Links between string theory and the Riemann’s zeta function
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There is a connection between string theory andRibenann’s zeta function: this is an interesting
way, because the zeta is related to prime numimersva have seen on many occasions how nature
likes to express himself through perfect laws otheaatical models.

Not least the situation that certain stable
energy levels of atoms could be associated
with non-trivial zeros of the Riemann’s
zeta. In [6] for example has been shown the
binding of the Riemann zeta and its non-
trivial zeros with quantum physics through
the Law ofMontgomery-Odlyzko.

The law of Montgomery-Odlyzko says that

"the distribution of the spacing between
successive non-trivial zeros of the Riemann
zeta function (normalized) is identical in

terms of statistical distribution of spacing

of eigenvalues in an GUE operator”, which
also represent dynamical systems of
subatomic patrticles!

In [6] the authors showed all the mathematical twedretical aspects related to the Riemann’s zeta,
while in [9] showed the links of certain formulaé rmumber theory with the golden section and

other areas such as string theory. The authors pi@gosed a solution of the Riemann hypothesis
(RH) and the conjecture on the multiplicity of nawiel zeros, showing that they are simple zeros

[7](8].



In [10] [11] have proposed hypotheses equivalent RH[12] [13] the authors have presented
informative articles on the physics of extra dimens, string theory and M-theory, in [15] the
conjecture Yang and Mills, in [16] the conjectufeBach and Swinnerton-Dyer.




A mathematical aspect of string theory

During the experiments in particle acceleratoryspiists had observed that the spin of a hadron is
never greater than a certain multiple of the rdoitoenergy, but no simple hadronic model was
able to explain these relationships and the bebawbhadrons (see [12]).

Gabriele Venezianon 1968 found that a function in complex variablggated by the Swiss
mathematician Leonhard Euler, could be the rigisinamn: the beta function, was perfectly suited to
data obtainedtrong nuclear interaction

Veneziano applied the Beta function to the stromgraction:
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with Re (p) > 0,Re(q) >0

but no one could explain why it works well. In 19%bichiro Nambu, Holger Bech Nielseand
Leonard Susskingresented a physical explanation of the extraargiprecision of the theoretical
formula of Euler: representing the nuclear forceviiyrating strings to a single dimension, showed
that the function of Euler was a good description.

The Beta functionis also called the Euler’s integral of the firghk [6]; it is given by the integral
defined:
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where both x and y have positive real part andntit(if they were, the integral does not converge
to a finite number).

This historical function was studied first by Eylénen by Legendre, and Jacques Binet. It is a
symmetric functioni.e. its value does not change by exchangingtbements:

B(z,y) = B(y,z)
Furthermore, we have also the following identities:

- B(1,1)=1
- B(1/2,1/2)=

We can write the Beta function in the following iars modes:
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whereT'(x) s theGamma functiondue to Euler, is aneromorphic functioncontinuous on the
positive real numbers, which extends the concefaaibrial to complex numbers, meaning that for
every non-negative integer n we have:

[(n+1)=n! 7)
wheren! is thefactorial.

While the Gamma function describes the factoriahtdgers, the Beta function can describe the
Newton binomial coefficients:
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Physical meaning of the result of G. Veneziano

The collision processes (see figure) have a key; bmth in terms of experimental and theoretical
physics of elementary particles, and are the pyrt@ol for the study of their interactions. Sinbe t
beginning of the atomic theory of the nature ofak@m was studied with "techniques impact":
particles shot into the atom (see Rutherford expent for example).
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In the figure above there are two Feynman diagranes” for the process of impactee -~ €€
between apositron (€) and a electron (€) and an example of diagram of higher order
with a closed loop or "loop". The lines can be agded with trajectories of particles involved in
the process, and the heads of their electromagmetgractions. Lowest order contributions
involving the exchange of a photgnchannels s (vertical) and t (horizontal), respety, and the
dominant contribution to the cross sectis related to the square of module of their sum.

We saw in [12] that one of the greatest difficidtia QED is the presence of quantum vacuum and
virtual particles, which contribute in the intenacis giving rise to other particles and so on.



This fact underlies the technique of “Feynman diats”, which allows to link the probability of
reaction, known as "cross sections" for the eleargnprocesses in which particles reagents
generate reaction products through the formationotifer particles in intermediate states.

The sum of diagrams related to a certain processorees the theory of probability amplitude, a

complex number whose square module essentiallyrrdetes the cross sections. But the

proliferation of particles subject to strong intrans has long limited the application of these
methods because of the extreme intensity of thaskear forces, and then in the '60s many efforts
have been devoted to the problem of characterthiagross sections or "S matrix", a collection of

the corresponding amplitudes of probability.

String theory originated precisely in this contexhen the use of Quantum Field Theory and the
corresponding Feynman diagrams seemed impossibiledstrong interactions.

In this context, places the result of Veneziano(2)y with variables x and y, Veneziano identified
the angles of impact and the energies of partioksived in the collision. In general, the Feynman
diagrams depend on these magnitudes, but doeshoet any symmetry under their individual
trade, and therefore the peculiar function B was dtivious symmetry under exchange of two
variables x and y, which in this context is defitipthnar duality.

B (X, y) also has infinitely many "poles" for x 4, -2, ... and similarly for y, in the neighbodd
of which essentially acts as the function 1 / zrriea origin for z = 0.

Singularity of this type are characteristic of twntributions of lower order (without the "loops"
"tree" as the two diagrams on the left in pictube\e), whose intermediate states involving many
types of particles, one at a time and therefore onted their exchange.

It was therefore clear that the Veneziano amplithde originated from a theory much more

complex than any other previously known, with cdesg types of particles, all bosons, of mass and
spin increasing.

Links between Gamma and Beta

The (3) proves the product of two factorials as:

[(x)I'(y) =[ e_'”'uf”_ldu./ e "v¥ 1dv.

0 0

2, v = b% such that:

oo oo
_ [ / e—{ﬂg +bg]|ﬂ| 2:r.'—1|b| Iy—1 da db.
—oo o —oc

Transform in polar coordinates wigh=rco%, b = rsino:
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=I(z+y)3(z, y).
then:
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The derivative of the beta function can be writising, again, the Gamma function atigamma
functiony(x):
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Links between the Beta and the Riemann’s Zeta

In [6] we have seen that if the real part of compilamber z is positive, then the integral

:f et dt
0

converges absolutely and represents the Gammaduanct

Using analytic continuation, tHéconverges for z with real part not positive, it mdole. Using
integration by parts, one can show that:

I(z41)==zI'(z).
Sincel (1) = 1, this relationship implies, for all naturambers n, which
['(n+1)=mn!

Other definitions are:
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wherey is theconstant of Euler-Mascherani

In [6] we saw that other important properties o tamma function is theeflection formulaof
Euler:

I(1—2) T(z) = ﬁ
and:
['(z)T (z + %) =2172/7 I'(22).

This is a particolar case of

['(z)T (z + i) r (z + E) T (z + m_—l) = (2m)m=W/2 g 1/2=me D(my).
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Derivatives of the Gamma function can be expregséeirms of itself and other functions, such as:
I"(z) = T'(2) vol2).
wereyy is thefunction poligammaf zero order. Specifically:
(1) = —.
We know that is:
1

r(3)=va

for z=1/2in the reflection formula, or with Beta function(1/2, 1/2).

Frequently utilized in statistics is the integral
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It is obtained by placing:
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Other proprieties are:
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where n!! is thesemifactorial

But certainly intriguing is the link between the r@@aa function and the Riemann’s zeta and
between the Gamma and Beta, and consequently di@nship between Beta and the Riemann
zeta:

2(2) =20~ IF (- DZ 7> sin%ﬂ:

So it exists a link between the String Theory ahd function Riemann’s zeta.

L-function and modular forms

The next question to ask is: "If the Riemann hypst$is true, nontrivial zeros are simple and there
is a connection between the Riemann zeta functimhtlae strong interactions or ones with string
theory, how can use those mathematical results wieh theory of strings and branes, extra
dimensions or the M-theory? In a world of CalabuYta 10 or 11 dimensions, the Riemann’s zeta
that can offer us?

In [15] we examined theonjecture of Birch and Swinnerton-Dy&he mathematical theory that
leads to this conjecture has the basic elementsatbauseful to the theory of open strings or apse
due to the elliptic curves, p-adic numbers, Riemamzeta, Dirichlet L-function and the modular
forms.

For simplicity, suppose that the curve that we a®rsis an elliptic curve E defined over rational
numbersQ. Denoted by the set of integers, suppose that E is definedrbgquation of the form

y’=x*+ax +h con a,bdd Z, Ae = 4a° + 27b* #0.

We define the function L as:
1
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where



In this definition of 3 we see E that is an elliptic curve on the field Where the coefficients a and
b of E are the classes of module n. The correspgrfdictor p is the inverse of the numerator of the
zeta of E on Fp.

The analogy betwee®(s) and L(E,s) can be introduced geometricallyvé call P a geometric
point is{(s) = L(P,s).

In [15] we saw thaHasse's theorerfthe Riemann hypothesis for E / Fp) implies tinet infinite
product defining L (E, s) converges to a differabte function (in a complex sense) in the half
plane R(s) > 3/2. While for th€aylor-Wiles TheorenL (E, s) can be extended to a differentiable
function over all the complex plane.

Theorem of Weildemonstrated in this case by Hasse in 1931)vislivtom equality a= ap + Bp,
whereap efp are complex numbers with absolute valtié’pFrom theorem Wiles-Taylor follows
the demonstration dfermat's last theorem

The conjecture of Birch and Swinnerton-Dysaid: The equation?y= x> + ax + b has infinitely
many solutions in rational numbers if and only i, 1) = 0. It follows that if §= x>+ ax + b has
infinitely many solutions in rational numbers, the(g, 1) = 0.

The Riemann hypothesi®r L (E, s): The nontrivial zeros of L (E, s) atencentrated on the
vertical line R (s) = 1.

L(E,s) satisfies a functional equation with respextthe transformation s-2 — s, while {(s)
satisfies a functional equation respect to 5 — s. In other words, the zeros must be on oreedf
symmetry for the functional equation.

The final way to deal with the L-functions is thédglands philosophy " and should incorporate the
theorem of Wiles. We write L(E,S) as an infiniteiss:

L(E,5)=) an®
n=1
Wiles has considered the inverse Mellin transfofrha (E, s):
27inz

f(z):iaqe

where z is a variable in the complex upper halheldd :{ z00;0(2 > O}

The theorem of Wiles continues with algebraic téghes saying that f(z) is modular form for
example as:

* f (2) is a differentiable function on H, which sdies a suitable condition of growth for
(z) — oo;
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for all matrix(C dj such that a,b,c,dZ, ad-bc=1 and Njc for

a positive integer N



The properties of L (E, s) result (with thieeorem of HecRefrom analytical properties of f (z).

To summarize, the properties of modular functiors/jgle an access to the analytic properties of
the function L (E, s) (geometrically defined) arebrt, by means of theonjecture of Birch and
Swinnerton-Dyerto the rational solutions of the equation ofMbdular formsare very important

in string theory

Moving in the opposite direction to what we saidlieg it is noted that sometimes it is the
geometry that allows access to the properties afutam forms.

We consider the functiof:

A(Z) — e?niz ﬁ (1_ éninz) = ir( r) é(rinz

where the coefficients of Fouriefn), are thecoefficients of RamanujaandA is a modular form:
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for all matrix (
C

associated with L (E, s) has weight 2.

b
dj such that a,b,c,d1Z, ad-bc=1. Specificalll)A has weight 12 while the F

In particular, theDeligne’s Theorensays that{n)| = O(1%*) for eache > 0.

The proof of this conjecture does not follow dihgdtom the analytical properties af\(z), from
which T (n) = O(f); but is a consequence of the proof of ieil conjecturebtained by Deligne.
First, observe that(n) = O(rf) follow from t(p) for p prime numberRamanujan conjecture,
proved by Mordel)l

The crucial point is to show that(p) depends on the number of points of an algeluaiety over
Fp and this is not a curve in this case, but setsaof size 11.

This type of geometry offers what string theoryl\w# treated.
The p-adeta functions in superstring theory. [16]

In the ordinary case it is known that the four-pdnee amplitude for the open superstring has the
form

B _t
A, (ki Gk, EkoCK, )= -972 rg(lzj;;jj K (k Tk, L0k, O (1)
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where s=—(k +k,)’ and t=—(k, +k,)* are the Mandelstam variables. Sinde = 4B, 4F or

2B2F , the amplitude (1) accordingly depends on the rmaton vectors of the massless vector
particles and on the ten-dimensional Majorana-Vépyhor wave functions.

The simplest manner to obtain a p-adic analoguéhefVeneziano amplitude is to replace the
ordinary gamma functions in the Veneziano amplitude

_rar()
Ala,b,c)= "(a+b) )
by their p-adic analogues, i.e.
r I (b
Ap(a,b,c,)=%. 3)

In egs. (2) and (3)a= —a(s) = —1—%3, b= —a(t) and c= —a(u), and they satisfy the mass-shell

condition s+t+u=-8 or a+b+c=1 We note thats+t+u=- 8can be rewritten also as
follow

» COSTOXW __ vy |
antilog™ conszhm D't%\;‘\'fz
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where we note that the number 8, that is a Fibaisasamber, is connected with the “modes” that
correspond to the physical vibrations of a supegtioy the above Ramanujan function.
Owing to the simple relation

r(yr.@-y)=1 ()

which is a straightforward consequence of the esgioa

the p-adic amplitude (3) exhibits total crossingnsyetry. Ap(a,b,c) can be presented in the
following form

Ala,b)= [ dxy,(x)y,(L-x), (6b)
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with ya(x)=|x|z, where xOQ, and ||p denotes the p-adic norm. From an adelic pdiniaw,

the amplitudesA (a,b,c) (p= 235,..) have been considered as partners of the ordinassiag
symmetry amplitudeA, (a,b,c) = A(a,b,c)+ Alb,c,a) + A(c,a,b), which can also be written in the
form (6b), wherey,(x)=|X" and xOR.

In an analogous way the above method can be applitek superstring amplitude given by eq. (1)
and we can look for its p-adic analogue in the form

A4P'p(a,b,c)=—%qop(s,t,u)K(k,Z) 7)

where the kinematic factoK (k,) remains unchanged. Takir;g,(s,t,u) according to the above

procedure we have
S t
LEILe)
L 2)° 2
(8)

g (stu)= Fp(l—s—tj

2 2

where a=-s /2 b=-t/2 and c=-u /2 with the mass-shell condition
s+t+u=0 (9
Note that we can rewrite the eq. (7) also as follow

S t

Arslabic)=-2 rr((lzj;tjj K(k.¢). (9b)

Using the functional equation (5), we obtain thialty crossing-symmetric amplitude

g s t u
A4P,p(a,b,c)_—7rp(—Ejrp(—zjrp(—zjK(k,z). (10)
The amplitude (10) has poles at the real points

s=0, t=0, u=0. (11)

The structure of eq. (8) does not allow us to wdtavn the amplitude (10) by means of the
convolution of multiplicative charactersz,(x), i.e.,

e s(abi0) =S K(od)m(dma-ox. (12)
Q

Furthermore, the lack of a representation of amghéit(10) in the form of the right-hand side of (12)
does not permit us to extract the (st) channel angd from the crossing symmetric one.

12



Recall that the usual conformal field in a Eucliddéarmulation is defined by the propagator
(x“(2)x" (W) ==g* Injz-wf*, (13)

where g denotes the flat metric in D-dimensional spacestandz,w are complex variables.
The tachyon vertex has the form

V(k,z2)=€e“®: (14

and the N-point closed string amplitude can betemitis follows

Knkm /2 (15)

Alok)=[[]e{ [V ) =[] -2

m<n

where dz is the standard measure on the complex planeeXpeession (15) is divergent because
of the SL(2,C) invariance and after the extractbthe group volume on mass shéff =  c&n be
presented in the Koba-Nielsen form

Aulkyky)= V[ Iz, -z (16)

m<n

where

_anlz-afln-zf]z -2
av = 77 drdni [Jez an

Thence, the eq. (16) can be rewritten also asvislio

z - 2 _ 2 _ 2 N
A k=] BB e e

m<n

The procedure described above can be straightfdiywapplied to the derivation of the open string
amplitude. In such a case the integration in €8) gbes over the simplex on the real axis,

2272,2..27, (18)

and the power OFZrn - zn| should be multiplied by 2 in accordance with tbenf of the propagator
for an open string

<x”(z)X“(w)> =—g" (In|z— W’ + In|z—v_v|2). (13)

A divergence related to the SL(2,R) invariancehd integrand can be removed by dividing it by
the volume of this group. One obtains the st-chbamgplitude by choosing

z=w, z,=1, z,=0. (19)

Denoting the characteristic function of a simpleatifying conditions (18) and (19) by
qoyl,w](zl...zN) we can write down

13



Nl CWE Vi [ 928102 (2 - ZN_1)<|jV(K4 )> :vl [ 928102 (2 - Za)[ ]l - z,|™
(5’

The extraction of the SL(2,R) [or SL(2,C)] grouplume is automatically done by introducing
ghostsa andb (a,a andb,b)

(le)e) =, 1M (20)

and replacing the vertex (14) by
V(z2)=c(z): " ?:  (21)

at the pointsz, =« , z,=1 andz, = Q Eq. (15’) can be rewritten now in the followingrifn

N-1

A%Pe“(kl _____ kN ) = j <C(Zl)eiklx(zl)c(22)eikzx(zz)_ . _eikN-lx(ZN-l)C(ZN )eikN X(ZN )> |_J dz ) (22)

1>7532..27y4120 1=

Taking into account the correlation function
<C(ZL)C(ZN—1)C(ZN )> = |Zl Y —1"21 —Zy "ZN 1 ZN| (23)

one obtain the well-known result. Note that we heneoduced moduli in (23) due to the ordering
of the z variables.
The p-adic generalization of the above formuladraghtforward. LetK be a quadratic extension

of Q, or an arbitrary locally compact field with norhan. The corresponding conformal field
x*(z), wherezOK , is defined by the propagator

(x“(2)x' (w)) = -g* loglz-w,  (24)

and the vertex as well as the string amplitudesiieedhe form (14) and (15), respectively, where
dz is now the Haar measure 0. Instead of SL(2,C) here we have SL(2,K) invareanc
For an open p-adic string amplitude we can condolenulae (13’) and (14) as a definition of a

conformal theory, where, w Qp(\/?) and|..| should be replaced by the p-adic nqrrhj. The N-

point p-adic amplitude is given by eq. (15’) Whe.‘:?reézl...zn) will denote one of the possible p-adic
analogues of the characteristic function on theptm(18), i.e.,

Gl (A kN):jN<|jV(Ka)>6’r(Zl ----- ZN)|jd4- (25)

This divergent expression has an SL{g,@variance and after extraction of the volumettod
group on the mass shédf = i2can be represented in the Koba-Nielsen form

14



Az‘??”(kl.---,kN):(Qp{NK |‘| >,[01w] Nlrjdz (26)

Where6?[OLm](z1 Z ) is now the p-adic analogue of the finite simplefied by (18) and (19).
The tree amplitude for scattering of four fermioas be given by

Aue (K Koy K KU, ) —g [ dz60(2) < Vg0 Mep @OV12(2M2(0) . (27)
Performing the corresponding calculation we obtain
a 1 h —1+k, +ks —-1+kg+k,
Ay (ki Koty ki KU, ) = U U”’UVU"(—E 92) [add ™ - A" - Ay ~[dpivs =
0
_EZGﬁVrF _l_Eﬂﬂ -
=_gUIUUU Bl 1= = VsV 1 yaayﬁy (28)
2 2 2
The transition amplitude from two fermions to twasbos can be written in the form

Aotz (Kl Kol kel Kyl ) = ——g [ 280 (2)V-a (N (LV-112(2V-112(0)) - (29)

Performing the calculations with the correspondoarelators and imposing the kinematical
conditions on the mass shell, one obtains

Poros = _% gzjdzq0,1](2)|zl_l+k3k4 1- Zl_l+k2k3 E{M{(ka)(uzaul) + %kagzg Uzy{vy‘]yﬂul} +
- |1_ Z'[(Z3k4 )U2(4Ul + (Z4k3)U2(3U1 - (Z4Z3)u2k3u1]} . (30)

Analogously, one can obtain the four-boson scaigjeamplitude. The formulae obtained above,
(28) and (30), can easily be generalized to thdip-@ase. As in the bosonic string case, we have to
replace the standard norm by a p-adic one. Inquéati, the p-adic four-fermion string amplitude
can be written as follows:

AY(lT:t)(klul; kzuz; ksus;k4u4) gzuauﬂuyud Djdzes[m] )|Z| N t/2|1 Zl_l_smhl_ leyélﬁyﬁla ‘|Z|pV55y§y]-
Qp
(31)

The explicit form of eq. (31) depends on the cho$amn of the p-adic analogue of the
characteristic functionqo'l]’r(z), where 7 denotes one of the three quadratic extensions. For

instance, wherr = ¢ and
1,.. . .
55[0,1](2) = E(S|gr}z - S'QQ(_ 1)S|grl(l_ Z))’ (32)

we can write the following p-adic amplitude

15



s 1 ~ ~
Az(lFt)p £ = ul ufu:{uf(_z gzj{[Bp (n-—t/Z’ 7T—s/2+1) - Bp (n-—t/Z' 7T—s/2+1)]y¢/1'1[;’y;/;3 +

[B t/2+1 ”s/z) Bp(mt/2+1’ﬁ-—s/2)]y55ygy} (33)

whereu, (i)=u,(k) and B,(r,7,) are p-adic beta functions. So,

g
. . 1 5 1\1+ p 2 pt/2 _ p—t/2—1+ pS/Z—l_ p—S/2
ot oo e B
" 2 P) 14 L-p?fL-p7)
s/2 -s/2-1 | /2=l _ p-ti2

p-p TP =P /l
s

This amplitude evidently contains poles at the pmahtss= 0, t=0, s=2 andt= 2 as well as
poles at the complex points.
Performing the integration in eq. (31) over the {effeeld Q,, one obtains the expression

1., T
AYlF,p = _Eg |:Bp( 2 ijaﬁyyd p[ - 1= jyadyﬁy:| (35)

which contains a u-pole as well.
Thence, from the eq. (31), we have that:

. 1, ., sz, s
Az(tFt)(klul;kzuz;ksus;k4u4):_Egzuluzﬁug DJ-dZ [04] lepl“2|1_z|l lzhl—dpyﬁgyfaﬂdpyéjayﬁy]:

1 t s t S
=5 gz{Bp(l_El_Ejyﬁﬂy}g& - Bp(_E 1‘5)1’5&1’2}} . (35b)

p-adic, adelic azéta-strings [17] [18] [19] [20] [21]
Like in the ordinary string theory, the startingirngoof p-adic strings is a construction of the

corresponding scattering amplitudes. Recall tha& dndinary crossing symmetric Veneziano
amplitude can be presented in the following forms:

a1, bt (@r(), rirc), rier)|_ .¢t-a)f-pl-c)_
Afab)=g*[ -4 dx=g {r(am) Fo+0) F(c+a)} Y@ b)) <0

= g?[ DX ex;{—ﬁjdzw“xﬂaax“jﬁjdzq explik'X*), (1-4)
-

where 7=1, T=1/n, and a=-a(s)=-1--, b=-a(t), c=-a(u) with the condition

s+t+u=-8,i.e.atb+c=1
The p-adic generalization of the above expression
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A(a) =] b - ox

A(ab)=g?2 jQp|xﬁ‘l|1— X dx,  (5)

Where|..|p denotes p-adic absolute value. In this casg stnhg world-sheet parameteris treated

as p-adic variable, and all other quantities h&ed tusual (real) valuation.
Now, we remember that the Gauss integrals satdgiaproduct formula

IRXw(aXZ + bx)dmx!;lep)(p(ax2 + bx)dple, aldQ*, bOQ, (6)
what follows from
1 b2
IQ (o0 + bx)d,x = Av(a)|2a|vzxv(—£) , V=00.2...,p... (7)
These Gauss integrals apply in evaluation of theaf@n path integrals
S ) j )(V( j qqt)dtj a, (8)

for kernels K, (x",t";x',t') of the evolution operator in adelic quantum medatgfor quadratic
Lagrangians. In the case of Lagrangian

22

L(dﬂ)%(—q——/‘qﬂ)

4

for the de Sitter cosmological model one obtains

Kw(x",T;x',O)r!Kp(x",T;x',O):l, X, x,A0Q,TOQ, (9)

where

Kv(x",T;x',O):)IV(—8T)|4T|;;)(V(— 3+[/1(x"+x 2] +(X8TX) j (10)

Also here we have the number 24 that correspondetdRamanujan function that has 24 “modes”,
e., the physical vibrations of a bosonic strikence, we obtain the following mathematical
connection:

8T

i) -2 T T X)j:

K, Tix10) = A (- 874 ZXV( T
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© COSTEXW __ 2, dx
0 coshrx \/142
IIZ

antilog v

e " (itw)

- . (10b)
Iogl\/(lmilﬁJ +\/(1o+47\/§j]

The adelic wave function for the simplest grourateshas the form

L(x),xOz

wA(x)=ww(x)r|;!>f20xlp)={olxm'Q\Z, (11)

where Q(}xlp):l if |><Ip <1 and Q(]xlp):o if |x|p >1. Since this wave function is non-zero only in

integer points it can be interpreted as discreterdsthe space due to p-adic effects in adelic
approach. The Gel'fand-Graev-Tate gamma and betifins are:

-a) (o= [t )

_a 1

maqyﬁMme

b) = [ M. 1= X d.x=T..(a)r. (o)r..(c), (13)

T S S

where a,b,c0C with condition a+b+c= 1and ¢(a) is the Riemann zeta function. With a
regularization of the product of p-adic gamma fiored one has adelic products:

Fw(u)rlrp(u):L Bw(a,b)an(a,b):L uz 0L u=ab,c, (15)

wherea+b+c= 1 We note thai, (a,b) and B (a,b) are the crossing symmetric standard and p-

adic Veneziano amplitudes for scattering of tworofchyon strings. Introducing real, p-adic and
adelic zeta functions as

= IRexd— mzlxﬁ_ldwx = n_zr(gj , (16)
1 a-1 1
S@)= s, A b a e Reax 1 )
¢ ()¢ e)=2.ka). a9

one obtains
ZA(]-_ a) = ZA(a) , (19)

where ¢ ,(a) can be called adelic zeta function. We have 4lab t
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QOB AOR Jexd-me X x j o{ J4d,x. (1ob)

Let us note thaExd— mz) and Qﬂxlp) are analogous functions in real and p-adic ca&dslic

harmonic oscillator has connection with the Riemaata function. The simplest vacuum state of
the adelic harmonic oscillator is the following S8atz-Bruhat function:

1
=24g"™ QQX ) 20
il o) (20)
whose the Fourier transform
SESPAI7ACY HQOk\) (21)

has the same form &, (x). The Mellin transform ofy, () is

[, 0, b= (gjn'?z(a) (22)

1p‘

jl//A I dx = jl//w xJ¥ " d, l_l

and the same fozy/A(k). Then according to the Tate formula one obtai®$. (1
The exact tree-level Lagrangian for effective scdield ¢ which describes open p-adic string
tachyon is

£,=—-F { = 2¢+ ¢p”} (23)
9" p-1

where p is any prime number=-d> +[® is the D-dimensional d’Alambertian and we adopt

metric with signature(— +...+). Now, we want to show a model which incorporates p-adic
string Lagrangians in a restricted adelic way. ustake the following Lagrangian

L=YC.L = Z“ 1£n [%gazn‘zwzniﬂqfﬂ] (24)

=1 n>1 n?

Recall that the Riemann zeta function is defined as

|_| , s=o+ir, og>1 (25)
1-p~°

nz1 n

Employing usual expansion for the logarithmic fumctand definition (25) we can rewrite (24) in
the form

E @[%jw @+In(1- qo)} . (26)

=L

g
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where|g<1. ¢ (%) acts as pseudodifferential operator in the foltayivay:

Z(ij(x): 1016”7(_%2}‘;(@%, K=K -k >2+e, (27)

2 (2m)

where (k)= [e™)g(x)dx is the Fourier transform gix).

Dynamics of this fieldg is encoded in the (pseudo)differential form of Riemann zeta function.

When the d’Alambertian is an argument of the Rieman zeta function we shall call such
string a “zeta string”. Consequently, the abowe is an open scalar zeta string. The equation of

motion for the zeta string is

— 1 |xk kz - — ¢
-— |plk)dk=—"— (28
Z( jw ( ) J-k2 —k2>2+¢ Z( 2 Jw( ) 1—(0 ( )

which has an evident solutign= .0

For the case of time dependent spatially homogensolutions, we have the following equation of
motion

Z(_a‘z jcb(t) =(2—1ﬂ) jko%ge““z(ﬁjw(ko) k= ‘”(2 ) @

2 2

With regard the open and closed scalar zeta strihg equations of motion are

a2z
n(n-1)

et e £

n=1 I‘l+l

|xk

nz1

( j()dk >0 2_1 ., @0

and one can easily see trivial solutipr6= . 0

Mathematical connections
With regard the mathematical connections, we hagddllowing two new interesting relationships,

with the fundamental equation concerning the zetags and the equation connected with the p-
adic beta functions:
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et gy LT (@)

3(p,q) el

1
dr = V2——dt
- 24/t

+oo too o +co 1
f °dr—2/ dr—?/ ”Ff‘te—fdf VT (§> —Vor

=

= (2=U1-29r(l- 2Zm* sin%n: =

= :_1 ixk _k_2 ~ _ 9
:Z[ij (2m)° jk§—|z2>z+ge Z( ij(k)dk -0’ (32)

L g I'(p)T(g)

3(p,q) el

1
dr = V2——dt
_ ! 24/t

+oo too o +co 1
f °dr—2/ dr—?/ ”Ff‘te—fdf VT (§> —Vor

=

2(2) =20~ I (- DZ 7> sin%ﬂ: N

:»Aﬁ?’(klul:kzuz:kgus:w)-— g’y uﬂuyudmjd a2 -2 -2yt |y |

1 t S
3‘592{ (1 PY EJyaﬁyyﬁ p( El_EJyﬁaygy}' (33)

[_

We note also the link withz, thence withp=——-, i.e. the Aurea ratio by the simple formula

arccog =0,2879 (34)
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