\pi} \\
& \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{1}{\left(2 k_{1}\right)!k_{2}!k_{3}!}\left(-\frac{1}{64}\right)^{k_{1}} \log ^{2 k_{1}}\left(\pi^{2}\right)\left(\frac{1}{4}(-1+i)-z_{0}\right)^{k_{2}} \\
& \left.\left(-\frac{1}{4}-\frac{i}{4}-z_{0}\right)^{k_{3}} \Gamma^{\left(k_{2}\right)}\left(z_{0}\right) \Gamma^{\left(k_{3}\right)}\left(z_{0}\right)\right) \text { for }\left(z_{0} \notin \mathbb{Z} \text { or } z_{0}>0\right) \\
& 10^{3}\left(\frac{1}{4} \pi \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+\right. \\
& \left.\frac{47-2}{10^{3}}\right)=(45.000000000000 \\
& \left(-1.00000000000000+1.00000000000000 i^{2}-43.933954480889 \sqrt[4]{\pi}\right. \\
& J_{0}\left(\frac{\log \left(\pi^{2}\right)}{8}\right) \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{4^{-k_{1}-k_{2}}(-1-i)^{k_{1}}(-1+i)^{k_{2}} \Gamma^{\left(k_{1}\right)}(1) \Gamma^{\left(k_{2}\right)}(1)}{k_{1}!k_{2}!}- \\
& 87.867908961778 \sqrt[4]{\pi} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \\
& \left.\left.\frac{(-1)^{k_{1}} 4^{-k_{2}-k_{3}}(-1-i)^{k_{2}}(-1+i)^{k_{3}} J_{2 k_{1}}\left(\frac{\log \left(\pi^{2}\right)}{8}\right) \Gamma^{\left(k_{2}\right)}(1) \Gamma^{\left(k_{3}\right)}(1)}{k_{2}!k_{3}!}\right)\right) \\
& /((-1.00000000000000+1.00000000000000 i) \\
& (1.00000000000000+1.00000000000000 i))
\end{aligned}
$$

Integral representations:

$$
\begin{gathered}
10^{3}\left(\frac{1}{4} \pi \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+\right. \\
\left.\frac{47-2}{10^{3}}\right)=45-\frac{494.256987910000 \pi^{9 / 4} \mathcal{A}^{2}}{\oint_{L} e^{t} t^{1 / 4+i / 4} d t \oint_{L}^{t} t^{1 / 4-i / 4} d t} \int_{\frac{\pi}{2}}^{\frac{\log \left(\pi^{2}\right)}{8}} \sin (t) d t
\end{gathered}
$$

$$
\begin{aligned}
& 10^{3}\left(\frac{1}{4} \pi \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+\right. \\
& \left.\frac{47-2}{10^{3}}\right)= \\
& 45+\frac{\pi^{9} / 4}{\mathcal{A}^{2}\left(494.25698791000-61.782123488750 \log \left(\pi^{2}\right) \int_{0}^{1} \sin \left(\frac{1}{8} t \log \left(\pi^{2}\right)\right) d t\right)} \\
& \oint_{L}^{t} t^{1 / 4+i / 4} d t \oint_{L}^{t} t^{1 / 4-i / 4} d t \\
& 10^{3}\left(\frac{1}{4} \pi \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+\right. \\
& \left.\frac{47-2}{10^{3}}\right)= \\
& 45+\frac{247.128493955000 \pi^{5 / 4} \mathcal{A} \sqrt{\pi}}{\oint_{L}^{t} t^{1 / 4+i / 4} d t \oint_{L} e^{t} t^{1 / 4-i / 4} d t} \int_{-\mathfrak{H} \infty+\gamma}^{\mathcal{A} \infty+\gamma} \frac{e^{s-\log ^{2}\left(\pi^{2}\right) /(256 s)}}{\sqrt{s}} d s \text { for } \gamma>0
\end{aligned}
$$

Multiple-argument formulas:

$$
\begin{aligned}
& 10^{3}\left(\frac{1}{4} \pi \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+\right. \\
& \left.\frac{47-2}{10^{3}}\right)=45.0000000000000+ \\
& \frac{1}{\sqrt{\pi}^{2}} \sqrt[4]{\pi}\left(-21.8432792374999+43.6865584749998 \cos ^{2}\left(\frac{\log \left(\pi^{2}\right)}{16}\right)\right) \\
& \Gamma\left(\frac{1}{8}(-1-i)\right) \Gamma\left(\frac{3}{8}-\frac{i}{8}\right) \Gamma\left(\frac{1}{8}(-1+i)\right) \Gamma\left(\frac{3+i}{8}\right) \\
& 10^{3}\left(\frac{1}{4} \pi \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+\right. \\
& \left.\frac{47-2}{10^{3}}\right)=45.0000000000000+\frac{1}{\sqrt{\pi}^{2}} \sqrt[4]{\pi} \Gamma\left(\frac{1}{8}(-1-i)\right) \Gamma\left(\frac{3}{8}-\frac{i}{8}\right) \Gamma\left(\frac{1}{8}(-1+i)\right) \\
& \Gamma\left(\frac{3+i}{8}\right)\left(21.8432792374999-43.6865584749998 \sin ^{2}\left(\frac{\log \left(\pi^{2}\right)}{16}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& 10^{3}\left(\frac{1}{4} \pi \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+\right. \\
& \left.\quad \frac{47-2}{10^{3}}\right)=45+\frac{1}{\sqrt{\pi}^{2}} 87.3731169499996 \sqrt[4]{\pi} \\
& \quad\left(-0.750000000000000 \cos \left(\frac{\log \left(\pi^{2}\right)}{24}\right)+1.00000000000000 \cos ^{3}\left(\frac{\log \left(\pi^{2}\right)}{24}\right)\right) \\
& \quad \Gamma\left(\frac{1}{8}(-1-i)\right) \Gamma\left(\frac{3}{8}-\frac{i}{8}\right) \Gamma\left(\frac{1}{8}(-1+i)\right) \Gamma\left(\frac{3+i}{8}\right)
\end{aligned}
$$

And again, we obtain:
$76 \mathrm{Pi}^{*}\left(\left(\left(1 / 4 * \mathrm{Pi}^{\wedge}(-3 / 4) * \operatorname{gamma}((-1+\mathrm{i}) / 4) * \operatorname{gamma}((-1-\mathrm{i}) / 4) * 0.49425698791 *\right.\right.\right.$ $\left.\left.\left.\cos \left(1 / 8^{*} \ln \left(\mathrm{Pi}^{\wedge} 2\right)\right)\right)\right)\right)+2$

Input interpretation:

$76 \pi\left(\frac{1}{4} \pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) \times 0.49425698791 \cos \left(\frac{1}{8} \log \left(\pi^{2}\right)\right)\right)+2$
$\Gamma(x)$ is the gamma function
$\log (x)$ is the natural logarithm

Result:

125.66102468...
125.66102468...

Alternative representations:

$$
\begin{aligned}
& \frac{1}{4}(76 \pi) \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+2= \\
& 2+\frac{1}{4} \times 37.5635310811600 \pi \cosh \left(\frac{1}{8} i \log \left(\pi^{2}\right)\right) \\
& \quad \exp \left(-\log G\left(\frac{1}{4}(-1-i)\right)+\log G\left(1+\frac{1}{4}(-1-i)\right)\right) \\
& \quad \exp \left(-\log G\left(\frac{1}{4}(-1+i)\right)+\operatorname{logG}\left(1+\frac{1}{4}(-1+i)\right)\right) \pi^{-3 / 4}
\end{aligned}
$$

$$
\frac{1}{4}(76 \pi) \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+2=
$$

$$
2+\frac{37.5635310811600 \pi G\left(1+\frac{1}{4}(-1-i)\right) G\left(1+\frac{1}{4}(-1+i)\right) \cosh \left(\frac{1}{8} i \log \left(\pi^{2}\right)\right) \pi^{-3 / 4}}{4 G\left(\frac{1}{4}(-1-i)\right) G\left(\frac{1}{4}(-1+i)\right)}
$$

$$
\frac{1}{4}(76 \pi) \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+2=
$$

$$
2+\frac{37.5635310811600 \pi G\left(1+\frac{1}{4}(-1-i)\right) G\left(1+\frac{1}{4}(-1+i)\right) \cosh \left(-\frac{1}{8} i \log \left(\pi^{2}\right)\right) \pi^{-3 / 4}}{4 G\left(\frac{1}{4}(-1-i)\right) G\left(\frac{1}{4}(-1+i)\right)}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{4}(76 \pi) \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+2= \\
& \left(2 . 0 0 0 0 0 0 0 0 0 0 0 0 0 \left(-1.00000000000000+1.00000000000000 i^{2}-\right.\right. \\
& 75.127062162320 \sqrt[4]{\pi} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \\
& \left.\frac{(-1)^{k_{1}} 4^{-3 k_{1}-k_{2}-k_{3}}(-1-i)^{k_{2}}(-1+i)^{k_{3}} \log ^{2 k_{1}}\left(\pi^{2}\right) \Gamma^{\left(k_{2}\right)}(1) \Gamma^{\left(k_{3}\right)}(1)}{\left(2 k_{1}\right)!k_{2}!k_{3}!}\right) \\
& \quad /((-1.00000000000000+1.00000000000000 i) \\
& (1.00000000000000+1.00000000000000 i))
\end{aligned}
$$

$$
\frac{1}{4}(76 \pi) \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+2=
$$

$$
9.39088277029000(0.212972523342258+1.00000000000000 \sqrt[4]{\pi}
$$

$$
\begin{aligned}
& \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{1}{\left(2 k_{1}\right)!k_{2}!k_{3}!}\left(-\frac{1}{64}\right)^{k_{1}} \log ^{2 k_{1}}\left(\pi^{2}\right)\left(\frac{1}{4}(-1+i)-z_{0}\right)^{k_{2}} \\
& \left.\left(-\frac{1}{4}-\frac{i}{4}-z_{0}\right)^{k_{3}} \Gamma^{\left(k_{2}\right)}\left(z_{0}\right) \Gamma^{\left(k_{3}\right)}\left(z_{0}\right)\right) \text { for }\left(z_{0} \notin \mathbb{Z} \text { or } z_{0}>0\right)
\end{aligned}
$$

$\frac{1}{4}(76 \pi) \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+2=$ $(2.0000000000000$

$$
\begin{aligned}
& \left(-1.00000000000000+1.00000000000000 i^{2}-75.127062162320 \sqrt[4]{\pi}\right. \\
& J_{0}\left(\frac{\log \left(\pi^{2}\right)}{8}\right) \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{4^{-k_{1}-k_{2}}(-1-i)^{k_{1}}(-1+i)^{k_{2}} \Gamma^{\left(k_{1}\right)}(1) \Gamma^{\left(k_{2}\right)}(1)}{k_{1}!k_{2}!}- \\
& 150.25412432464 \sqrt[4]{\pi} \sum_{k_{1}=1 k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \\
& \left.\left.\frac{(-1)^{k_{1}} 4^{-k_{2}-k_{3}}(-1-i)^{k_{2}}(-1+i)^{k_{3}} J_{2 k_{1}}\left(\frac{\log \left(\pi^{2}\right)}{8}\right) \Gamma^{\left(k_{2}\right)}(1) \Gamma^{\left(k_{3}\right)}(1)}{k_{2}!k_{3}!}\right)\right) \\
& /((-1.0000000000000+1.0000000000000 i) \\
& (1.00000000000000+1.00000000000000 i))
\end{aligned}
$$

Integral representations:

$$
\left.\begin{array}{l}
\frac{1}{4}(76 \pi) \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+2= \\
2-\frac{37.5635310811600 \pi^{9 / 4} \mathcal{A}^{2}}{\oint_{L}^{t} t^{1 / 4+i / 4} d t \oint_{L} e^{t} t^{1 / 4-i / 4} d t \int_{\frac{\pi}{2}}^{\frac{\log \left(\pi^{2}\right)}{8}} \sin (t) d t} \\
\frac{1}{4}(76 \pi) \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+2= \\
2+\frac{\pi^{9 / 4} \mathcal{A}^{2}\left(37.563531081160-4.6954413851450 \log \left(\pi^{2}\right) \int_{0}^{1} \sin \left(\frac{1}{8} t \log \left(\pi^{2}\right)\right) d t\right)}{\oint_{L}^{t} t^{1 / 4+i / 4} d t \oint_{L}^{t} t^{1 / 4-i / 4} d t} \\
\frac{1}{4}(76 \pi) \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+2= \\
2+\frac{18.7817655405800 \pi^{5 / 4} \mathcal{A} \sqrt{\pi}}{\oint_{L}^{t} t^{1 / 4+i / 4} d t e^{t} t^{1 / 4-i / 4} d t} \int_{-\mathcal{A} \infty+\gamma}^{\mathcal{H} \infty+\gamma} e^{s-\log ^{2}\left(\pi^{2}\right) /(256 s)} \\
\sqrt{s}
\end{array} s \text { for } \gamma>0\right)
$$

Multiple-argument formulas:

$$
\begin{aligned}
& \frac{1}{4}(76 \pi) \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+2= \\
& 2.00000000000000+ \\
& \quad \frac{1}{\sqrt{\pi}^{2}} \sqrt[4]{\pi}\left(-1.66008922204999+3.32017844409999 \cos ^{2}\left(\frac{\log \left(\pi^{2}\right)}{16}\right)\right) \\
& \Gamma\left(\frac{1}{8}(-1-i)\right) \Gamma\left(\frac{3}{8}-\frac{i}{8}\right) \Gamma\left(\frac{1}{8}(-1+i)\right) \Gamma\left(\frac{3+i}{8}\right) \\
& \frac{1}{4}(76 \pi) \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+2= \\
& 2.00000000000000+\frac{1}{\sqrt{\pi}^{2}} \sqrt[4]{\pi} \Gamma\left(\frac{1}{8}(-1-i)\right) \Gamma\left(\frac{3}{8}-\frac{i}{8}\right) \Gamma\left(\frac{1}{8}(-1+i)\right) \\
& \left.\quad \Gamma\left(\frac{3+i}{8}\right)\left(1.66008922204999-3.32017844409999 \sin ^{2}\left(\frac{\log \left(\pi^{2}\right)}{16}\right)\right)\right) \\
& \frac{1}{4}(76 \pi) \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+2= \\
& 2+\frac{1}{\sqrt{\pi}^{2}} 6.64035688819997 \sqrt[4]{\pi} \\
& \left(-0.750000000000000 \cos \left(\frac{\log \left(\pi^{2}\right)}{24}\right)+1.00000000000000 \cos ^{3}\left(\frac{\log \left(\pi^{2}\right)}{24}\right)\right)
\end{aligned}
$$

$76 \mathrm{Pi}^{*}\left(\left(\left(1 / 4 * \mathrm{Pi}^{\wedge}(-3 / 4) * \operatorname{gamma}((-1+\mathrm{i}) / 4) * \operatorname{gamma}((-1-\mathrm{i}) / 4) * 0.49425698791 *\right.\right.\right.$ $\left.\left.\left.\cos \left(1 / 8^{*} \ln \left(\mathrm{Pi}^{\wedge} 2\right)\right)\right)\right)\right)+18-2$

Input interpretation:

$76 \pi\left(\frac{1}{4} \pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) \times 0.49425698791 \cos \left(\frac{1}{8} \log \left(\pi^{2}\right)\right)\right)+18-2$
$\Gamma(x)$ is the gamma function
$\log (x)$ is the natural logarithm

Result:

139.66102468...
139.66102468...

Alternative representations:

$$
\begin{aligned}
& \frac{1}{4}(76 \pi) \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+18-2= \\
& 16+\frac{1}{4} \times 37.5635310811600 \pi \cosh \left(\frac{1}{8} i \log \left(\pi^{2}\right)\right) \\
& \quad \exp \left(-\log \mathrm{G}\left(\frac{1}{4}(-1-i)\right)+\log \mathrm{G}\left(1+\frac{1}{4}(-1-i)\right)\right) \\
& \quad \exp \left(-\log \mathrm{G}\left(\frac{1}{4}(-1+i)\right)+\log \left(1+\frac{1}{4}(-1+i)\right)\right) \pi^{-3 / 4}
\end{aligned}
$$

$$
\frac{1}{4}(76 \pi) \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+18-2=
$$

$$
16+\frac{37.5635310811600 \pi G\left(1+\frac{1}{4}(-1-i)\right) G\left(1+\frac{1}{4}(-1+i)\right) \cosh \left(\frac{1}{8} i \log \left(\pi^{2}\right)\right) \pi^{-3 / 4}}{4 G\left(\frac{1}{4}(-1-i)\right) G\left(\frac{1}{4}(-1+i)\right)}
$$

$$
\frac{1}{4}(76 \pi) \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+18-2=
$$

$$
16+\frac{37.5635310811600 \pi G\left(1+\frac{1}{4}(-1-i)\right) G\left(1+\frac{1}{4}(-1+i)\right) \cosh \left(-\frac{1}{8} i \log \left(\pi^{2}\right)\right) \pi^{-3 / 4}}{4 G\left(\frac{1}{4}(-1-i)\right) G\left(\frac{1}{4}(-1+i)\right)}
$$

Series representations:

$\frac{1}{4}(76 \pi) \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+18-2=$ $\left(16.000000000000\left(-1.00000000000000+1.00000000000000 i^{2}-\right.\right.$

$$
9.3908827702900 \sqrt[4]{\pi} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty}
$$

$$
\left.\frac{(-1)^{k_{1}} 4^{-3 k_{1}-k_{2}-k_{3}}(-1-i)^{k_{2}}(-1+i)^{k_{3}} \log ^{2 k_{1}}\left(\pi^{2}\right) \Gamma^{\left(k_{2}\right)}(1) \Gamma^{\left(k_{3}\right)}(1)}{\left(2 k_{1}\right)!k_{2}!k_{3}!}\right)
$$

$\int /((-1.00000000000000+1.00000000000000 i)$
$(1.00000000000000+1.00000000000000 i))$

$$
\begin{aligned}
& \frac{1}{4}(76 \pi) \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+18-2= \\
& 9.39088277029000(1.70378018673807+1.00000000000000 \sqrt[4]{\pi} \\
& \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{1}{\left(2 k_{1}\right)!k_{2}!k_{3}!}\left(-\frac{1}{64}\right)^{k_{1}} \log ^{2 k_{1}}\left(\pi^{2}\right)\left(\frac{1}{4}(-1+i)-z_{0}\right)^{k_{2}} \\
& \left.\quad\left(-\frac{1}{4}-\frac{i}{4}-z_{0}\right)^{k_{3}} \Gamma^{\left(k_{2}\right)}\left(z_{0}\right) \Gamma^{\left(k_{3}\right)}\left(z_{0}\right)\right) \text { for }\left(z_{0} \notin \mathbb{Z} \text { or } z_{0}>0\right) \\
& \left.\begin{array}{l}
\frac{1}{4}(76 \pi) \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+18-2= \\
16.000000000000 \\
\left(\begin{array}{c}
-1.00000000000000+1.00000000000000 i^{2}-9.3908827702900 \\
\pi
\end{array}\right. \\
J_{0}\left(\frac{\log \left(\pi^{2}\right)}{8}\right) \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{4^{-k_{1}-k_{2}}(-1-i)^{k_{1}}(-1+i)^{k_{2}} \Gamma^{\left(k_{1}\right)}(1) \Gamma^{\left(k_{2}\right)}(1)}{k_{1}!k_{2}!}- \\
18.781765540580 \sqrt[4]{\pi} \sum_{k_{1}=1 k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \\
(-1)^{k_{1}} 4^{-k_{2}-k_{3}}(-1-i)^{k_{2}}(-1+i)^{k_{3}} J_{2 k_{1}}\left(\frac{\log \left(\pi^{2}\right)}{8}\right) \Gamma^{\left(k_{2}\right)}(1) \Gamma^{\left(k_{3}\right)}(1) \\
k_{2}!k_{3}!
\end{array}\right) \\
& ((-1.00000000000000+1.00000000000000 i) \\
& (1.0000000000000+1.00000000000000 i))
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{1}{4}(76 \pi) \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+18-2= \\
& 16-\frac{37.5635310811600 \pi^{9 / 4} \mathcal{A}^{2}}{\oint_{L}^{t} e^{1 / 4+i / 4} d t \oint_{L}^{t} t^{1 / 4-i / 4} d t} \int_{\frac{\pi}{2}}^{\frac{\log \left(\pi^{2}\right)}{8}} \sin (t) d t \\
& \frac{1}{4}(76 \pi) \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+18-2= \\
& 16+\frac{\pi^{9 / 4} \mathcal{A}^{2}\left(37.563531081160-4.6954413851450 \log \left(\pi^{2}\right) \int_{0}^{1} \sin \left(\frac{1}{8} t \log \left(\pi^{2}\right)\right) d t\right)}{\oint_{L}^{t} e^{1 / 4+i / 4} d t \oint_{L}^{t} t^{1 / 4-i / 4} d t}
\end{aligned}
$$

$$
\begin{gathered}
\frac{1}{4}(76 \pi) \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+18-2= \\
16+\frac{18.7817655405800 \pi^{5 / 4} \mathcal{A} \sqrt{\pi}}{\oint_{L} e^{t} t^{1 / 4+i / 4} d t \oint_{L} e^{t} t^{1 / 4-i / 4} d t} \int_{-\mathcal{A} \infty+\gamma}^{\mathcal{A} \infty+\gamma} \frac{e^{s-\log ^{2}\left(\pi^{2}\right) /(256 s)}}{\sqrt{s}} d s \text { for } \gamma>0
\end{gathered}
$$

Multiple-argument formulas:

$\frac{1}{4}(76 \pi) \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+18-2=$ $16.0000000000000+$

$$
\begin{gathered}
\frac{1}{\sqrt{\pi}^{2}} \sqrt[4]{\pi}\left(-1.66008922204999+3.32017844409999 \cos ^{2}\left(\frac{\log \left(\pi^{2}\right)}{16}\right)\right) \\
\Gamma\left(\frac{1}{8}(-1-i)\right) \Gamma\left(\frac{3}{8}-\frac{i}{8}\right) \Gamma\left(\frac{1}{8}(-1+i)\right) \Gamma\left(\frac{3+i}{8}\right) \\
\frac{1}{4}(76 \pi) \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+18-2= \\
16.0000000000000+\frac{1}{\sqrt{\pi}^{2}} \sqrt[4]{\pi} \Gamma\left(\frac{1}{8}(-1-i)\right) \Gamma\left(\frac{3}{8}-\frac{i}{8}\right) \Gamma\left(\frac{1}{8}(-1+i)\right) \\
\Gamma\left(\frac{3+i}{8}\right)\left(1.66008922204999-3.32017844409999 \sin ^{2}\left(\frac{\log \left(\pi^{2}\right)}{16}\right)\right)
\end{gathered}
$$

$$
\frac{1}{4}(76 \pi) \pi^{-3 / 4}\left(\Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+18-2=
$$

$$
16+\frac{1}{\sqrt{\pi}^{2}} 6.64035688819997 \sqrt[4]{\pi}
$$

$$
\left(-0.750000000000000 \cos \left(\frac{\log \left(\pi^{2}\right)}{24}\right)+1.00000000000000 \cos ^{3}\left(\frac{\log \left(\pi^{2}\right)}{24}\right)\right)
$$

$$
\Gamma\left(\frac{1}{8}(-1-i)\right) \Gamma\left(\frac{3}{8}-\frac{i}{8}\right) \Gamma\left(\frac{1}{8}(-1+i)\right) \Gamma\left(\frac{3+i}{8}\right)
$$

$27 * 1 / 2\left(\left(\left(76 \mathrm{Pi}^{*}\left(\left(\left(1 / 4 * \mathrm{Pi}^{\wedge}(-3 / 4) * \operatorname{gamma}((-1+\mathrm{i}) / 4) * \operatorname{gamma}((-1-\mathrm{i}) / 4) *\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.0.49425698791 * \cos \left(1 / 8^{*} \ln \left(\mathrm{Pi}^{\wedge} 2\right)\right)\right)\right)\right)+5-1 /$ golden ratio $\left.\left.)\right)\right)+1 / 2$

Input interpretation:

$27 \times \frac{1}{2}$

$$
\left(76 \pi\left(\frac{1}{4} \pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) \times 0.49425698791 \cos \left(\frac{1}{8} \log \left(\pi^{2}\right)\right)\right)+5-\frac{1}{\phi}\right)+
$$

Result:

1729.0803743...
1729.0803743...

Alternative representations:

$$
\begin{aligned}
& \frac{27}{2}\left(\frac{76}{4} \pi\left(\pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+\right. \\
& \left.5-\frac{1}{\phi}\right)+\frac{1}{2}=\frac{1}{2}+\frac{27}{2}\left(5-\frac{1}{\phi}+\frac{1}{4} \times 37.5635310811600 \pi\right. \\
& \quad \cosh \left(\frac{1}{8} i \log \left(\pi^{2}\right)\right) \exp \left(-\log G\left(\frac{1}{4}(-1-i)\right)+\operatorname{logG}\left(1+\frac{1}{4}(-1-i)\right)\right) \\
& \left.\quad \quad \exp \left(-\log G\left(\frac{1}{4}(-1+i)\right)+\operatorname{logG}\left(1+\frac{1}{4}(-1+i)\right)\right) \pi^{-3 / 4}\right) \\
& \frac{27}{2}\left(\frac{76}{4} \pi\left(\pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+\right. \\
& \left.5-\frac{1}{\phi}\right)+\frac{1}{2}=\frac{1}{2}+\frac{27}{2}\left(5-\frac{1}{\phi}+\frac{\left.37.5635310811600 \pi G\left(1+\frac{1}{4}(-1-i)\right) G\left(1+\frac{1}{4}(-1+i)\right) \cosh \left(\frac{1}{8} i \log \left(\pi^{2}\right)\right) \pi^{-3 / 4}\right)}{4}-\frac{1}{4}(-1-i)\right) G\left(\frac{1}{4}(-1+i)\right) \\
& \frac{27}{2}\left(\frac{76}{4} \pi\left(\pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+\right. \\
& \left.5-\frac{1}{\phi}\right)+\frac{1}{2}= \\
& \frac{1}{2}+\frac{27}{2}\left(5-\frac{1}{\phi}+\left(37.5635310811600 \pi G\left(1+\frac{1}{4}(-1-i)\right) G\left(1+\frac{1}{4}(-1+i)\right)\right.\right. \\
& \left.\left.\cosh \left(-\frac{1}{8} i \log \left(\pi^{2}\right)\right) \pi^{-3 / 4}\right) /\left(4 G\left(\frac{1}{4}(-1-i)\right) G\left(\frac{1}{4}(-1+i)\right)\right)\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{27}{2}\left(\frac{76}{4} \pi\left(\pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+\right. \\
& \left.5-\frac{1}{\phi}\right)+\frac{1}{2}= \\
& (68.000000000000(0.198529411764706-1.00000000000000 \phi- \\
& 0.198529411764706 i^{2}+1.000000000000000 \phi_{i}^{2}- \\
& 29.829862917392 \phi \sqrt[4]{\pi} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \\
& \left.\frac{(-1)^{k_{1}} 4^{-3 k_{1}-k_{2}-k_{3}}(-1-i)^{k_{2}}(-1+i)^{k_{3}} \log ^{2 k_{1}}\left(\pi^{2}\right) \Gamma^{\left(\left(k_{2}\right)\right.}(1) \Gamma^{\left(k_{3}\right)}(1)}{\left(2 k_{1}\right)!k_{2}!k_{3}!}\right) \\
& \int(\phi(-1.00000000000000+1.00000000000000 i) \\
& (1.00000000000000+1.00000000000000 i))
\end{aligned}
$$

$$
\begin{aligned}
& \frac{27}{2}\left(\frac{76}{4} \pi\left(\pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+\right. \\
& \left.5-\frac{1}{\phi}\right)+\frac{1}{2}=\frac{1}{\phi} 126.77691739892 \\
& (-0.106486261671129+0.53637524397310 \phi+1.00000000000000 \phi \\
& \sqrt[4]{\pi} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{1}{\left(2 k_{1}\right)!k_{2}!k_{3}!}\left(-\frac{1}{64}\right)^{k_{1}} \log ^{2 k_{1}}\left(\pi^{2}\right)\left(\frac{1}{4}(-1+i)-z_{0}\right)^{k_{2}} \\
& \quad\left(-\frac{1}{4}-\frac{i}{4}-z_{0}\right)^{k_{3}} \Gamma^{\left.\left(k_{2}\right)\left(z_{0}\right) \Gamma^{\left(k_{3}\right)}\left(z_{0}\right)\right) \text { for }\left(z_{0} \& \mathbb{Z} \text { or } z_{0}>0\right)}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{27}{2}\left(\frac{76}{4} \pi\left(\pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+5-\right. \\
& \left.\frac{1}{\phi}\right)+\frac{1}{2}=68-\frac{27}{2 \phi}-\frac{507.107669595660 \pi^{9 / 4} \mathcal{A}^{2}}{\oint_{L} e^{t} t^{1 / 4+i / 4} d t \oint_{L}^{t} t^{1 / 4-i / 4} d t \int_{\frac{\pi}{2}}^{\frac{\log \left(\pi^{2}\right)}{8}} \sin (t) d t} \\
& \frac{27}{2}\left(\frac{76}{4} \pi\left(\pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+\right. \\
& \left.5-\frac{1}{\phi}\right)+\frac{1}{2}=68-\frac{27}{2 \phi}+\underbrace{\pi^{9 / 4} \mathcal{A}^{2}\left(507.10766959566-63.388458699458 \log _{2}\left(\pi^{2}\right) \int_{0}^{1} \sin \left(\frac{1}{8} t \log \left(\pi^{2}\right)\right) d t\right)}_{L} \\
& \oint_{L}^{t} t^{1 / 4+i / 4} d t \oint_{L}^{t} t^{1 / 4-i / 4} d t
\end{aligned}
$$

$$
\frac{27}{2}\left(\frac{76}{4} \pi\left(\pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+\right.
$$

$$
\left.5-\frac{1}{\phi}\right)+\frac{1}{2}=
$$

$$
68-\frac{27}{2 \phi}+\frac{253.553834797830 \pi^{5 / 4} \mathcal{A} \sqrt{\pi}}{\oint_{L} e^{t} t^{1 / 4+i / 4} d t \oint_{L} e^{t} t^{1 / 4-i / 4} d t} \int_{-\mathcal{A} \infty+\gamma}^{\mathcal{H} \infty+\gamma} \frac{e^{s-\log ^{2}\left(\pi^{2}\right) /(256 s)}}{\sqrt{s}} d s \text { for } \gamma>0
$$

$$
\begin{aligned}
& \frac{27}{2}\left(\frac{76}{4} \pi\left(\pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+\right. \\
& \left.5-\frac{1}{\phi}\right)+\frac{1}{2}= \\
& \text { (68.00000000000 }(0.19852941176471-1.00000000000000 \phi- \\
& 0.19852941176471 i^{2}+1.00000000000000 \phi i^{2}-29.829862917392 \phi \\
& \sqrt[4]{\pi} J_{0}\left(\frac{\log \left(\pi^{2}\right)}{8}\right) \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{4^{-k_{1}-k_{2}}(-1-i)^{k_{1}}(-1+i)^{k_{2}} \Gamma^{\left(k_{1}\right)}(1) \Gamma^{\left(k_{2}\right)}(1)}{k_{1}!k_{2}!}- \\
& 59.659725834784 \phi \sqrt[4]{\pi} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \\
& \left.\left.\frac{(-1)^{k_{1}} 4^{-k_{2}-k_{3}}(-1-i)^{k_{2}}(-1+i)^{k_{3}} J_{2 k_{1}}\left(\frac{\log \left(\pi^{2}\right)}{8}\right) \Gamma^{\left(k_{2}\right)}(1) \Gamma^{\left(k_{3}\right)}(1)}{k_{2}!k_{3}!}\right)\right) \\
& /(\phi(-1.00000000000000+1.00000000000000 i) \\
& (1.00000000000000+1.00000000000000 i))
\end{aligned}
$$

Multiple-argument formulas:

$$
\begin{gathered}
\frac{27}{2}\left(\frac{76}{4} \pi\left(\pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+\right. \\
\left.5-\frac{1}{\phi}\right)+\frac{1}{2}=68.000000000000-\frac{13.5000000000000}{\phi}+ \\
\frac{1}{\sqrt{\pi}^{2}} \sqrt[4]{\pi}\left(-22.4112044976749+44.8224089953498 \cos ^{2}\left(\frac{\log \left(\pi^{2}\right)}{16}\right)\right) \\
\Gamma\left(\frac{1}{8}(-1-i)\right) \Gamma\left(\frac{3}{8}-\frac{i}{8}\right) \Gamma\left(\frac{1}{8}(-1+i)\right) \Gamma\left(\frac{3+i}{8}\right) \\
\frac{27}{2}\left(\frac{76}{4} \pi\left(\pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+\right. \\
\left.\quad 5-\frac{1}{\phi}\right)+\frac{1}{2}=68.000000000000-\frac{13.5000000000000}{\phi}+ \\
\frac{1}{\sqrt{\pi}^{2}} \sqrt[4]{\pi} \Gamma\left(\frac{1}{8}(-1-i)\right) \Gamma\left(\frac{3}{8}-\frac{i}{8}\right) \Gamma\left(\frac{1}{8}(-1+i)\right) \Gamma\left(\frac{3+i}{8}\right) \\
\left(22.4112044976749-44.8224089953498 \sin ^{2}\left(\frac{\log \left(\pi^{2}\right)}{16}\right)\right)
\end{gathered}
$$

$$
\frac{27}{2}\left(\frac{76}{4} \pi\left(\pi^{-3 / 4} \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000 \cos \left(\frac{\log \left(\pi^{2}\right)}{8}\right)\right)\right)+\right.
$$

$$
\left.5-\frac{1}{\phi}\right)+\frac{1}{2}=
$$

$$
\frac{1}{2}+\frac{27}{2}\left(5-\frac{1}{\phi}+\frac{1}{\sqrt{\pi}^{2}} 9.39088277029000 \times 2^{-2+1 / 4(-1-i)+1 / 4(-1+i)}\right.
$$

$$
\begin{aligned}
& \sqrt[4]{\pi}\left(-1+2 \cos ^{2}\left(\frac{\log \left(\pi^{2}\right)}{16}\right)\right) \Gamma\left(\frac{1}{2}+\frac{1}{8}(-1-i)\right) \\
& \left.\Gamma\left(\frac{1}{2}+\frac{1}{8}(-1+i)\right) \Gamma\left(\frac{1}{8}(-1-i)\right) \Gamma\left(\frac{1}{8}(-1+i)\right)\right)
\end{aligned}
$$

Now, we have that:

$$
\begin{array}{r}
\alpha^{-\frac{1}{4}}\left\{\frac{1}{1-s}-4 \alpha \int_{0}^{\infty}\left(\frac{1}{1+s}-\frac{\alpha}{1!} \frac{x^{2}}{3+s}+\frac{\alpha^{2}}{2!} \frac{x^{4}}{5+s}-\cdots\right) \frac{x d x}{e^{2 \pi x}-1}\right\} \\
+\beta^{-\frac{1}{4}}\left\{\frac{1}{s}-4 \beta \int_{0}^{\infty}\left(\frac{1}{2-s}-\frac{\beta}{1!} \frac{x^{2}}{4-s}+\frac{\beta^{2}}{2!} \frac{x^{4}}{6-s}-\cdots\right) \frac{x d x}{e^{2 \pi x}-1}\right\} \\
=\frac{1}{2} \pi^{-\frac{3}{4}}\left(\frac{\alpha}{\beta}\right)^{\frac{1}{8}-\frac{1}{4} s} \Gamma\left(-\frac{s}{2}\right) \Gamma\left(\frac{s-1}{2}\right) \xi(s) . \tag{8}
\end{array}
$$

For $t=1, \alpha=2, \beta=\pi^{2} / 2$, and $\Xi(1 / 2 t)=\xi(s)=0.49425698791, s=(1 / 2+1 / 2 i)$, we obtain:
$1 / 2 * \operatorname{Pi}^{\wedge}(-3 / 4) *\left(\left(2 /\left(\operatorname{Pi}^{\wedge} 2\right) / 2\right)\right)^{\wedge}(1 / 8-1 / 4 *(1 / 2+1 / 2 \mathrm{i})) *\left(\left(\operatorname{gamma}\left(-(1 / 2+1 / 2 \mathrm{i})^{*} 1 / 2\right)\right)\right) *$ $((\operatorname{gamma}(((1 / 2+1 / 2 \mathrm{i})-1) * 1 / 2))) *(((0.49425698791)))$

Input interpretation:

$\frac{1}{2} \pi^{-3 / 4}\left(\frac{\frac{2}{\pi^{2}}}{2}\right)^{1 / 8-1 / 4(1 / 2+1 / 2 i)} \Gamma\left(-\left(\frac{1}{2}+\frac{1}{2} i\right) \times \frac{1}{2}\right) \Gamma\left(\left(\left(\frac{1}{2}+\frac{1}{2} i\right)-1\right) \times \frac{1}{2}\right) \times 0.49425698791$

Result:

1.0358559655... +
$0.30481099408 \ldots i$
(using the principal branch of the logarithm for complex exponentiation)

Polar coordinates:
$r=1.0797718849$ (radius), $\quad \theta=16.397047785^{\circ}$ (angle)
1.0797718849

Alternative representations:

$$
\begin{aligned}
& \frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right) \\
& \quad \Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)= \\
& 0.247128493955000\left(-1+\frac{1}{2}\left(-\frac{1}{2}-\frac{i}{2}\right)\right)!\left(-1+\frac{1}{2}\left(-\frac{1}{2}+\frac{i}{2}\right)\right)!\pi^{-3 / 4}\left(\frac{1}{\pi^{2}}\right)^{-1 / 4(1 / 2+i / 2)+1 / 8}
\end{aligned}
$$

$$
\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right)
$$

$$
\Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)=
$$

$$
0.247128493955000(1)_{-1+\frac{1}{2}\left(-\frac{1}{2}-\frac{i}{2}\right)^{(1)}{ }_{-1+\frac{1}{2}\left(-\frac{1}{2}+\frac{i}{2}\right)^{\pi^{-3 / 4}}\left(\frac{1}{\pi^{2}}\right)^{-1 / 4(1 / 2+i / 2)+1 / 8}} \text {. }{ }^{-1 / 2} 10}
$$

$$
\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right)
$$

$$
\Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)=
$$

$$
0.247128493955000 e^{\log \Gamma(1 / 2(-1 / 2-i / 2))} e^{\log \Gamma(1 / 2(-1 / 2+i / 2))} \pi^{-3 / 4}\left(\frac{1}{\pi^{2}}\right)^{-1 / 4(1 / 2+i / 2)+1 / 8}
$$

From which, we obtain:

```
((((1/2* Pi^(-3/4) * ((2/(Pi^2)/2))^(1/8-1/4*(1/2+1/2i)) * ((gamma (-(1/2+1/2i)*1/2)))
* ((gamma (((1/2+1/2i)-1)*1/2))) * (((0.49425698791)))))))^(2Pi)
```


Input interpretation:

$$
\begin{aligned}
& \left(\frac{1}{2} \pi^{-3 / 4}\left(\frac{\frac{2}{\pi^{2}}}{2}\right)^{1 / 8-1 / 4(1 / 2+1 / 2 i)}\right. \\
& \left.\quad \Gamma\left(-\left(\frac{1}{2}+\frac{1}{2} i\right) \times \frac{1}{2}\right) \Gamma\left(\left(\left(\frac{1}{2}+\frac{1}{2} i\right)-1\right) \times \frac{1}{2}\right) \times 0.49425698791\right)^{2 \pi}
\end{aligned}
$$

Result:

- 0.3650579786...
1.578011482... i
(using the principal branch of the logarithm for complex exponentiation)

Polar coordinates:

$r=1.619687490$ (radius), $\quad \theta=103.0256897^{\circ}$ (angle)
1.619687490

Alternative representations:

$$
\begin{aligned}
& \left(\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right) \Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\right. \\
& \left.\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)^{2 \pi}= \\
& \left(0.247128493955000\left(-1+\frac{1}{2}\left(-\frac{1}{2}-\frac{i}{2}\right)\right)!\left(-1+\frac{1}{2}\left(-\frac{1}{2}+\frac{i}{2}\right)\right)!\right. \\
& \left.\pi^{-3 / 4}\left(\frac{1}{\pi^{2}}\right)^{-1 / 4(1 / 2+i / 2)+1 / 8}\right)^{2 \pi} \\
& \left(\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right) \Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\right. \\
& \left.\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)^{2 \pi}= \\
& \left(0.247128493955000(1)-1+\frac{1}{2}\left(-\frac{1}{2}-\frac{i}{2}\right)\right)^{(1)}-1+\frac{1}{2}\left(-\frac{1}{2}+\frac{i}{2}\right)^{\left.\pi^{-3 / 4}\left(\frac{1}{\pi^{2}}\right)^{-1 / 4(1 / 2+i / 2)+1 / 8}\right)^{2 \pi}} \\
& \left(\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right) \Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\right) \\
& \left.\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)^{2 \pi}= \\
& \left(0.247128493955000 e^{\log \Gamma(1 / 2(-1 / 2-i / 2))} e^{\log \Gamma(1 / 2(-1 / 2+i / 2))} \pi^{-3 / 4}\left(\frac{1}{\pi^{2}}\right)^{-1 / 4(1 / 2+i / 2)+1 / 8}\right)^{2 \pi}
\end{aligned}
$$

And again:
$10^{\wedge} 3^{*}\left(\left(\left(\left(1 / 2 * \mathrm{Pi}^{\wedge}(-3 / 4) *\left(\left(2 /\left(\mathrm{Pi}^{\wedge} 2\right) / 2\right)\right)^{\wedge}(1 / 8-1 / 4 *(1 / 2+1 / 2 \mathrm{i})) *((\right.\right.\right.\right.$ gamma $(-$ $(1 / 2+1 / 2 \mathrm{i}) * 1 / 2))) *(($ gamma $(((1 / 2+1 / 2 \mathrm{i})-1) * 1 / 2))) *(((0.49425698791)))))))^{\wedge}(2 \mathrm{Pi})$ $+(123-11) \mathrm{i}$

Input interpretation:

$$
\begin{aligned}
& 10^{3}\left(\frac{1}{2} \pi^{-3 / 4}\left(\frac{\frac{2}{\pi^{2}}}{2}\right)^{1 / 8-1 / 4(1 / 2+1 / 2 i)} \Gamma\left(-\left(\frac{1}{2}+\frac{1}{2} i\right) \times \frac{1}{2}\right)\right. \\
& \left.\Gamma\left(\left(\left(\frac{1}{2}+\frac{1}{2} i\right)-1\right) \times \frac{1}{2}\right) \times 0.49425698791\right)^{2 \pi}+(123-11) i
\end{aligned}
$$

$\Gamma(x)$ is the gamma function
i is the imaginary unit

Result:

- 365.0579786... +
1690.011482...
(using the principal branch of the logarithm for complex exponentiation)

Polar coordinates:

$r=1728.989918$ (radius), $\quad \theta=102.1891352^{\circ}$ (angle)
$1728.989918 \approx 1729$

Alternative representations:

$$
\begin{aligned}
& 10^{3}\left(\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right) \Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\right. \\
& \left.\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)^{2 \pi}+(123-11) i= \\
& 112 i+10^{3}\left(0.247128493955000\left(-1+\frac{1}{2}\left(-\frac{1}{2}-\frac{i}{2}\right)\right)!\left(-1+\frac{1}{2}\left(-\frac{1}{2}+\frac{i}{2}\right)\right)!\right. \\
& \left.\left.\pi^{-3 / 4}\left(\frac{1}{\pi^{2}}\right)^{-1 / 4(1 / 2+i / 2)+1 / 8}\right)^{2 \pi}\right) \\
& 10^{3}\left(\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right) \Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{1}{2}\right)\right)\right. \\
& \left.\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)^{2 \pi}+(123-11) i=112 i+ \\
& 10^{3}\left(0.247128493955000(1)-1+\frac{1}{2}\left(-\frac{1}{2}-\frac{i}{2}\right)(1)-1+\frac{1}{2}\left(-\frac{1}{2}+\frac{i}{2}\right)^{\left.\left.\pi^{-3 / 4}\left(\frac{1}{2}\right)\right)^{-1 / 4(1 / 2+i / 2)+1 / 8}\right)^{2 \pi}}\right)^{1} \\
& 10^{3}\left(\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right) \Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\right. \\
& \left.\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)^{2 \pi}+(123-11) i= \\
& 112 i+10^{3}\left(0.247128493955000 e^{-3 / 4}\left(\frac{1}{\pi^{2}}\right)^{-1 / 4(1 / 2+i / 2)+1 / 8}\right)^{2 \pi}
\end{aligned}
$$

$21 * 2\left(\left(\left(\left(1 / 2 * \mathrm{Pi}^{\wedge}(-3 / 4) *\left(\left(2 /\left(\mathrm{Pi}^{\wedge} 2\right) / 2\right)\right)^{\wedge}(1 / 8-1 / 4 *(1 / 2+1 / 2 \mathrm{i})) *((\right.\right.\right.\right.$ gamma $(-$ $(1 / 2+1 / 2 \mathrm{i}) * 1 / 2))) *((\operatorname{gamma}(((1 / 2+1 / 2 \mathrm{i})-1) * 1 / 2))) *(((0.49425698791)))))))^{\wedge} 16+4 \mathrm{i}$

Input interpretation:

$$
\begin{array}{r}
21 \times 2\left(\frac{1}{2} \pi^{-3 / 4}\left(\frac{\frac{2}{\pi^{2}}}{2}\right)^{1 / 8-1 / 4(1 / 2+1 / 2 i)} \Gamma\left(-\left(\frac{1}{2}+\frac{1}{2} i\right) \times \frac{1}{2}\right)\right. \\
\left.\Gamma\left(\left(\left(\frac{1}{2}+\frac{1}{2} i\right)-1\right) \times \frac{1}{2}\right) \times 0.49425698791\right)^{16}+4 i
\end{array}
$$

Result:

- 19.0832864... -
138.128677...
(using the principal branch of the logarithm for complex exponentiation)

Polar coordinates:

$r=139.440679$ (radius), $\theta=-97.8659541^{\circ}$ (angle)
139.440679

Alternative representations:

$$
\begin{aligned}
& 21 \times 2\left(\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right) \Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\right. \\
& \left.\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)^{16}+4 i= \\
& 4 i+42\left(0.247128493955000\left(-1+\frac{1}{2}\left(-\frac{1}{2}-\frac{i}{2}\right)\right)!\left(-1+\frac{1}{2}\left(-\frac{1}{2}+\frac{i}{2}\right)\right)!\right. \\
& \left.\pi^{-3 / 4}\left(\frac{1}{\pi^{2}}\right)^{-1 / 4(1 / 2+i / 2)+1 / 8}\right)^{16} \\
& 21 \times 2\left(\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right) \Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\right. \\
& \left.\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)^{16}+4 i= \\
& 4 i+42\left(0.247128493955000(1)-1+\frac{1}{2}\left(-\frac{1}{2}-\frac{i}{2}\right)^{(1)}-1+\frac{1}{2}\left(-\frac{1}{2}+\frac{i}{2}\right)^{-3 / 4}\left(\frac{1}{\pi^{2}}\right)^{-1 / 4(1 / 2+i / 2)+1 / 8}\right)^{16}
\end{aligned}
$$

$$
\begin{gathered}
21 \times 2\left(\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right) \Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\right. \\
\left.\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)^{16}+4 i= \\
4 i+42\left(0.247128493955000 e^{\log \Gamma(1 / 2(-1 / 2-i / 2))} e^{\log \Gamma(1 / 2(-1 / 2+i / 2))}\right. \\
\left.\pi^{-3 / 4}\left(\frac{1}{\pi^{2}}\right)^{-1 / 4(1 / 2+i / 2)+1 / 8}\right)^{16}
\end{gathered}
$$

Series representations:

$$
\begin{array}{r}
21 \times 2\left(\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right) \Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\right. \\
\left.\quad\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)^{16}+4 i= \\
4 i+\left(34.911966473250\left(\frac{1}{\pi^{2}}\right)^{2+4(-1 / 2-i / 2)}\left(\sum_{k=0}^{\infty} \frac{2^{-k}\left(-\frac{1}{2}-\frac{i}{2}\right)^{k} \Gamma^{(k)}(1)}{k!}\right)^{16}\right. \\
\left.\left(\sum_{k=0}^{\infty} \frac{2^{-k}\left(-\frac{1}{2}+\frac{i}{2}\right)^{k} \Gamma^{(k)}(1)}{k!}\right)^{16}\right) /\left(\left(-\frac{1}{2}-\frac{i}{2}\right)^{16}\left(-\frac{1}{2}+\frac{i}{2}\right)^{16} \pi^{12}\right)
\end{array}
$$

$$
21 \times 2\left(\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right) \Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\right.
$$

$$
\left.\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)^{16}+4 i=
$$

$$
\frac{1}{\pi^{12}} 4.00000000000\left(\frac{1}{\pi^{2}}\right)^{-2 i}\left(1.000000000000 i\left(\frac{1}{\pi^{2}}\right)^{2 i} \pi^{12}+\right.
$$

$$
2.032143906297 \times 10^{-9}\left(\sum_{k=0}^{\infty} \frac{4^{-k}\left(-1+i-4 z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}\right)^{16}
$$

$$
\left.\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}-\frac{i}{4}-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}\right)^{16}\right) \text { for }\left(z_{0} \notin \mathbb{Z} \text { or } z_{0}>0\right)
$$

$21 \times 2\left(\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right) \Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\right.$

$$
\begin{gathered}
\left.\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)^{16}+4 i \propto \\
4 i+\left(8.128575625189 \times 10^{-9} \times 2^{16+8(1 / 2-i / 2)+8(1 / 2+i / 2)} e^{8(1 / 2-i / 2)+8(1 / 2+i / 2)}\right. \\
\left.\left(-\frac{1}{2}-\frac{i}{2}\right)^{-8+8(-1 / 2-i / 2)}\left(-\frac{1}{2}+\frac{i}{2}\right)^{-8+8(-1 / 2+i / 2)}\left(\frac{1}{\pi^{2}}\right)^{2+4(-1 / 2-i / 2)} \sqrt{2 \pi}^{32}\right) / \\
\left(\pi^{12} \exp ^{16}\left(-\sum_{k=0}^{\infty} \frac{2^{2 k}\left(-\frac{1}{2}-\frac{i}{2}\right)^{-1-2 k} B_{2+2 k}}{(1+k)(1+2 k)}\right)\right. \\
\left.\exp ^{16}\left(-\sum_{k=0}^{\infty} \frac{2^{2 k}\left(-\frac{1}{2}+\frac{i}{2}\right)^{-1-2 k} B_{2+2 k}}{(1+k)(1+2 k)}\right)\right) \text { for } \infty \rightarrow \frac{1}{2 \sqrt{2}}
\end{gathered}
$$

z is the set of integers
B_{n} is the $n^{\text {th }}$ Bernoulli number
$21 * 2\left(\left(\left(\left(1 / 2 * \operatorname{Pi}^{\wedge}(-3 / 4) *\left(\left(2 /\left(\mathrm{Pi}^{\wedge} 2\right) / 2\right)\right)^{\wedge}(1 / 8-1 / 4 *(1 / 2+1 / 2 \mathrm{i})) *((\right.\right.\right.\right.$ gamma $(-$
$(1 / 2+1 / 2 \mathrm{i}) * 1 / 2))) *((\operatorname{gamma}(((1 / 2+1 / 2 \mathrm{i})-1) * 1 / 2))) *(((0.49425698791)))))))^{\wedge} 16+18 \mathrm{i}$

Input interpretation:

$$
\begin{array}{r}
21 \times 2\left(\frac{1}{2} \pi^{-3 / 4}\left(\frac{\frac{2}{\pi^{2}}}{2}\right)^{1 / 8-1 / 4(1 / 2+1 / 2 i)} \Gamma\left(-\left(\frac{1}{2}+\frac{1}{2} i\right) \times \frac{1}{2}\right)\right. \\
\left.\Gamma\left(\left(\left(\frac{1}{2}+\frac{1}{2} i\right)-1\right) \times \frac{1}{2}\right) \times 0.49425698791\right)^{16}+18 i
\end{array}
$$

Result:

- 19.0832864... -
124.128677... i
(using the principal branch of the logarithm for complex exponentiation)

Polar coordinates:

$r=125.587022$ (radius), $\theta=-98.7401050^{\circ}$ (angle)
125.587022

Alternative representations:

$$
\begin{gathered}
21 \times 2\left(\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right) \Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\right. \\
\left.\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)^{16}+18 i= \\
18 i+42\left(0.247128493955000\left(-1+\frac{1}{2}\left(-\frac{1}{2}-\frac{i}{2}\right)\right)!\left(-1+\frac{1}{2}\left(-\frac{1}{2}+\frac{i}{2}\right)\right)!\right. \\
21 \times 2\left(\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2}}\right)^{-3 / 4}\left(\frac{1}{\pi^{2}}\right)^{-1 / 4(1 / 2+i / 2)+1 / 8}\right)^{16}\right) \\
\left.\left.\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)^{16}+18 i=18 i+2+i / 2\right) \\
2\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right) \\
42\left(0.247128493955000(1)-1+\frac{1}{2}\left(-\frac{1}{2}-\frac{i}{2}\right)(1)-1+\frac{1}{2}\left(-\frac{1}{2}+\frac{i}{2}\right)^{\pi} \pi^{-3 / 4}\left(\frac{1}{\pi^{2}}\right)^{-1 / 4(1 / 2+i / 2)+1 / 8}\right)^{16} \\
21 \times 2\left(\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2}}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right) \Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\right. \\
18 i+42\left(0.247128493955000 e^{l o g \Gamma(1 / 2(-1 / 2-i / 2))} e^{l o g \Gamma(1 / 2(-1 / 2+i / 2))}\right. \\
\left.\left.2\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)^{16}+18 i= \\
\left.\pi^{-3 / 4}\left(\frac{1}{\pi^{2}}\right)^{-1 / 4(1 / 2+i / 2)+1 / 8}\right)^{16}
\end{gathered}
$$

Series representations:

$21 \times 2\left(\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right) \Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\right.$

$$
\left.\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)^{16}+18 i=
$$

$18 i+\left(34.911966473250\left(\frac{1}{\pi^{2}}\right)^{2+4(-1 / 2-i / 2)}\left(\sum_{k=0}^{\infty} \frac{2^{-k}\left(-\frac{1}{2}-\frac{i}{2}\right)^{k} \Gamma^{(k)}(1)}{k!}\right)^{16}\right.$

$$
\left.\left(\sum_{k=0}^{\infty} \frac{2^{-k}\left(-\frac{1}{2}+\frac{i}{2}\right)^{k} \Gamma^{(k)}(1)}{k!}\right)^{16}\right) /\left(\left(-\frac{1}{2}-\frac{i}{2}\right)^{16}\left(-\frac{1}{2}+\frac{i}{2}\right)^{16} \pi^{12}\right)
$$

$$
\begin{aligned}
& 21 \times 2\left(\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right) \Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\right. \\
& \left.\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)^{16}+18 i= \\
& \frac{1}{\pi^{12}} 18.0000000000\left(\frac{1}{\pi^{2}}\right)^{-2 i}\left(1.000000000000 i\left(\frac{1}{\pi^{2}}\right)^{2 i} \pi^{12}+\right. \\
& 4.515875347327 \times 10^{-10}\left(\sum_{k=0}^{\infty} \frac{4^{-k}\left(-1+i-4 z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}\right)^{16} \\
& \left.\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}-\frac{i}{4}-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}\right)^{16}\right) \text { for }\left(z_{0} \notin \mathbb{Z} \text { or } z_{0}>0\right) \\
& 21 \times 2\left(\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right) \Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\right. \\
& \left.\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)^{16}+18 i \propto \\
& 18 i+\left(8.128575625189 \times 10^{-9} \times 2^{16+8(1 / 2-i / 2)+8(1 / 2+i / 2)} e^{8(1 / 2-i / 2)+8(1 / 2+i / 2)}\right. \\
& \left.\left(-\frac{1}{2}-\frac{i}{2}\right)^{-8+8(-1 / 2-i / 2)}\left(-\frac{1}{2}+\frac{i}{2}\right)^{-8+8(-1 / 2+i / 2)}\left(\frac{1}{\pi^{2}}\right)^{2+4(-1 / 2-i / 2)} \sqrt{2 \pi}^{32}\right) / \\
& \left(\pi^{12} \exp ^{16}\left(-\sum_{k=0}^{\infty} \frac{2^{2 k}\left(-\frac{1}{2}-\frac{i}{2}\right)^{-1-2 k} B_{2+2 k}}{(1+k)(1+2 k)}\right)\right. \\
& \left.\exp ^{16}\left(-\sum_{k=0}^{\infty} \frac{2^{2 k}\left(-\frac{1}{2}+\frac{i}{2}\right)^{-1-2 k} B_{2+2 k}}{(1+k)(1+2 k)}\right)\right) \text { for } \infty \rightarrow \frac{1}{2 \sqrt{2}}
\end{aligned}
$$

z is the set of integers
B_{n} is the $n^{\text {th }}$ Bernoulli number

From the sum of the two results, we have:
$1+1 /\left(\left(\left(() .51792798277+\left(\left(\left(1 / 2 * \operatorname{Pi}^{\wedge}(-3 / 4) *\left(\left(2 /\left(\mathrm{Pi}^{\wedge} 2\right) / 2\right)\right)^{\wedge}(1 / 8-\right.\right.\right.\right.\right.\right.$ $1 / 4 *(1 / 2+1 / 2 \mathrm{i})) *((\operatorname{gamma}(-(1 / 2+1 / 2 \mathrm{i}) * 1 / 2))) *((\operatorname{gamma}(((1 / 2+1 / 2 \mathrm{i})-$ $\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.1)^{*} 1 / 2\right)\right)\right)^{*}(((0.49425698791)))\right)\right)\right)\right)\right)\right)\right)\right)$

Input interpretation:

$$
\begin{array}{r}
1+1 /\left(0.51792798277+\frac{1}{2} \pi^{-3 / 4}\left(\frac{\frac{2}{\pi^{2}}}{2}\right)^{1 / 8-1 / 4(1 / 2+1 / 2 i)}\right. \\
\left.\Gamma\left(-\left(\frac{1}{2}+\frac{1}{2} i\right) \times \frac{1}{2}\right) \Gamma\left(\left(\left(\frac{1}{2}+\frac{1}{2} i\right)-1\right) \times \frac{1}{2}\right) \times 0.49425698791\right)
\end{array}
$$

$\Gamma(x)$ is the gamma function
i is the imaginary unit

Result:

1.6197400568... -
$0.12157647978 \ldots$
(using the principal branch of the logarithm for complex exponentiation)

Polar coordinates:

$r=1.6242963683$ (radius), $\quad \theta=-4.292529308^{\circ}$ (angle)
1.6242963683

Alternative representations:

$$
\begin{gathered}
1+1 /\left(0.517927982770000+\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right)\right. \\
\left.\Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)= \\
1+1 /\left(0.517927982770000+0.247128493955000\left(-1+\frac{1}{2}\left(-\frac{1}{2}-\frac{i}{2}\right)\right)\right)! \\
\left.\left(-1+\frac{1}{2}\left(-\frac{1}{2}+\frac{i}{2}\right)\right)!\pi^{-3 / 4}\left(\frac{1}{\pi^{2}}\right)^{-1 / 4(1 / 2+i / 2)+1 / 8}\right)
\end{gathered}
$$

$$
1+1 /\left(0.517927982770000+\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right)\right.
$$

$$
\left.\Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)=
$$

$$
1+1 /\left(0.517927982770000+0.247128493955000(1)-1+\frac{1}{2}\left(-\frac{1}{2}-\frac{i}{2}\right)\right.
$$

$$
\text { (1) } \left.-1+\frac{1}{2}\left(-\frac{1}{2}+\frac{i}{2}\right)^{\pi^{-3 / 4}}\left(\frac{1}{\pi^{2}}\right)^{-1 / 4(1 / 2+i / 2)+1 / 8}\right)
$$

$$
\begin{array}{r}
1+1 /\left(0.517927982770000+\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right)\right. \\
\left.\Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)= \\
1+1 /\left(0.517927982770000+0.247128493955000 e^{\log \Gamma(1 / 2(-1 / 2-i / 2))}\right. \\
\left.e^{\log \Gamma(1 / 2(-1 / 2+i / 2))} \pi^{-3 / 4}\left(\frac{1}{\pi^{2}}\right)^{-1 / 4(1 / 2+i / 2)+1 / 8}\right)
\end{array}
$$

Series representations:

$$
\begin{aligned}
& 1+1 /\left(0.517927982770000+\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right)\right. \\
& \left.1+1 /\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right) \propto \\
& \left(-\frac{1}{2}+\frac{i}{2}\right)^{-3 / 4+i / 4}\left(\frac{1}{\pi^{2}}\right)^{-i / 8} \sqrt{2 \pi}^{2}\left(1+\sum_{k=1}^{\infty} \sum_{j=1}^{2 k} \frac{\left(-\frac{1}{2}\right)^{j}\left(-\frac{1}{2}-\frac{i}{2}\right)^{-k} \mathcal{D}_{2}(j+k), j}{(j+k)!}\right) \\
& \left.\left(1+\sum_{k=1}^{\infty} \sum_{j=1}^{2 k} \frac{\left(-\frac{1}{2}\right)^{j}\left(-\frac{1}{2}+\frac{i}{2}\right)^{-k} \mathcal{D}_{2(j+k), j}}{(j+k)!}\right)\right) \\
& \\
& \text { for }\left(\left(\infty \rightarrow \frac{1}{2 \sqrt{2}} \text { and } \mathcal{D}_{n, j}=(-1+n)\left((-2+n) \mathcal{D}_{-3+n,-1+j}+\mathcal{D}_{-1+n, j}\right)\right.\right. \text { and } \\
& \left.\left(\mathcal{D}_{0,0}=1 \text { and } \mathcal{D}_{n, 1}=(-1+n)!\text { and } \mathcal{D}_{n, j}=0\right) \text { for } n \leq-1+3 j\right)
\end{aligned}
$$

$$
1+1 /\left(0.517927982770000+\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right)\right.
$$

$$
\left.\Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)=
$$

$$
2.930770364350\left(-1.00000000000000\left(\frac{1}{\pi^{2}}\right)^{i / 8} \pi^{3 / 4}+\right.
$$

$$
1.00000000000000 i^{2}\left(\frac{1}{\pi^{2}}\right)^{i / 8} \pi^{3 / 4}-2.6049034922358
$$

$$
\left.\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{2^{-k_{1}-k_{2}}\left(-\frac{1}{2}-\frac{i}{2}\right)^{k_{1}}\left(-\frac{1}{2}+\frac{i}{2}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}(1) \Gamma^{\left(k_{2}\right)}(1)}{k_{1}!k_{2}!}\right) /
$$

$$
\left(-1.0000000000000\left(\frac{1}{\pi^{2}}\right)^{i / 8} \pi^{3 / 4}+1.0000000000000 i^{2}\left(\frac{1}{\pi^{2}}\right)^{i / 8} \pi^{3 / 4}-\right.
$$

$$
\left.7.634373957037 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{2^{-k_{1}-k_{2}}\left(-\frac{1}{2}-\frac{i}{2}\right)^{k_{1}}\left(-\frac{1}{2}+\frac{i}{2}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}(1) \Gamma^{\left(k_{2}\right)}(1)}{k_{1}!k_{2}!}\right)
$$

$$
\begin{gathered}
1+1 /\left(0.517927982770000+\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right)\right. \\
\left.\Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)= \\
2.930770364350\left(1.00000000000000\left(\frac{1}{\pi^{2}}\right)^{i / 8} \pi^{3 / 4}+0.16280646826474\right. \\
\left.\left.\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(\frac{1}{2}\left(-\frac{1}{2}-\frac{i}{2}\right)-z_{0}\right)^{k_{1}}\left(\frac{1}{2}\left(-\frac{1}{2}+\frac{i}{2}\right)-z_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(z_{0}\right) \Gamma^{\left(k_{2}\right)}\left(z_{0}\right)}{k_{1}!k_{2}!}\right)\right) / \\
\left(1.0000000000000\left(\frac{1}{\pi^{2}}\right)^{i / 8} \pi^{3 / 4}+0.47714837231481\right. \\
\left.\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(\frac{1}{2}\left(-\frac{1}{2}-\frac{i}{2}\right)-z_{0}\right)^{k_{1}}\left(\frac{1}{2}\left(-\frac{1}{2}+\frac{i}{2}\right)-z_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(z_{0}\right) \Gamma^{\left(k_{2}\right)}\left(z_{0}\right)}{k_{1}!k_{2}!}\right)
\end{gathered}
$$

for ($z_{0} \notin \mathbb{Z}$ or $z_{0}>0$)

Integral representations:

$$
\begin{aligned}
& 1+1 /\left(0.517927982770000+\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right)\right. \\
&\left.1+1 /\left(0.517927982770000+\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)= \\
&\left(247128493955000\left(\frac{1}{\pi^{2}}\right)^{-i / 8}\right. \\
&\left(\int_{1}^{\infty} e^{-t} t^{-5 / 4-i / 4} d t+\sum_{k=0}^{\infty}-\frac{4(-1)^{k}}{(1+i-4 k) k!}\right) \\
&\left.\left(\int_{1}^{\infty} e^{-t} t^{1 / 4(-5+i)} d t+\sum_{k=0}^{\infty} \frac{4(-1)^{k}}{(-1+i+4 k) k!}\right)\right)
\end{aligned}
$$

$$
1+1 /\left(0.517927982770000+\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right)\right.
$$

$$
1+\frac{\left.\Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)=}{0.517927982770000+\frac{0.988513975820000\left(\frac{1}{\pi^{2}}\right)^{1 / 8+1 / 4(-1 / 2-i / 2)} \pi^{5 / 4} \mathcal{H}^{2}}{\oint_{L} e^{t} t^{1 / 4+i / 4} d t \oint_{L} e^{t} t^{1 / 2(1 / 2-i / 2)} d t}}
$$

$$
\begin{aligned}
& 1+1 /\left(0.517927982770000+\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right)\right. \\
& \left.\Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)= \\
& \left(2 . 9 3 0 7 7 0 3 6 4 3 5 \left(1.000000000000\left(\frac{1}{\pi^{2}}\right)^{i / 8} \pi^{3 / 4}+\right.\right. \\
& 0.1628064682647\left(\int_{0}^{\infty} e^{-t} t^{-5 / 4-i / 4}\left(1-e^{t} \sum_{k=0}^{n} \frac{(-t)^{k}}{k!}\right) d t\right) \\
& \left.\left.\int_{0}^{\infty} e^{-t} t^{1 / 4(-5+i)}\left(1-e^{t} \sum_{k=0}^{n} \frac{(-t)^{k}}{k!}\right) d t\right)\right) / \\
& \left(1.000000000000\left(\frac{1}{\pi^{2}}\right)^{i / 8} \pi^{3 / 4}+0.477148372315\right. \\
& \left(\int_{0}^{\infty} e^{-t} t^{-5 / 4-i / 4}\left(1-e^{t} \sum_{k=0}^{n} \frac{(-t)^{k}}{k!}\right) d t\right) \\
& \left.\int_{0}^{\infty} e^{-t} t^{1 / 4(-5+i)}\left(1-e^{t} \sum_{k=0}^{n} \frac{(-t)^{k}}{k!}\right) d t\right) \text { for }\left(n \in \mathbb{Z} \text { and } 0 \leq n<\frac{1}{4}\right)
\end{aligned}
$$

or:
$\left(\left(\left(1+1 /\left(()\left(\left(0.51792798277+\left(\left(\left(1 / 2 * \mathrm{Pi}^{\wedge}(-3 / 4) *\left(\left(2 /\left(\mathrm{Pi}^{\wedge} 2\right) / 2\right)\right)^{\wedge}(1 / 8-\right.\right.\right.\right.\right.\right.\right.\right.\right.$
$1 / 4 *(1 / 2+1 / 2 \mathrm{i}))^{*}((\operatorname{gamma}(-(1 / 2+1 / 2 \mathrm{i}) * 1 / 2))) *((\operatorname{gamma}(((1 / 2+1 / 2 \mathrm{i})-$
$\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.1)^{*} 1 / 2\right)\right)\right)^{*}(((0.49425698791)))\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)-\left(6 / 10^{\wedge} 3\right)+\left(1 / 10^{\wedge} 3\right) \mathrm{i}$

Input interpretation:

$$
\begin{array}{r}
\left(1+1 /\left(0.51792798277+\frac{1}{2} \pi^{-3 / 4}\left(\frac{\frac{2}{\pi^{2}}}{2}\right)^{1 / 8-1 / 4(1 / 2+1 / 2 i)} \Gamma\left(-\left(\frac{1}{2}+\frac{1}{2} i\right) \times \frac{1}{2}\right)\right.\right. \\
\left.\left.\Gamma\left(\left(\left(\frac{1}{2}+\frac{1}{2} i\right)-1\right) \times \frac{1}{2}\right) \times 0.49425698791\right)\right)-\frac{6}{10^{3}}+\frac{1}{10^{3}} i
\end{array}
$$

Result:

1.6137400568... -
$0.12057647978 \ldots i$

[^1]
Polar coordinates:

```
r=1.6182384430 (radius), }0=-4.27312303\mp@subsup{9}{}{\circ}\mathrm{ (angle)
```

1.6182384430

Alternative representations:

$$
\begin{aligned}
& \begin{array}{l}
\left(1+1 /\left(0.517927982770000+\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right) \Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\right.\right. \\
\left.\left.\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)\right)-\frac{6}{10^{3}}+\frac{i}{10^{3}}= \\
1-\frac{6}{10^{3}}+\frac{i}{10^{3}}+1 /(0.517927982770000+0.247128493955000 \\
\left.\left(-1+\frac{1}{2}\left(-\frac{1}{2}-\frac{i}{2}\right)\right)!\left(-1+\frac{1}{2}\left(-\frac{1}{2}+\frac{i}{2}\right)\right)!\pi^{-3 / 4}\left(\frac{1}{\pi^{2}}\right)^{-1 / 4(1 / 2+i / 2)+1 / 8}\right) \\
\left(1+1 /\left(0.517927982770000+\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right)\right.\right. \\
\left.\left.\Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)\right)- \\
\frac{6}{10^{3}}+\frac{i}{10^{3}}=1-\frac{6}{10^{3}}+\frac{i}{10^{3}}+1 /(0.517927982770000+ \\
\left.\left.0.247128493955000(1)-1+\frac{1}{2}\left(-\frac{1}{2}-\frac{i}{2}\right)\right)^{(1)}-1+\frac{1}{2}\left(-\frac{1}{2}+\frac{i}{2}\right) \pi^{-3 / 4}\left(\frac{1}{\pi^{2}}\right)^{-1 / 4(1 / 2+i / 2)+1 / 8}\right)
\end{array}
\end{aligned}
$$

$$
\begin{array}{r}
\left(1+1 /\left(0.517927982770000+\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right) \Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\right.\right. \\
\left.\left.\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)\right)-\frac{6}{10^{3}}+\frac{i}{10^{3}}=
\end{array}
$$

$$
1-\frac{6}{10^{3}}+\frac{i}{10^{3}}+1 /(0.517927982770000+0.247128493955000
$$

$$
\left.e^{\log [(1 / 2(-1 / 2-i / 2))} e^{\log \Gamma(1 / 2(-1 / 2+i / 2))} \pi^{-3 / 4}\left(\frac{1}{\pi^{2}}\right)^{-1 / 4(1 / 2+i / 2)+1 / 8}\right)
$$

Series representations:

$$
\left(1+1 /\left(0.517927982770000+\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(4 / 2+i / 2)}\right) r\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\right.\right.
$$

$$
\left.\left.\left(r\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)\right)-\frac{6}{10^{3}}+\frac{i}{10^{3}} \propto
$$

$$
\frac{497}{500}+\frac{i}{1000}+1 /\left(0.517927982770000+\frac{0.698984935599997 \sqrt{e}\left(-\frac{1}{2}-\frac{i}{2}\right)^{-3 / 4-i / 4}\left(-\frac{1}{2}+\frac{i}{2}\right)^{-3 / 4+i / 4}\left(\frac{1}{\pi^{2}}\right)^{-i / 8} \sqrt{2 \pi^{2}}}{\pi^{3 / 4} \exp \left(-\sum_{k=0}^{\infty} \frac{2^{1+4 k}\left(-1-i-1-2 k_{B}\right.}{(1+k)(1+2 k)}\right) \exp \left(-\sum_{k=0}^{\infty} \frac{2^{2+4 k}(-1+i)^{-1-2 k_{B_{2}}+2 k}}{1+3 k+2 k^{2}}\right)}\right. \text { for }
$$

$$
\infty \rightarrow \frac{1}{2 \sqrt{2}}
$$

$$
\begin{aligned}
& \left(1+1 /\left(0.517927982770000+\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right)\right.\right. \\
& \left.\left.\Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)\right)- \\
& \frac{6}{10^{3}}+\frac{i}{10^{3}} \propto \frac{497}{500}+\frac{i}{1000}+1 /(0.517927982770000+ \\
& \frac{1}{\pi^{3 / 4}} 0.698984935599997 \sqrt{e}\left(-\frac{1}{2}-\frac{i}{2}\right)^{-3 / 4-i / 4} \\
& \left(-\frac{1}{2}+\frac{i}{2}\right)^{-3 / 4+i / 4}\left(\frac{1}{\pi^{2}}\right)^{-i / 8} \exp \left(\sum_{k=0}^{\infty} \frac{2^{1+4 k}(-1-i)^{-1-2 k} B_{2+2 k}}{(1+k)(1+2 k)}\right) \\
& \left.\exp \left(\sum_{k=0}^{\infty} \frac{2^{1+4 k}(-1+i)^{-1-2 k} B_{2+2 k}}{1+3 k+2 k^{2}}\right) \sqrt{2 \pi}^{2}\right) \text { for } \infty \rightarrow \frac{1}{2 \sqrt{2}} \\
& \left(1+1 /\left(0.517927982770000+\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right)\right.\right. \\
& \left.\left.\Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)\right)- \\
& \frac{6}{10^{3}}+\frac{i}{10^{3}} \propto \frac{497}{500}+\frac{i}{1000}+1 /\left(0.517927982770000+\frac{1}{\pi^{3 / 4}}\right. \\
& 0.698984935599997 \sqrt{e}\left(-\frac{1}{2}-\frac{i}{2}\right)^{-3 / 4-i / 4}\left(-\frac{1}{2}+\frac{i}{2}\right)^{-3 / 4+i / 4} \\
& \left(\frac{1}{\pi^{2}}\right)^{-i / 8} \sqrt{2 \pi}^{2}\left(1+\sum_{k=1}^{\infty} \sum_{j=1}^{2 k} \frac{\left(-\frac{1}{2}\right)^{j}\left(-\frac{1}{2}-\frac{i}{2}\right)^{-k} \mathcal{D}_{2(j+k), j}}{(j+k)!}\right) \\
& \left.\left(1+\sum_{k=1}^{\infty} \sum_{j=1}^{2 k} \frac{\left(-\frac{1}{2}\right)^{j}\left(-\frac{1}{2}+\frac{i}{2}\right)^{-k} \mathcal{D}_{2(j+k), j}}{(j+k)!}\right)\right) \\
& \text { for } \int\left(\infty \rightarrow \frac{1}{2 \sqrt{2}} \text { and } \mathcal{D}_{n, j}=(-1+n)\left((-2+n) \mathcal{D}_{-3+n,-1+j}+\mathcal{D}_{-1+n, j}\right)\right. \text { and } \\
& \left.\left.\mathcal{D}_{0,0}=1 \text { and } \mathcal{D}_{n, 1}=(-1+n) \text { ! and } \mathcal{D}_{n, j}=0\right) \text { for } n \leq-1+3 j\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \left(1+1 /\left(0.517927982770000+\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right)\right.\right. \\
& \left.\left.\Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)\right)- \\
& \frac{6}{10^{3}}+\frac{i}{10^{3}}=\frac{497}{500}+\frac{i}{1000}+1 /\left(0.517927982770000+\frac{1}{\pi^{3 / 4}}\right. \\
& 0.247128493955000\left(\frac{1}{\pi^{2}}\right)^{-i / 8}\left(\int_{1}^{\infty} e^{-t} t^{-5 / 4-i / 4} d t+\sum_{k=0}^{\infty}-\frac{4(-1)^{k}}{(1+i-4 k) k!}\right) \\
& \left.\left(\int_{1}^{\infty} e^{-t} t^{1 / 4(-5+i)} d t+\sum_{k=0}^{\infty} \frac{4(-1)^{k}}{(-1+i+4 k) k!}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(1+1 /\left(0.517927982770000+\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right) \Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\right.\right. \\
& \frac{497}{500}+\frac{i}{1000}+\frac{\left.\left.\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)\right)-\frac{6}{10^{3}}+\frac{i}{10^{3}}=}{0.517927982770000+\frac{1}{0.988513975820000\left(\frac{1}{\pi^{2}}\right)^{1 / 8+1 / 4(-1 / 2-i / 2)} \pi^{5 / 4} \mathscr{A}^{2}}} \underset{L}{\oint_{L}^{t} t^{1 / 4+i / 4} d t \oint_{L}^{t} t^{1 / 2}(1 / 2-i / 2) d t}
\end{aligned}
$$

$$
\left(1+1 /\left(0.517927982770000+\frac{1}{2}\left(\pi^{-3 / 4}\left(\frac{2}{\pi^{2} 2}\right)^{1 / 8-1 / 4(1 / 2+i / 2)}\right) \Gamma\left(-\frac{1}{2}\left(\frac{1}{2}+\frac{i}{2}\right)\right)\right.\right.
$$

$$
\left.\left.\left(\Gamma\left(\frac{1}{2}\left(\left(\frac{1}{2}+\frac{i}{2}\right)-1\right)\right) 0.494256987910000\right)\right)\right)-\frac{6}{10^{3}}+\frac{i}{10^{3}}=
$$

$$
\frac{497}{500}+\frac{i}{1000}+\frac{1}{0.517927982770000+\frac{0.988513975820000\left(\frac{1}{\pi^{2}}\right)^{1 / 8+1 / 4(-1 / 2-i / 2)} \pi^{5 / 4}}{\mathcal{A}^{2} \int_{L} e^{-t}(-t)^{1 / 4+i / 4} d t e^{f e t}(-t)^{1 / 2(1 / 2-i / 2)} d t}}
$$

Now, we have that:

$$
\begin{align*}
\int_{0}^{\infty}\left\{e^{-z}-4 \pi \int_{0}^{\infty}\right. & \left.\frac{x e^{-3 z-\pi x^{2} e^{-4 z}}}{e^{2 \pi x}-1} d x\right\} \cos t z d z \\
& =\frac{1}{8 \sqrt{\pi}} \Gamma\left(\frac{-1+i t}{4}\right) \Gamma\left(\frac{-1-i t}{4}\right) \Xi\left(\frac{1}{2} t\right) . \tag{12}
\end{align*}
$$

For $\mathrm{t}=1$ and $\Xi(1 / 2 \mathrm{t})=0.49425698791$, we obtain:
$1 /(8 \mathrm{sqrtPi}) * \operatorname{gamma}((-1+\mathrm{i}) / 4) * \operatorname{gamma}((-1-\mathrm{i}) / 4) * 0.49425698791$

Input interpretation:

$\frac{1}{8 \sqrt{\pi}} \Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) \times 0.49425698791$
$\Gamma(x)$ is the gamma function
i is the imaginary unit

Result:

0.35938462381...
$0.35938462381 \ldots$

Alternative representations:

```
\(\frac{\Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000}{8 \sqrt{\pi}}=\)
    \(0.494256987910000\left(-1+\frac{1}{4}(-1-i)\right)!\left(-1+\frac{1}{4}(-1+i)\right)!\)
        \(8 \sqrt{\pi}\)
```

$\frac{\Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000}{8 \sqrt{\pi}}=$
$0.494256987910000{ }^{(1)}{ }_{-1+\frac{1}{4}(-1-i)}{ }^{(1)}{ }_{-1+\frac{1}{4}(-1+i)}$
$8 \sqrt{\pi}$
$\frac{\Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000}{8 \sqrt{\pi}}=$
$\frac{0.494256987910000 e^{\log \Gamma(1 / 4(-1-i))} e^{\log \Gamma(1 / 4(-1+i))}}{8 \sqrt{\pi}}$

Series representations:

$$
\begin{aligned}
& \frac{\Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000}{8 \sqrt{\pi}}= \\
& \frac{0.0617821234887500 \Gamma\left(\frac{1}{4}(-1-i)\right) \Gamma\left(\frac{1}{4}(-1+i)\right)}{\exp \left(\pi \mathcal{A}\left\lfloor\frac{\arg (\pi-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(\pi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000}{8 \sqrt{\pi}}= \\
& -\left(\left(\begin{array}{l}
\left.0.9885139758200 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{4^{-k_{1}-k_{2}}(-1-i)^{k_{1}}(-1+i)^{k_{2}} \Gamma^{\left(k_{1}\right)}(1) \Gamma^{\left(k_{2}\right)}(1)}{k_{1}!k_{2}!}\right) / \\
(-1.00000000000000+1.00000000000000 i) \\
\left.\left.(1.00000000000000+1.00000000000000 i) \sqrt{-1+\pi} \sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}\right)\right)
\end{array}\right.\right.
\end{aligned}
$$

$$
\frac{\Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000}{8 \sqrt{\pi}}=
$$

$$
\frac{0.0617821234887500 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(\frac{1}{4}(-1+i)-z_{0}\right)^{k_{1}}\left(-\frac{1}{4}-\frac{i}{4}-z_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(z_{0}\right) \Gamma^{\left(k_{2}\right)}\left(z_{0}\right)}{k_{1}!k_{2}!}}{1}
$$

$$
\sqrt{-1+\pi} \sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}
$$

for $\left(z_{0} \notin \mathbb{Z}\right.$ or $\left.z_{0}>0\right)$

Integral representations:

$$
\begin{aligned}
& \frac{\Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000}{8 \sqrt{\pi}}=\frac{1}{\sqrt{\pi}} 0.0617821234887500 \\
& \csc \left(\frac{1}{8}(-1+i) \pi\right) \csc \left(-\frac{1}{8}(1+i) \pi\right)\left(\int_{0}^{\infty} t^{-5 / 4-i / 4} \sin (t) d t\right) \int_{0}^{\infty} t^{1 / 4(-5+i)} \sin (t) d t \\
& \frac{\Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000}{8 \sqrt{\pi}}= \\
& \frac{1}{\sqrt{\pi}} 0.0617821234887500\left(\int_{0}^{\infty} t^{-5 / 4-i / 4}\left(e^{-t}-\sum_{k=0}^{n} \frac{(-t)^{k}}{k!}\right) d t\right) \\
& \int_{0}^{\infty} t^{1 / 4(-5+i)}\left(e^{-t}-\sum_{k=0}^{n} \frac{(-t)^{k}}{k!}\right) d t \text { for }\left(n \in \mathbb{Z} \text { and } 0 \leq n<\frac{1}{4}\right)
\end{aligned}
$$

$\frac{\Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000}{8 \sqrt{\pi}}=\frac{0.247128493955000 \pi^{2} \mathcal{A}^{2}}{\sqrt{\pi} \oint_{L}^{t} e^{t} t^{1 / 4+i / 4} d t \oint_{L} e^{t} t^{1 / 4-i / 4} d t}$

From which, we obtain:
$(2+$ sqrt $)$ * $(((1 /(8 \mathrm{sqrtPi}) * \operatorname{gamma}((-1+\mathrm{i}) / 4) * \operatorname{gamma}((-1-\mathrm{i}) / 4) * 0.49425698791)))-$ (29-4) $1 / 10^{\wedge} 3$

Input interpretation:

$(2+\sqrt{7})\left(\frac{1}{8 \sqrt{\pi}} \Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) \times 0.49425698791\right)-(29-4) \times \frac{1}{10^{3}}$
$\Gamma(x)$ is the gamma function
i is the imaginary unit

Result:

1.6446115872...
1.6446115872...

Alternative representations:

$$
\begin{aligned}
& \frac{(2+\sqrt{7}) \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{8 \sqrt{\pi}}-\frac{29-4}{10^{3}}= \\
& -\frac{25}{10^{3}}+\frac{0.494256987910000\left(-1+\frac{1}{4}(-1-i)\right)!\left(-1+\frac{1}{4}(-1+i)\right)!(2+\sqrt{7})}{8 \sqrt{\pi}} \\
& \frac{(2+\sqrt{7}) \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{8 \sqrt{\pi}}-\frac{29-4}{10^{3}}= \\
& -\frac{25}{10^{3}}+\frac{0.494256987910000(1)-1+\frac{1}{4}(-1-i)(1)-1+\frac{1}{4}(-1+i)(2+\sqrt{7})}{8 \sqrt{\pi}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(2+\sqrt{7}) \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{8 \sqrt{\pi}}-\frac{29-4}{10^{3}}= \\
& -\frac{25}{10^{3}}+\frac{0.494256987910000 e^{\log \Gamma(1 / 4(-1-i))} e^{\log \Gamma(1 / 4(-1+i))}(2+\sqrt{7})}{8 \sqrt{\pi}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{(2+\sqrt{7}) \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{8 \sqrt{\pi}}-\frac{29-4}{10^{3}}= \\
& -\left(\left(0 . 0 2 5 0 0 0 0 0 0 0 0 0 0 0 0 \left(-4.9425698791000 \Gamma\left(\frac{1}{4}(-1-i)\right) \Gamma\left(\frac{1}{4}(-1+i)\right)-\right.\right.\right. \\
& 2.47128493955000 \exp \left(\pi \mathcal{A}\left[\frac{\arg (7-x)}{2 \pi}\right]\right) \Gamma\left(\frac{1}{4}(-1-i)\right) \Gamma\left(\frac{1}{4}(-1+i)\right) \\
& \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(7-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+1.00000000000000 \\
& \left.\left.\exp \left(\pi \mathcal{A}\left[\frac{\arg (\pi-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(\pi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right) / \\
& \left.\left(\exp \left(\pi \mathcal{A}\left[\frac{\arg (\pi-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(\pi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right) \text { for }(x \in \\
& \mathbb{R} \text { and } x<0)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(2+\sqrt{7}) \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{8 \sqrt{\pi}}-\frac{29-4}{10^{3}}= \\
& -\left(\int 0 . 0 2 5 0 0 0 0 0 0 0 0 0 0 0 \left(-1.0000000000000 \sqrt{-1+\pi} \sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}+\right.\right. \\
& 1.0000000000000 i^{2} \sqrt{-1+\pi} \sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}+79.08111806560 \\
& \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{4^{-k_{1}-k_{2}}(-1-i)^{k_{1}}(-1+i)^{k_{2}} \Gamma^{\left(k_{1}\right)}(1) \Gamma^{\left(k_{2}\right)}(1)}{k_{1}!k_{2}!}+ \\
& 39.540559032800 \sqrt{6} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \\
& \frac{2^{-k_{1}-2 k_{2}-2 k_{3}} \times 3^{-k_{1}}(-1-i)^{k_{2}}(-1+i)^{k_{3}}\binom{\frac{1}{2}}{k_{1}} \Gamma^{\left(k_{2}\right)}(1) \Gamma^{\left(k_{3}\right)}(1)}{k_{2}!k_{3}!} \\
& \int /(-1.0000000000000+1.0000000000000 i) \\
& \left(1.0000000000000+1.0000000000000 \text { i) } \sqrt{-1+\pi} \sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(2+\sqrt{7}) \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{8 \sqrt{\pi}}-\frac{29-4}{10^{3}}= \\
& -((0.025000000000000 \\
& \left(1.00000000000000 \sqrt{-1+\pi} \sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}-4.9425698791000\right. \\
& \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(\frac{1}{4}(-1+i)-z_{0}\right)^{k_{1}}\left(-\frac{1}{4}-\frac{i}{4}-z_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(z_{0}\right) \Gamma^{\left(k_{2}\right)}\left(z_{0}\right)}{k_{1}!k_{2}!}- \\
& 2.47128493955000 \sqrt{6} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{1}{k_{2}!k_{3}!} 6^{-k_{1}\binom{\frac{1}{2}}{k_{1}}} \\
& \left.\left.\left(\frac{1}{4}(-1+i)-z_{0}\right)^{k_{2}}\left(-\frac{1}{4}-\frac{i}{4}-z_{0}\right)^{k_{3}} \Gamma^{\left(k_{2}\right)}\left(z_{0}\right) \Gamma^{\left(k_{3}\right)}\left(z_{0}\right)\right)\right) / \\
& \left.\left(\sqrt{-1+\pi} \sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}\right)\right) \text { for }\left(z_{0} \notin \mathbb{Z} \text { or } z_{0}>0\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{(2+\sqrt{7}) \Gamma\left(\frac{1}{4}(-1+i)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)\right.}{8 \sqrt{\pi}}-\frac{29-4}{10^{3}}= \\
& -\frac{1}{40}+\frac{1}{\sqrt{\pi}} 0.0617821234887500(2.00000000000000+\sqrt{7}) \\
& \quad\left(\int_{1}^{\infty} e^{-t} t^{-5 / 4-i / 4} d t-4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(1+i-4 k) k!}\right) \\
& \left(\int_{1}^{\infty} e^{-t} t^{1 / 4(-5+i)} d t+4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(-1+i+4 k) k!}\right) \\
& \frac{(2+\sqrt{7}) \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{8 \sqrt{\pi}}-\frac{29-4}{10^{3}}= \\
& \frac{1}{\sqrt{\pi}} 0.06178212348875\left(2.0000000000000 \csc \left(\frac{1}{8}(-1+i) \pi\right)\right. \\
& \csc \left(-\frac{1}{8}(1+i) \pi\right)\left(\int_{0}^{\infty} t^{-5 / 4-i / 4} \sin (t) d t\right) \int_{0}^{\infty} t^{1 / 4(-5+i)} \sin (t) d t+ \\
& 1.00000000000000 \csc \left(\frac{1}{8}(-1+i) \pi\right) \csc \left(-\frac{1}{8}(1+i) \pi\right)\left(\int_{0}^{\infty} t^{-5 / 4-i / 4} \sin (t) d t\right) \\
& \left.\left(\int_{0}^{\infty} t^{1 / 4(-5+i)} \sin (t) d t\right) \sqrt{7}-0.40464779435029 \sqrt{\pi}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(2+\sqrt{7}) \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{8 \sqrt{\pi}}-\frac{29-4}{10^{3}}= \\
& -\frac{1}{40}+\frac{0.247128493955000 \pi^{2} \mathcal{A}^{2}(2+\sqrt{7})}{\sqrt{\pi} \oint_{L} e^{t} t^{1 / 4+i / 4} d t \oint_{L} e^{t} t^{1 / 4-i / 4} d t}
\end{aligned}
$$

$(2+\mathrm{sqrt} 7) *(((1 /(8 \mathrm{sqrtPi}) * \operatorname{gamma}((-1+\mathrm{i}) / 4) * \operatorname{gamma}((-1-\mathrm{i}) / 4) * 0.49425698791)))-$ (55-3) 1/10^3

Input interpretation:

$$
(2+\sqrt{7})\left(\frac{1}{8 \sqrt{\pi}} \Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) \times 0.49425698791\right)-(55-3) \times \frac{1}{10^{3}}
$$

Result:

1.6176115872...
1.6176115872...

Alternative representations:

$$
\begin{aligned}
& \frac{(2+\sqrt{7}) \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{8 \sqrt{\pi}}-\frac{55-3}{10^{3}}= \\
& -\frac{52}{10^{3}}+\frac{0.494256987910000\left(-1+\frac{1}{4}(-1-i)\right)!\left(-1+\frac{1}{4}(-1+i)\right)!(2+\sqrt{7})}{8 \sqrt{\pi}} \\
& \frac{(2+\sqrt{7}) \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{8 \sqrt{\pi}}-\frac{55-3}{10^{3}}= \\
& -\frac{52}{10^{3}}+\frac{0.494256987910000(1)-1+\frac{1}{4}(-1-i)(1)-1+\frac{1}{4}(-1+i)(2+\sqrt{7})}{8 \sqrt{\pi}}
\end{aligned}
$$

$$
\frac{(2+\sqrt{7}) \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{8 \sqrt{\pi}}-\frac{55-3}{10^{3}}=
$$

$$
-\frac{52}{10^{3}}+\frac{0.494256987910000 e^{\log \Gamma(1 / 4(-1-i))} e^{\log \Gamma(1 / 4(-1+i))}(2+\sqrt{7})}{8 \sqrt{\pi}}
$$

Series representations:

$$
\begin{gathered}
\frac{(2+\sqrt{7}) \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{8 \sqrt{\pi}}-\frac{55-3}{10^{3}}= \\
-\left(\left(0 . 0 5 2 0 0 0 0 0 0 0 0 0 0 0 0 \left(-2.37623551879808 \Gamma\left(\frac{1}{4}(-1-i)\right) \Gamma\left(\frac{1}{4}(-1+i)\right)-\right.\right.\right. \\
\left.1.18811775939904 \exp \left(\pi \mathcal{A} \left\lvert\, \frac{\arg (7-x)}{2 \pi}\right.\right]\right) \Gamma\left(\frac{1}{4}(-1-i)\right) \Gamma\left(\frac{1}{4}(-1+i)\right) \\
\sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(7-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+1.00000000000000 \\
\left.\left.\exp \left(\pi \mathcal{A}\left[\frac{\arg (\pi-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(\pi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right) / \\
\left.\left(\exp \left(\pi \mathcal{A}\left[\frac{\arg (\pi-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(\pi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right) \text { for }(x \in
\end{gathered}
$$

\mathbb{R} and $x<0$)

$$
\begin{aligned}
& \frac{(2+\sqrt{7}) \Gamma\left(\frac{1}{4}(-1+i)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)\right.}{8 \sqrt{\pi}}-\frac{55-3}{10^{3}}= \\
& 1 .\left(\int 0 . 0 5 2 0 0 0 0 0 0 0 0 0 0 0 \left(-1.0000000000000 \sqrt{-1+\pi} \sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}+\right.\right. \\
& \quad \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{4^{-k_{1}-k_{2}}(-1-i)^{k_{1}}(-1+i)^{k_{2}} \Gamma^{\left(k_{1}\right)}(1) \Gamma^{\left(\left(k_{2}\right)\right.}(1)}{k_{1}!k_{2}!}+ \\
& 19.009884150385 \sqrt{6} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \\
& \left.2^{2^{-k_{1}-2 k_{2}-2 k_{3}} \times 3^{-k_{1}}(-1-i)^{k_{2}}(-1+i)^{k_{3}}\binom{\frac{1}{2}}{k_{1}} \Gamma^{\left(k_{2}\right)}(1) \Gamma^{\left(k_{3}\right)}(1)} k_{k_{2}!k_{3}!}^{\infty}\right) \\
& \left.(1.0000000000000+1.0000000000000 i) \sqrt{-1+\pi} \sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(2+\sqrt{7}) \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{8 \sqrt{\pi}}-\frac{55-3}{10^{3}}= \\
& -((0.052000000000000 \\
& \left(1.00000000000000 \sqrt{-1+\pi} \sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}-2.37623551879808\right. \\
& \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(\frac{1}{4}(-1+i)-z_{0}\right)^{k_{1}}\left(-\frac{1}{4}-\frac{i}{4}-z_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(z_{0}\right) \Gamma^{\left(k_{2}\right)}\left(z_{0}\right)}{k_{1}!k_{2}!}- \\
& 1.18811775939904 \sqrt{6} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{1}{k_{2}!k_{3}!} 6^{-k_{1}\binom{\frac{1}{2}}{k_{1}}} \\
& \left.\left.\left(\frac{1}{4}(-1+i)-z_{0}\right)^{k_{2}}\left(-\frac{1}{4}-\frac{i}{4}-z_{0}\right)^{k_{3}} \Gamma^{\left(k_{2}\right)}\left(z_{0}\right) \Gamma^{\left(k_{3}\right)}\left(z_{0}\right)\right)\right) / \\
& \left.\left(\sqrt{-1+\pi} \sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}\right)\right) \text { for }\left(z_{0} \notin \mathbb{Z} \text { or } z_{0}>0\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{(2+\sqrt{7}) \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{8 \sqrt{\pi}}-\frac{55-3}{10^{3}}= \\
& -\frac{13}{250}+\frac{1}{\sqrt{\pi}} 0.0617821234887500(2.00000000000000+\sqrt{7}) \\
& \left(\int_{1}^{\infty} e^{-t} t^{-5 / 4-i / 4} d t-4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(1+i-4 k) k!}\right) \\
& \left(\int_{1}^{\infty} e^{-t} t^{1 / 4(-5+i)} d t+4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(-1+i+4 k) k!}\right) \\
& \frac{(2+\sqrt{7}) \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{8 \sqrt{\pi}}-\frac{55-3}{10^{3}}= \\
& \frac{1}{\sqrt{\pi}} 0.06178212348875\left(2.0000000000000 \csc \left(\frac{1}{8}(-1+i) \pi\right)\right. \\
& \quad \csc \left(-\frac{1}{8}(1+i) \pi\right)\left(\int_{0}^{\infty} t^{-5 / 4-i / 4} \sin (t) d t\right) \int_{0}^{\infty} t^{1 / 4(-5+i)} \sin (t) d t+ \\
& 1.00000000000000 \csc \left(\frac{1}{8}(-1+i) \pi\right) \csc \left(-\frac{1}{8}(1+i) \pi\right)\left(\int_{0}^{\infty} t^{-5 / 4-i / 4} \sin (t) d t\right) \\
& \left.\quad\left(\int_{0}^{\infty} t^{1 / 4(-5+i)} \sin (t) d t\right) \sqrt{7}-0.84166741224861 \sqrt{\pi}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(2+\sqrt{7}) \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{8 \sqrt{\pi}}-\frac{55-3}{10^{3}}= \\
& -\frac{13}{250}+\frac{0.247128493955000 \pi^{2} \mathcal{A}^{2}(2+\sqrt{7})}{\sqrt{\pi} \oint_{L} e^{t} t^{1 / 4+i / 4} d t \oint_{L} e^{t} t^{1 / 4-i / 4} d t}
\end{aligned}
$$

5* $10 \wedge 3(((1 /(8 \mathrm{sqrtPi}) * \operatorname{gamma}((-1+\mathrm{i}) / 4) * \operatorname{gamma}((-1-\mathrm{i}) / 4) * 0.49425698791)))$ $76+7+1 /$ golden ratio $+1 / 2$

Input interpretation:

$5 \times 10^{3}\left(\frac{1}{8 \sqrt{\pi}} r\left(\frac{1}{4}(-1+i)\right) r\left(\frac{1}{4}(-1-i)\right) \times 0.49425698791\right)-76+7+\frac{1}{\phi}+\frac{1}{2}$

Result:

1729.0411530...
1729.0411530...

Alternative representations:

$$
\begin{aligned}
& \frac{\left(5 \times 10^{3}\right) \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{8 \sqrt{\pi}}-76+7+\frac{1}{\phi}+\frac{1}{2}= \\
& -\frac{137}{2}+\frac{1}{\phi}+\frac{2.47128493955000\left(-1+\frac{1}{4}(-1-i)\right)!\left(-1+\frac{1}{4}(-1+i)\right)!10^{3}}{8 \sqrt{\pi}} \\
& \frac{\left(5 \times 10^{3}\right) \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{8 \sqrt{\pi}}-76+7+\frac{1}{\phi}+\frac{1}{2}= \\
& -\frac{137}{2}+\frac{1}{\phi}+\frac{2.47128493955000(1)-1+\frac{1}{4}(-1-i)(1)-1+\frac{1}{4}(-1+i)}{8 \sqrt{\pi}}
\end{aligned}
$$

$$
\begin{gathered}
\frac{\left(5 \times 10^{3}\right) \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{8 \sqrt{\pi}}-76+7+\frac{1}{\phi}+\frac{1}{2}= \\
-\frac{137}{2}+\frac{1}{\phi}+\frac{2.47128493955000 \times 10^{3} e^{\log \Gamma(1 / 4(-1-i))} e^{\log \Gamma(1 / 4(-1+i))}}{8 \sqrt{\pi}}
\end{gathered}
$$

Series representations:

$$
\begin{aligned}
& \frac{\left(5 \times 10^{3}\right) \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{8 \sqrt{\pi}}-76+7+\frac{1}{\phi}+\frac{1}{2}= \\
& -\frac{137}{2}+\frac{1}{\phi}+\frac{308.910617443750 \Gamma\left(\frac{1}{4}(-1-i)\right) \Gamma\left(\frac{1}{4}(-1+i)\right)}{\exp \left(\pi \mathcal{A}\left[\frac{\arg (\pi-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(\pi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}} \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
$$

$$
\begin{gathered}
\frac{\left(5 \times 10^{3}\right) \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{8 \sqrt{\pi}}-76+7+\frac{1}{\phi}+\frac{1}{2}= \\
-\left(\left(6 8 . 5 0 0 0 0 0 0 0 0 0 0 \left(-0.0145985401459854 \sqrt{-1+\pi} \sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}+\right.\right.\right. \\
1.00000000000000 \phi \sqrt{-1+\pi} \sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}- \\
4.5096440502737 \phi \\
\left.\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(\frac{1}{4}(-1+i)-z_{0}\right)^{k_{1}}\left(-\frac{1}{4}-\frac{i}{4}-z_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(z_{0}\right) \Gamma^{\left(k_{2}\right)}\left(z_{0}\right)}{k_{1}!k_{2}!}\right) / \\
\left.\left(\phi \sqrt{-1+\pi} \sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}\right)\right) \text { for }\left(z_{0} \notin \mathbb{Z} \text { or } z_{0}>0\right)
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\left(5 \times 10^{3}\right) \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{8 \sqrt{\pi}}-76+7+\frac{1}{\phi}+\frac{1}{2}= \\
& -\frac{137}{2}+\frac{1}{\phi}+\left(4942.56987910000\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(\pi-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(\pi-z_{0}\right) /(2 \pi)\right\rfloor\right)}\right. \\
& \left.\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{4^{-k_{1}-k_{2}(-1-i)^{k_{1}}(-1+i)^{k} \Gamma^{\left(k_{1}\right)}(1) \Gamma^{\left(k_{2}\right)}(1)}}{k_{1}!k_{2}!}\right) / \\
& \left.(-1-i)(-1+i) \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\pi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)
\end{aligned}
$$

Integral representations:

$$
\begin{gathered}
\frac{\left(5 \times 10^{3}\right) \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{8 \sqrt{\pi}}-76+7+\frac{1}{\phi}+\frac{1}{2}= \\
\frac{1}{\phi \sqrt{\pi}} 308.91061744375\left(1.00000000000000 \phi \csc \left(\frac{1}{8}(-1+i) \pi\right)\right. \\
\csc \left(-\frac{1}{8}(1+i) \pi\right)\left(\int_{0}^{\infty} t^{-5 / 4-i / 4} \sin (t) d t\right) \int_{0}^{\infty} t^{1 / 4(-5+i)} \sin (t) d t+ \\
0.0032371823548023 \sqrt{\pi}-0.22174699130396 \phi \sqrt{\pi}) \\
\begin{array}{c}
\frac{\left(5 \times 10^{3}\right) \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{8 \sqrt{\pi}}-76+7+\frac{1}{\phi}+\frac{1}{2}= \\
-\frac{1}{\phi \sqrt{\pi}} 68.5000000000\left(-4.509644050274 \phi\left(\int_{0}^{\infty} t^{-5 / 4-i / 4}\left(e^{-t}-\sum_{k=0}^{n} \frac{(-t)^{k}}{k!}\right) d t\right)\right. \\
\int_{0}^{\infty} t^{1 / 4(-5+i)}\left(e^{-t}-\sum_{k=0}^{n} \frac{(-t)^{k}}{k!}\right) d t-0.014598540145985 \sqrt{\pi}+ \\
1.0000000000000 \phi \sqrt{\pi}) \text { for }\left(n \in \mathbb{Z} \text { and } 0 \leq n<\frac{1}{4}\right)
\end{array}
\end{gathered}
$$

$\frac{\left(5 \times 10^{3}\right) \Gamma\left(\frac{1}{4}(-1+i)\right)\left(\Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{8 \sqrt{\pi}}-76+7+\frac{1}{\phi}+\frac{1}{2}=$

$$
-\frac{137}{2}+\frac{1}{\phi}+\frac{1235.64246977500 \pi^{2} \mathcal{A}^{2}}{\sqrt{\pi} \oint_{L} e^{t} t^{1 / 4+i / 4} d t \oint_{L} e^{t} t^{1 / 4-i / 4} d t}
$$

$1 / 3 * 10^{\wedge} 3(((1 /(8 \mathrm{sqrtPi}) * \operatorname{gamma}((-1+\mathrm{i}) / 4) * \operatorname{gamma}((-1-\mathrm{i}) / 4) *$ $0.49425698791))+21+2-\mathrm{Pi}$

Input interpretation:

$\frac{1}{3} \times 10^{3}\left(\frac{1}{8 \sqrt{\pi}} \Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) \times 0.49425698791\right)+21+2-\pi$

Result:

139.65328195...
139.65328195...

Alternative representations:

$$
\begin{aligned}
& \frac{10^{3}\left(\Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{(8 \sqrt{\pi}) 3}+21+2-\pi= \\
& 23-\pi+\frac{0.164752329303333\left(-1+\frac{1}{4}(-1-i)\right)!\left(-1+\frac{1}{4}(-1+i)\right)!10^{3}}{8 \sqrt{\pi}} \\
& \frac{10^{3}\left(\Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{(8 \sqrt{\pi}) 3}+21+2-\pi= \\
& 23-\pi+\frac{0.164752329303333(1)-1+\frac{1}{4}(-1-i)(1)-1+\frac{1}{4}(-1+i)}{} 10^{3} \\
& 8 \sqrt{\pi}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{10^{3}\left(\Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{(8 \sqrt{\pi}) 3}+21+2-\pi= \\
& 23-\pi+\frac{0.164752329303333 \times 10^{3} e^{\log \Gamma(1 / 4(-1-i))} e^{\log \Gamma(1 / 4(-1+i))}}{8 \sqrt{\pi}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{10^{3}\left(\Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{(8 \sqrt{\pi}) 3}+21+2-\pi= \\
& 23-\pi+\frac{20.5940411629167 \Gamma\left(\frac{1}{4}(-1-i)\right) \Gamma\left(\frac{1}{4}(-1+i)\right)}{\exp \left(\pi \mathcal{A}\left\lfloor\frac{\arg (\pi-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(\pi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}} \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{10^{3}\left(\Gamma\left(\frac{1}{4}(-1+i) \Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)\right.}{(8 \sqrt{\pi}) 3}+21+2-\pi= \\
& -\left(\int 1.0000000000000\right. \\
& \left(-23.0000000000000 \sqrt{-1+\pi} \sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}+1.00000000000000\right. \\
& \pi \sqrt{-1+\pi} \sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}-20.5940411629167 \\
& \left.\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(\frac{1}{4}(-1+i)-z_{0}\right)^{k_{1}}\left(-\frac{1}{4}-\frac{i}{4}-z_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(z_{0}\right) \Gamma^{\left(k_{2}\right)}\left(z_{0}\right)}{k_{1}!k_{2}!}\right) / / \\
& \left.\left(\sqrt{-1+\pi} \sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}\right)\right) \text { for }\left(z_{0} \& \mathbb{Z} \text { or } z_{0}>0\right) \\
& \frac{10^{3}\left(\Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{(8 \sqrt{\pi}) 3}+21+2-\pi= \\
& 23-\pi+\left(329.504658606667\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(\pi-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{\left.1 / 2\left(-1-\arg \left(\pi-z_{0}\right) /(2 \pi)\right]\right)}\right. \\
& \left.\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{4^{-k_{1}-k_{2}}(-1-i)^{k_{1}}(-1+i)^{k_{2}} \Gamma^{\left(k_{1}\right)}(1) \Gamma^{\left(k_{2}\right)}(1)}{k_{1}!k_{2}!}\right) / \\
& \left((-1-i)(-1+i) \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\pi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{10^{3}\left(\Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{(8 \sqrt{\pi}) 3}+21+2-\pi= \\
& -\frac{1}{\sqrt{\pi}} 1.0000000000000\left(-20.5940411629167 \csc \left(\frac{1}{8}(-1+i) \pi\right)\right. \\
& \csc \left(-\frac{1}{8}(1+i) \pi\right)\left(\int_{0}^{\infty} t^{-5 / 4-i / 4} \sin (t) d t\right) \int_{0}^{\infty} t^{1 / 4(-5+i)} \sin (t) d t- \\
& 23.0000000000000 \sqrt{\pi}+1.00000000000000 \pi \sqrt{\pi})
\end{aligned}
$$

$$
\begin{aligned}
& \frac{10^{3}\left(\Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{(8 \sqrt{\pi}) 3}+21+2-\pi= \\
& -\frac{1}{\sqrt{\pi}} 1.0000000000000\left(-20.594041162917\left(\int_{0}^{\infty} t^{-5 / 4-i / 4}\left(e^{-t}-\sum_{k=0}^{n} \frac{(-t)^{k}}{k!}\right) d t\right)\right. \\
& \int_{0}^{\infty} t^{1 / 4(-5+i)}\left(e^{-t}-\sum_{k=0}^{n} \frac{(-t)^{k}}{k!}\right) d t-23.000000000000 \sqrt{\pi}+ \\
& 1.0000000000000 \pi \sqrt{\pi}) \text { for }\left(n \in \mathbb{Z} \text { and } 0 \leq n<\frac{1}{4}\right) \\
& \frac{10^{3}\left(\Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{(8 \sqrt{\pi}) 3}+21+2-\pi= \\
& 23-\pi+\frac{82.3761646516667 \pi^{2} \mathcal{A}^{2}}{\sqrt{\pi} \oint e^{t} t^{1 / 4+i / 4} d t \oint_{L}^{t} t^{1 / 4-i / 4} d t}
\end{aligned}
$$

$1 / 3 * 10^{\wedge} 3(((1 /(8 \mathrm{sqrtPi}) * \operatorname{gamma}((-1+\mathrm{i}) / 4) * \operatorname{gamma}((-1-\mathrm{i}) / 4) *$ $0.49425698791)))+7$-golden ratio

Input interpretation:

$\frac{1}{3} \times 10^{3}\left(\frac{1}{8 \sqrt{\pi}} \Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) \times 0.49425698791\right)+7-\phi$

Result:

125.17684061...
125.17684061...

Alternative representations:

$$
\begin{aligned}
& \frac{10^{3}\left(\Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{(8 \sqrt{\pi}) 3}+7-\phi= \\
& 7-\phi+\frac{0.164752329303333\left(-1+\frac{1}{4}(-1-i)\right)!\left(-1+\frac{1}{4}(-1+i)\right)!10^{3}}{8 \sqrt{\pi}}
\end{aligned}
$$

$$
\frac{10^{3}\left(\Gamma\left(\frac{1}{4}(-1+i) \Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)\right.}{(8 \sqrt{\pi}) 3}+7-\phi=
$$

$$
\left.7-\phi+\frac{0.164752329303333(1)-1+\frac{1}{4}(-1-i)}{(1)-1+\frac{1}{4}(-1+i)} 10^{3}\right)
$$

$$
\begin{aligned}
& \frac{10^{3}\left(\Gamma\left(\frac{1}{4}(-1+i) \Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)\right.}{(8 \sqrt{\pi}) 3}+7-\phi= \\
& 7-\phi+\frac{0.164752329303333 \times 10^{3} e^{\log \Gamma(1 / 4(-1-i))} e^{\log \Gamma(1 / 4(-1+i))}}{8 \sqrt{\pi}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{10^{3}\left(\Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{(8 \sqrt{\pi}) 3}+7-\phi= \\
& 7-\phi+\frac{20.5940411629167 \Gamma\left(\frac{1}{4}(-1-i)\right) \Gamma\left(\frac{1}{4}(-1+i)\right)}{\exp \left(\pi \mathcal{A}\left\lfloor\frac{\arg (\pi-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(\pi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}} \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
$$

$$
\frac{10^{3}\left(\Gamma\left(\frac{1}{4}(-1+i) \Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)\right.}{(8 \sqrt{\pi}) 3}+7-\phi=
$$

$$
-\int\left(1 . 0 0 0 0 0 0 0 0 0 0 0 0 0 \left(-7.0000000000000 \sqrt{-1+\pi} \sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}+\right.\right.
$$

$$
1.00000000000000 \phi \sqrt{-1+\pi} \sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}-
$$

$$
20.5940411629167
$$

$$
\left.\left.\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(\frac{1}{4}(-1+i)-z_{0}\right)^{k_{1}}\left(-\frac{1}{4}-\frac{i}{4}-z_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(z_{0}\right) \Gamma^{\left(k_{2}\right)}\left(z_{0}\right)}{k_{1}!k_{2}!}\right)\right) /
$$

$$
\left.\left(\sqrt{-1+\pi} \sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}\right)\right) \text { for }\left(z_{0} \notin \mathbb{Z} \text { or } z_{0}>0\right)
$$

$$
\begin{aligned}
& \frac{10^{3}\left(\Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{(8 \sqrt{\pi}) 3}+7-\phi= \\
& 7-\phi+\left(329.504658606667\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(\pi-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(\pi-z_{0}\right) /(2 \pi)\right\rfloor\right)}\right. \\
& \left.\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{4^{-k_{1}-k_{2}(-1-i)^{k_{1}}(-1+i)^{k_{2}} \Gamma^{\left(k_{1}\right)}(1) \Gamma^{\left(k_{2}\right)}(1)}}{k_{1}!k_{2}!}\right) / \\
& \left.(-1-i)(-1+i) \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\pi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{10^{3}\left(\Gamma\left(\frac{1}{4}(-1+i)\right) \Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)}{(8 \sqrt{\pi}) 3}+7-\phi= \\
& -\frac{1}{\sqrt{\pi}} 1.0000000000000\left(-20.5940411629167 \csc \left(\frac{1}{8}(-1+i) \pi\right)\right. \\
& \csc \left(-\frac{1}{8}(1+i) \pi\right)\left(\int_{0}^{\infty} t^{-5 / 4-i / 4} \sin (t) d t\right) \int_{0}^{\infty} t^{1 / 4(-5+i)} \sin (t) d t- \\
& 7.0000000000000 \sqrt{\pi}+1.00000000000000 \phi \sqrt{\pi})
\end{aligned}
$$

$$
\begin{aligned}
& \frac{10^{3}\left(\Gamma\left(\frac{1}{4}(-1+i) \Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)\right.}{(8 \sqrt{\pi}) 3}+7-\phi= \\
& -\frac{1}{\sqrt{\pi}} 1.0000000000000\left(-20.594041162917\left(\int_{0}^{\infty} t^{-5 / 4-i / 4}\left(e^{-t}-\sum_{k=0}^{n} \frac{(-t)^{k}}{k!}\right) d t\right)\right. \\
& \int_{0}^{\infty} t^{1 / 4(-5+i)}\left(e^{-t}-\sum_{k=0}^{n} \frac{(-t)^{k}}{k!}\right) d t-7.000000000000 \sqrt{\pi}+ \\
& 1.0000000000000 \phi \sqrt{\pi}) \text { for }\left(n \in \mathbb{Z} \text { and } 0 \leq n<\frac{1}{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{10^{3}\left(\Gamma\left(\frac{1}{4}(-1+i) \Gamma\left(\frac{1}{4}(-1-i)\right) 0.494256987910000\right)\right.}{(8 \sqrt{\pi}) 3}+7-\phi= \\
& 7-\phi+\frac{82.3761646516667 \pi^{2} \mathcal{A}^{2}}{\sqrt{\pi} \oint_{L}^{t} t^{1 / 4+i / 4} d t \oint_{L} e^{t} t^{1 / 4-i / 4} d t}
\end{aligned}
$$

Observations

From:

https://www.scientificamerican.com/article/mathematicsramanujan/?fbclid=IwAR2caRXrn_RpOSvJ1QxWsVLBcJ6KVgd_Af_hrmDYBNyU8m pSjRs1BDeremA

Ramanujan's statement concerned the deceptively simple concept of partitions-the different ways in which a whole number can be subdivided into smaller numbers. Ramanujan's original statement, in fact, stemmed from the observation of patterns, such as the fact that $p(9)=30, p(9+5)=135, p(9+10)=490, p(9+15)=1,575$ and so on are all divisible by 5 . Note that here the n's come at intervals of five units.

Ramanujan posited that this pattern should go on forever, and that similar patterns exist when 5 is replaced by 7 or 11 -there are infinite sequences of $p(n)$ that are all divisible by 7 or 11, or, as mathematicians say, in which the "moduli" are 7 or 11.

Then, in nearly oracular tone Ramanujan went on: "There appear to be corresponding properties," he wrote in his 1919 paper, "in which the moduli are powers of 5, 7 or 11... and no simple properties for any moduli involving primes other than these three." (Primes are whole numbers that are only divisible by themselves or by 1.) Thus, for instance, there should be formulas for an infinity of n's separated by $5^{\wedge} 3=125$ units, saying that the corresponding $p(n)$'s should all be divisible by 125. In the past methods developed to understand partitions have later been applied to physics problems such as the theory of the strong nuclear force or the entropy of black holes.

From Wikipedia

In particle physics, Yukawa's interaction or Yukawa coupling, named after Hideki Yukawa, is an interaction between a scalar field ϕ and a Dirac field ψ. The Yukawa interaction can be used to describe the nuclear force between nucleons (which are fermions), mediated by pions (which are pseudoscalar mesons). The Yukawa interaction is also used in the Standard Model to describe the coupling between the Higgs field and massless quark and lepton fields (i.e., the fundamental fermion particles). Through spontaneous symmetry breaking, these fermions acquire a mass proportional to the vacuum expectation value of the Higgs field.

Can be this the motivation that from the development of the Ramanujan's equations we obtain results very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $T=0$ and to the Higgs boson mass 125.18 GeV and practically equal to the rest mass of Pion meson 139.57 MeV

Note that:

$$
g_{22}=\sqrt{(1+\sqrt{2})} .
$$

Hence

$$
\begin{array}{rlr}
64 g_{22}^{24} & = & e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}-\cdots \\
64 g_{22}^{-24} & = & 4096 e^{-\pi \sqrt{22}}+\cdots
\end{array}
$$

so that

$$
64\left(g_{22}^{24}+g_{22}^{-24}\right)=e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots=64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\} .
$$

Hence

$$
e^{\pi \sqrt{22}}=2508951.9982 \ldots
$$

Thence:

$$
64 g_{22}^{-24}=\quad 4096 e^{-\pi \sqrt{22}}+\cdots
$$

And

$$
64\left(g_{22}^{24}+g_{22}^{-24}\right)=e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots=64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\}
$$

That are connected with 64, 128, 256, 512, 1024 and $4096=64^{2}$
(Modular equations and approximations to $\pi-S$. Ramanujan - Quarterly Journal of Mathematics, XLV, 1914, 350-372)

All the results of the most important connections are signed in blue throughout the drafting of the paper. We highlight as in the development of the various equations we use always the constants $\pi, \phi, 1 / \phi$, the Fibonacci and Lucas numbers, linked to the
golden ratio, that play a fundamental role in the development, and therefore, in the final results of the analyzed expressions.

In mathematics, the Fibonacci numbers, commonly denoted F_{n}, form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0 and 1. Fibonacci numbers are strongly related to the golden ratio: Binet's formula expresses the nth Fibonacci number in terms of n and the golden ratio, and implies that the ratio of two consecutive Fibonacci numbers tends to the golden ratio as n increases.
Fibonacci numbers are also closely related to Lucas numbers ,in that the Fibonacci and Lucas numbers form a complementary pair of Lucas sequences

The beginning of the sequence is thus:
$0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765$, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155...

The Lucas numbers or Lucas series are an integer sequence named after the mathematician François Édouard Anatole Lucas (1842-91), who studied both that sequence and the closely related Fibonacci numbers. Lucas numbers and Fibonacci numbers form complementary instances of Lucas sequences.
The Lucas sequence has the same recursive relationship as the Fibonacci sequence, where each term is the sum of the two previous terms, but with different starting values. This produces a sequence where the ratios of successive terms approach the golden ratio, and in fact the terms themselves are roundings of integer powers of the golden ratio. ${ }^{[1]}$ The sequence also has a variety of relationships with the Fibonacci numbers, like the fact that adding any two Fibonacci numbers two terms apart in the Fibonacci sequence results in the Lucas number in between.

The sequence of Lucas numbers is:
2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, 15127, 24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 1149851, 1860498, 3010349, 4870847, 7881196, 12752043, 20633239, 33385282, 54018521, 87403803......
All Fibonacci-like integer sequences appear in shifted form as a row of the Wythoff array; the Fibonacci sequence itself is the first row and the Lucas sequence is the
second row. Also like all Fibonacci-like integer sequences, the ratio between two consecutive Lucas numbers converges to the golden ratio.

A Lucas prime is a Lucas number that is prime. The first few Lucas primes are:
2, 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, ... (sequence A005479 in the OEIS).

In geometry, a golden spiral is a logarithmic spiral whose growth factor is φ, the golden ratio. ${ }^{[1]}$ That is, a golden spiral gets wider (or further from its origin) by a factor of φ for every quarter turn it makes. Approximate logarithmic spirals can occur in nature, for example the arms of spiral galaxies ${ }^{[3]}$ - golden spirals are one special case of these logarithmic spirals

We observe that 1728 and 1729 are results very near to the mass of candidate glueball $\mathbf{f}_{\mathbf{0}}(\mathbf{1 7 1 0})$ scalar meson. Furthermore, 1728 occurs in the algebraic formula for the j invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross-Zagier theorem. The number 1728 is one less than the HardyRamanujan number 1729 (taxicab number).

Furthermore, we obtain as results of our computations, always values very near to the Higgs boson mass 125.18 GeV and practically equals to the rest mass of Pion meson 139.57 MeV . In conclusion we obtain also many results that are very good approximations to the value of the golden ratio $1.618033988749 \ldots$ and to $\zeta(2)=$ $\frac{\pi^{2}}{6}=1.644934 \ldots$

We note how the following three values: 137.508 (golden angle), 139.57 (mass of the Pion - meson $\mathbf{P i}$) and 125.18 (mass of the Higgs boson), are connected to each other. In fact, just add 2 to 137.508 to obtain a result very close to the mass of the Pion and subtract 12 to 137.508 to obtain a result that is also very close to the mass of the Higgs boson. We can therefore hypothesize that it is the golden angle (and the related golden ratio inherent in it) to be a fundamental ingredient both in the structures of the microcosm and in those of the macrocosm.

References

New expressions for Riemann's functions $\boldsymbol{\xi}(\mathbf{s})$ and $\boldsymbol{\Xi}(\mathbf{t})$ - Srinivasa Ramanujan Quarterly Journal of Mathematics, XLVI, 1915, 253-260

[^0]: ${ }^{1}$ M.Nardelli studied at Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy
 ${ }^{2}$ A. Nardelli studies at the Università degli Studi di Napoli Federico II - Dipartimento di Studi Umanistici Sezione Filosofia - scholar of Theoretical Philosophy

[^1]: (using the principal branch of the logarithm for complex exponentiation)

