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Abstract

We give another version of the theorem that was submitted in the previous article [7],
which is the theorem leading to the proof of the beal’s conjecture and the Fermat- Catalan
conjecture. We also give a view to prove whether the equation has infinitely many solutions
in integer or not related to parametric solution and infinite ascent.

It is known that
The equation A2 + B2 = Ck for any positive integer k has solutions in integer such that [5]

A = [
(s + it)k + (s− it)k

2
]2, B2 = −[

(s + it)k − (s− it)k

2
]2, C = s2 + t2

That means:
C = k

√
A2 + B2 = s2 + t2

and for some equations below:

A2 + AB + B2 = C3

A2 + B4 = C3

A3 + B3 = C2

All unknowns can be expressed as parametric solutions with fixed integer-coefficients, how-
ever for the cases below:

1 The theorem

Theorem 1. (denoted by QuG - theorem)
For all positive integers n and xi, ki, all integers Ai 6= ±1 and (A1, A2, ..., An) = 1, ak, ak−1, ..., a1, a0are

fixed numbers, for any s,t coprime integers.
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xn

√
Ax1

1 + Ax2
2 + ... + A

xn−1

n−1 = aks
k + ak−1s

k−1t + ak−2s
k−2t2 + ... + a1st

k−1 + a0s
k ⇒

1

x1

+
1

x2

+ ... +
1

xn−1

+
1

xn

+
n

LCM(x1, x2, ..., xn−1, xn)
> 1

.

Theorem 2. (denoted by QuS - theorem) For positive integers x, y, z, ki and A,B coprime in-
tegers, and ak, ak−1, ..., a1, a0 are fixed numbers.
z
√
Ax ±By = aks

k + ak−1s
k−1t + ak−2s

k−2t2 + ... + a1st
k−1 + a0s

k for any s,t coprime integers.

⇒ 1

x
+

1

y
+

1

z
+

3

LCM(x, y, z)
> 1

In other worlds, the C = z
√
Ax ±By (A,B,C 6= 1, coprime)can not be expressed as

aks
k+ak−1s

k−1t+ak−2s
k−2t2+...+a1st

k−1+a0s
k with all fixed coefficients , s,t coprime integer if

1

x
+

1

y
+

1

z
+

3

LCM(x, y, z)
6 1

Notes:
LCM (x,y,z): least common multiples of x,y and z.
Except A = 3, B = 2, z

√
32 − 23 = 1

We consider the cases of coefficients :

1. If all coefficients are integers, then the equation has infinitely many solutions in integer.

2. If all coefficients are not simultaneously integers, we can not conclude that the equation
has a solution, infinitely many solutions, or no solution in integer.

For example:

C = s3 + 3
√

2s2t−
√

2st2 + t3

C = s3 +
√

2st(3s− t) + t3

C is integer if 3s− t = 0⇒ s = 1, t = 3
then C = 1 + 33 = 28, since (s,t) = 1, the equation has only one positive solution in integer.

3. If there dose not exist the set of coefficients, then the equation has no solution in integer.

The other way to prove the equation has infinitely many solutions integer is INFINITE AS-
CENT. The technique is that if the equation has a solution , then it will have a larger solution
in integer, since the set of integers is not upper bound , so the equation has infinitely many
solution in integer.

We known the equation A4 + B2 = C4, A4 + B4 = C2 has no solution in integer . Fermat
have proved it by INFINITE DESCENT, however the equations below have infinitely many
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solutions in integer :

A4 + B2 = kC4, A4 + B4 = kC2 for some k fixed integer.

They can be proved by INFINITE ASCENT

For example:

The equation A4 + B2 = 5C4

has a smallest solution : A = 1, B = 2, C = 1,
and using this solution, we found other one A = 11, B = 358, C = 13
and then A = 2291, B = 7297558, C = 2005 and so on.

The equation A3 + B3 = C3

If it has a none- trial solution, it will has a larger solution by :

[A(A3 ± 2B3)]3 ∓ [B(A3 ± 2B3)]3 ≡ (A3 ±B3)(A3 ∓B3)3

The proof of the theorem above will be posted later.
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