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There is a connection between string theory and the Riemann’s zeta function: this is an interesting 
way, because the zeta is related to prime numbers and we have seen on many occasions how nature 
likes to express himself through perfect laws or mathematical models. 
 
 

 
 
In [6] the authors showed all the mathematical and theoretical aspects related to the Riemann’s zeta, 
while in [9] showed the links of certain formulas of number theory with the golden section and 
other areas such as string theory. The authors have proposed a solution of the Riemann hypothesis 
(RH) and the conjecture on the multiplicity of nontrivial zeros, showing that they are simple zeros 
[7][8]. 
 

Not least the situation that certain stable 
energy levels of atoms could be associated 
with non-trivial zeros of the Riemann’s 
zeta. In [6] for example has been shown the 
binding of the Riemann zeta and its non-
trivial zeros with quantum physics through 
the Law of Montgomery-Odlyzko. 
 
The law of Montgomery-Odlyzko says that 
"the distribution of the spacing between 
successive non-trivial zeros of the Riemann 
zeta function (normalized) is identical in 
terms of statistical distribution of spacing 
of eigenvalues in an GUE operator”, which 
also represent dynamical systems of 
subatomic particles! 
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In [10] [11] have proposed hypotheses equivalent RH, in [12] [13] the authors have presented 
informative articles on the physics of extra dimensions, string theory and M-theory, in [15] the 
conjecture Yang and Mills, in [16] the conjecture of Birch and Swinnerton-Dyer. 
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A mathematical aspect of string theory 

During the experiments in particle accelerators, physicists had observed that the spin of a hadron is 
never greater than a certain multiple of the root of its energy, but no simple hadronic model was 
able to explain these relationships and the behaviour of hadrons (see [12]). 

Gabriele Veneziano in 1968 found that a function in complex variables created by the Swiss 
mathematician Leonhard Euler, could be the right answer: the beta function, was perfectly suited to 
data obtained strong nuclear interaction. 

Veneziano applied the Beta function to the strong interaction: 

  (1) 
 

with  

but no one could explain why it works well. In 1970, Yoichiro Nambu, Holger Bech Nielsen, and 
Leonard Susskind presented a physical explanation of the extraordinary precision of the theoretical 
formula of Euler: representing the nuclear force by vibrating strings to a single dimension, showed 
that the function of Euler was a good description. 

The Beta function is also called the Euler’s integral of the first kind [6]; it is given by the integral 
defined: 

      (2) 

where both x and y have positive real part and not null (if they were, the integral does not converge 
to a finite number). 

This historical function was studied first by Euler, then by Legendre, and Jacques Binet. It is a 
symmetric function, i.e. its value does not change by exchanging the arguments: 

 

Furthermore, we have also the following identities: 

• β(1,1)=1 
• β(1/2,1/2)=π 

We can write the Beta function in the following various modes: 

                            (3) 
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 (4) 

   (5) 

       (6) 

where Γ(x) s the Gamma function, due to Euler, is a meromorphic function, continuous on the 
positive real numbers, which extends the concept of factorial to complex numbers, meaning that for 
every non-negative integer n we have: 

,          (7) 

where n! is the factorial. 

While the Gamma function describes the factorial of integers, the Beta function can describe the 
Newton binomial coefficients: 

      (8) 

Physical meaning of the result of G. Veneziano 

The collision processes (see figure) have a key role, both in terms of experimental and theoretical 
physics of elementary particles, and are the primary tool for the study of their interactions. Since the 
beginning of the atomic theory of the nature of the atom was studied with "techniques impact": 
particles shot into the atom (see Rutherford experiment for example). 

 

In the figure above there are two Feynman diagrams "tree" for the process of impact e+e- →  e+e-  
between a positron (e+) and a  electron (e-) and an example of diagram of higher order 
with a closed loop or "loop". The lines can be associated with trajectories of particles involved in 
the process, and the heads of their electromagnetic interactions. Lowest order contributions 
involving the exchange of a photon γ, channels s (vertical) and t (horizontal), respectively, and the 
dominant contribution to the cross section σ is related to the square of module of their sum. 
We saw in [12] that one of the greatest difficulties in QED is the presence of quantum vacuum and 
virtual particles, which contribute in the interactions giving rise to other particles and so on. 
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This fact underlies the technique of “Feynman diagrams”, which allows to link the probability of 
reaction, known as "cross sections" for the elementary processes in which particles reagents 
generate reaction products through the formation of other particles in intermediate states. 
 
The sum of diagrams related to a certain process combines the theory of probability amplitude, a 
complex number whose square module essentially determines the cross sections. But the 
proliferation of particles subject to strong interactions has long limited the application of these 
methods because of the extreme intensity of these nuclear forces, and then in the '60s many efforts 
have been devoted to the problem of characterizing the cross sections or "S matrix", a collection of 
the corresponding amplitudes of probability. 
 
String theory originated precisely in this context, when the use of Quantum Field Theory and the 
corresponding Feynman diagrams seemed impossible for the strong interactions. 
 
In this context, places the result of Veneziano. In (2), with variables x and y, Veneziano identified 
the angles of impact and the energies of particles involved in the collision. In general, the Feynman 
diagrams depend on these magnitudes, but does not show any symmetry under their individual 
trade, and therefore the peculiar function B was his obvious symmetry under exchange of two 
variables x and y, which in this context is defined "planar duality”.  
 
B (x, y) also has infinitely many "poles" for x = 0, -1, -2, ... and similarly for y, in the neighborhood 
of which essentially acts as the function 1 / z near the origin for z = 0. 
 
Singularity of this type are characteristic of the contributions of lower order  (without the "loops" or 
"tree" as the two diagrams on the left in picture above), whose intermediate states involving many 
types of particles, one at a time and therefore reported their exchange. 
 
It was therefore clear that the Veneziano amplitude had originated from a theory much more 
complex than any other previously known, with countless types of particles, all bosons, of mass and 
spin increasing. 

Links between Gamma and Beta  

The (3) proves the product of two factorials as: 

 

Now let ,   such that: 

 

Transform in polar coordinates with a = rcosθ, b = rsinθ: 
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then: 

 

The derivative of the beta function can be written using, again, the Gamma function and digamma 
function ψ(x): 

 
 

Links between the Beta and the Riemann’s Zeta 

In [6] we have seen that if the real part of complex number z is positive, then the integral  

 

converges absolutely and represents the Gamma function. 

Using analytic continuation, the Γ converges for z with real part not positive, if not whole. Using 
integration by parts, one can show that: 

 

Since Γ (1) = 1, this relationship implies, for all natural numbers n, which 

 
 

Other definitions are: 
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where γ is the constant of Euler-Mascheroni. 

In [6] we saw that other important properties of the gamma function is the reflection formula of 
Euler: 

 

and: 

 

This is a particolar case of  

 

Derivatives of the Gamma function can be expressed in terms of itself and other functions, such as: 

 

were ψ0 is the function poligamma of zero order. Specifically: 

 

We know that is: 

 

for z=1/2 in the reflection formula, or with  Beta function in (1/2, 1/2). 

Frequently utilized in statistics is the integral 
 

 

It is obtained by placing:  
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Other proprieties are: 

 

 

where n!!  is the semifactorial. 

But certainly intriguing is the link between the Gamma function and the Riemann’s zeta and 
between the Gamma and Beta, and consequently the relationship between Beta and the Riemann 
zeta: 

1 1
( ) (1 ) (1 )2 sin

2
z zz z z zπ π−ζ = ζ − Γ −  

 
So it exists a link between the String Theory and  the function Riemann’s zeta.  

L-function and modular forms 

The next question to ask is: "If the Riemann hypothesis is true, nontrivial zeros are simple and there 
is a connection between the Riemann zeta function and the strong interactions or ones with string 
theory, how can use those mathematical results with the theory of strings and branes, extra 
dimensions or the M-theory? In a world of Calabi-Yau to 10 or 11 dimensions, the Riemann’s zeta 
that can offer us? 
 
In [15] we examined the conjecture of Birch and Swinnerton-Dyer. The mathematical theory that 
leads to this conjecture has the basic elements that are useful to the theory of open strings or closed, 
due to the elliptic curves, p-adic numbers, Riemann’s zeta, Dirichlet L-function and the modular 
forms.  
 
For simplicity, suppose that the curve that we consider is an elliptic curve E defined over rational 
numbers Q. Denoted by Z the set of integers, suppose that E is defined by an equation of the form  
 

y2 = x3 + ax + b,  con a,b ∈ Z, ∆E = 4a3 + 27b2 ≠0. 
 
We define the function L as: 

-s 1-2s
pp E

1
L(E, s) =

1 - a p  + p≠∆
∏  

where 
pa  = 1 + p - #E(Fp) 
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In this definition of ap we see E that is an elliptic curve on the field Fp, where the coefficients a and 
b of E are the classes of module n. The corresponding factor p is the inverse of the numerator of the 
zeta of E on Fp. 
 
The analogy between ζ(s) and L(E,s) can be introduced geometrically, if we call P a geometric 
point is ζ(s) = L(P,s). 
 
In [15] we saw that Hasse's theorem (the Riemann hypothesis for E / Fp) implies that the infinite 
product defining L (E, s) converges to a differentiable function (in a complex sense) in the half 
plane R(s) > 3/2. While for the Taylor-Wiles Theorem: L (E, s) can be extended to a differentiable 
function over all the complex plane. 
 
Theorem of Weil (demonstrated in this case by Hasse in 1931) follows from  equality ap = αp + βp, 
where αp e βp are complex numbers with absolute value p1 / 2. From theorem Wiles-Taylor follows 
the demonstration of Fermat's last theorem. 
 
The conjecture of Birch and Swinnerton-Dyer said: The equation y2 = x3 + ax + b  has infinitely 
many solutions in rational numbers if and only if L (E, 1) = 0. It follows that if y2 = x3 + ax + b has 
infinitely many solutions in rational numbers, then L (E, 1) = 0. 
 
The Riemann hypothesis for L (E, s): The nontrivial zeros of L (E, s) are concentrated on the 
vertical line R (s) = 1. 
 
L(E,s) satisfies a functional equation with respect to the transformation s →2 − s, while  ζ(s) 
satisfies a functional equation respect to s →1 − s.  In other words, the zeros must be on one line of 
symmetry for the functional equation. 
 
The final way to deal with the L-functions is the " Laglands philosophy " and should incorporate the 
theorem of Wiles. We write L(E,S) as an infinite series: 

1

( , ) s
n

n

L E s a n
∞

−

=
=∑  

Wiles has considered the inverse Mellin transform of L (E, s): 
2

1

( )
inz

n

n

f z a e
π∞

=

=∑  

where z is a variable in the complex upper half plane: { }; ( ) 0H z z= ∈ ℑ >�  

 
The theorem of Wiles continues with algebraic techniques saying that f(z) is a modular form, for 
example as: 
  

• f (z) is a differentiable function on H, which satisfies a suitable condition of growth for 
( )zℑ → ∞ ; 

• 

2( ) ( ) ( )
az b

f cz d f z
cz d

+ = +
+  for all matrix 

a b

c d

 
 
 

 such that a,b,c,d ∈Z, ad-bc=1 and N|c for 

a positive integer N 
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The properties of L (E, s) result (with the theorem of Hecke) from analytical properties of f (z). 
 
To summarize, the properties of modular functions provide an access to the analytic properties of 
the function L (E, s) (geometrically defined) and then, by means of the conjecture of Birch and 
Swinnerton-Dyer, to the rational solutions of the equation of E. Modular forms are very important 
in string theory. 
 
Moving in the opposite direction to what we said earlier, it is noted that sometimes it is the 
geometry that allows access to the properties of modular forms. 
 
We consider the function ∆: 

 

( )
24

2 2 2

11

( ) 1 ( )iz inz inz

nn

z e e n eπ π πτ
∞ ∞

==

∆ = − =∑∏  

 
where the coefficients of Fourier τ(n), are the coefficients of Ramanujan and ∆ is a modular form: 
 

 
12( ) ( ) ( )

az b
cz d z

cz d

+∆ = + ∆
+

 

 

for all matrix 
a b

c d

 
 
 

 such that a,b,c,d ∈Z, ad-bc=1. Specifically ∆ has weight 12 while the F 

associated with L (E, s) has weight 2. 
 
In particular, the Deligne’s Theorem says that: |τ(n)| = O(n11/2+ε) for each ε > 0. 
 
The proof of this conjecture does not follow directly from the analytical properties of  ∆(z),  from 
which τ (n) = O(n6); but is a consequence of the proof of the Weil conjectures obtained by Deligne. 
First, observe that τ(n) = O(n6) follow from τ(p) for p prime number (Ramanujan conjecture, 
proved by Mordell). 
 
The crucial point is to show that  τ(p) depends on the number of points of an algebraic variety over 
Fp and this is not a curve in this case, but a variety of size 11. 
 
This type of geometry offers what string theory will be treated. 
 
                                         The p-adic beta functions in superstring theory. [16] 
 
In the ordinary case it is known that the four-point tree amplitude for the open superstring has the 
form 

                        ( ) ( )⋅⋅⋅⋅







 −−Γ








−Γ






−Γ
−=⋅⋅⋅⋅ 4321

2

43214 ,,,

22
1

22
2

;;; kkkkK
ts

ts
g

kkkkA p     (1) 
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where ( )2
21 kks +−=  and ( )2

32 kkt +−=  are the Mandelstam variables. Since BP 44 = , F4  or  

FB22 , the amplitude (1) accordingly depends on the polarization vectors of the massless vector 
particles and on the ten-dimensional Majorana-Weyl spinor wave functions. 
The simplest manner to obtain a p-adic analogue of the Veneziano amplitude is to replace the 
ordinary gamma functions in the Veneziano amplitude 
 

                                                     ( ) ( ) ( )
( )ba

ba
cbaA

+Γ
ΓΓ=,,     (2) 

 
by their p-adic analogues, i.e. 
 

                                                  ( ) ( ) ( )
( )ba

ba
cbaA

p

pp
p +Γ

ΓΓ
=,,, .    (3) 

 

In eqs. (2) and (3), ( ) ssa
2
1

1−−=−= α ,  ( )tb α−=   and  ( )uc α−= , and they satisfy the mass-shell 

condition  8−=++ uts   or  1=++ cba . We note that 8−=++ uts , can be rewritten also as 
follow 
 
 

                              
( )
























 ++







 +

⋅
















−=++

−

∞ −
∫

4

2710

4

21110
log

'

142

'

cosh

'cos

log4

3

1

2

'

'
4

0

'

2

2

wt
itwe

dxe
x

txw

anti

uts
w

w
t

wx

φ

π
π

π

π

,    (4) 

 
 
where we note that the number 8, that is a Fibonacci’s number, is connected with the “modes” that 
correspond to the physical vibrations of a superstring by the above Ramanujan function. 
Owing to the simple relation 
                                                         
                                                           ( ) ( ) 11 =−ΓΓ yy pp     (5) 

 
which is a straightforward consequence of the expression 
 

                                                             ( )
y

y

p p

p
y −

−

−
−=Γ

1
1 1

    (6) 

 
the p-adic amplitude (3) exhibits total crossing symmetry. ( )cbaAp ,,  can be presented in the 

following form 
 

                                                  ( ) ( ) ( )∫ −=
k

ba xxdxbaA 1, γγ ,    (6b) 
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with ( ) a

pa xx =γ ,  where  pQx∈   and  
p

...  denotes the p-adic norm. From an adelic point of view, 

the amplitudes ( )cbaAp ,,  ( ),...5,3,2=p  have been considered as partners of the ordinary crossing 

symmetry amplitude ( ) ( ) ( ) ( )bacAacbAcbaAcbaA ,,,,,,,, ++=∞ , which can also be written in the 

form (6b), where ( ) a

a xx =γ  and  Rx∈ . 

In an analogous way the above method can be applied to the superstring amplitude given by eq. (1) 
and we can look for its p-adic analogue in the form 
 

                                           ( ) ( ) ( )ζφ ,,,
2

,,
2

,4 kKuts
g

cbaA ppP −=     (7) 

 
where the kinematic factor ( )ζ,kK  remains unchanged. Taking ( )utsp ,,φ  according to the above 

procedure we have 

                                                 ( )







 −−Γ








−Γ






−Γ
=

22
1

22,,
ts

ts

uts

p

pp

pφ     (8) 

 
where  2/sa −= ,  2/tb −=   and  2/uc −=   with the mass-shell condition 
 
                                                             0=++ uts .    (9) 
 
Note that we can rewrite the eq. (7) also as follow 
 

                                    ( )
2

,,
2

,4

g
cbaA pP −= ( )ζ,

22
1

22
kK

ts

ts

p

pp








 −−Γ








−Γ






−Γ
.    (9b) 

 
Using the functional equation (5), we obtain the totally crossing-symmetric amplitude 
 

                             ( ) ( )ζ,
2222

,,
2

,4 kK
utsg

cbaA ppppP 






−Γ






−Γ






−Γ−= .    (10) 

 
The amplitude (10) has poles at the real points 
 
                                                     0=s ,  0=t ,  0=u .    (11) 
 
The structure of eq. (8) does not allow us to write down the amplitude (10) by means of the 
convolution of multiplicative characters  ( )xaπ , i.e., 

 

                                 ( ) ( ) ( ) ( )∫ −−≠
pQ

bapP dxxxkK
g

cbaA 1,
2

,,
2

,4 ππζ .    (12) 

 
Furthermore, the lack of a representation of amplitude (10) in the form of the right-hand side of (12) 
does not permit us to extract the (st) channel amplitude from the crossing symmetric one. 
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Recall that the usual conformal field in a Euclidean formulation is defined by the propagator 
 

                                                 ( ) ( ) 2
ln wzgwxzx −−= µννµ ,    (13) 

 
where µνg  denotes the flat metric in D-dimensional space-time and wz,  are complex variables. 
The tachyon vertex has the form 

                                                           ( ) ( ) ::, zxikezkV
µ

µ=     (14) 
 
and the N-point closed string amplitude can be written as follows 
 

                      ( ) ( )∫∏ ∫∏ ∏∏
= = <=

−==
N

i

N

i nm

kk

nmi

N

i
iiiNN

mnzzdzZKVdzkkA
1 1

2/

1
1,...,     (15) 

 
where dz is the standard measure on the complex plane. The expression (15) is divergent because 
of the SL(2,C) invariance and after the extraction of the group volume on mass shell  22 =ik   can be 

presented in the Koba-Nielsen form 
 

                                           ( ) ∫ ∏
<

−=
nm

kk

nmNN
nmzzdVkkA

2/

1,...,     (16) 

 
where 

                                      ∏
=

− −−−
=

N

i
i

cba

cbcbbaN dz
dzdzdz

zzzzzz
dV

1

222

3π .    (17) 

 
Thence, the eq. (16) can be rewritten also as follows 
 

                ( ) ∏∏∫
<=

− −
−−−

=
nm

kk

nm

N

i
i

cba

cbcbbaN
NN

nmzzdz
dzdzdz

zzzzzz
kkA

2/

1

222

3
1,..., π .    (17b) 

 
The procedure described above can be straightforwardly applied to the derivation of the open string 
amplitude. In such a case the integration in eq. (15) goes over the simplex on the real axis, 
 
                                                          Nzzz ≥≥≥ ...21     (18) 

 
and the power of nm zz −  should be multiplied by 2 in accordance with the form of the propagator 

for an open string 

                                      ( ) ( ) ( )22
lnln wzwzgwXzx −+−−= µννµ .    (13’) 

 
A divergence related to the SL(2,R) invariance of the integrand can be removed by dividing it by 
the volume of this group. One obtains the st-channel amplitude by choosing 
 
                                                      ∞=1z ,    12 =z ,    0=Nz .    (19) 

 
Denoting the characteristic function of a simplex satisfying conditions (18) and (19) by  

[ ]( )Nzz ...1,1,0 ∞θ   we can write down 
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( ) ( ) [ ]( ) ( ) ( ) [ ]( )∫ ∏∏∫ ∏∏
<

−∞
=

−∞ −==
nm

kk

nmNi

N

i
iiNiN

open
N

nmzzzzdz
V

zkVzzdz
V

kkA 13,1,0
1

13,1,01 ,...,
1

,...,
1

,..., θθ

                                                                                                                                                     (15’) 
 
The extraction of the SL(2,R)  [or SL(2,C)]  group volume is automatically done by introducing 
ghosts a  and b  ( aa,  and bb, ) 

                                                           ( ) ( )
wz

wczb
−

= 1
    (20) 

 
and replacing the vertex (14) by 

                                                          ( ) ( ) ( ) :: zxikezczV
µ

µ=     (21) 
 
at the points  ∞=1z ,  12 =z  and 0=Nz . Eq. (15’) can be rewritten now in the following form 

 

        ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
∫ ∏

≥≥≥≥

−

=−

−−=
0...1

1

3
211

13

112211 ...,...,
N

NNNN

zz

N

i
i

zxik
N

zxikzxikzxik
N

open
N dzezceezcezckkA .    (22) 

 
Taking into account the correlation function 
 
                                   ( ) ( ) ( ) NNNNNN zzzzzzzczczc −−−= −−− 111111     (23) 

 
one obtain the well-known result. Note that we have introduced moduli in (23) due to the ordering 
of the z  variables. 
The p-adic generalization of the above formulae is straightforward. Let K  be a quadratic extension 
of pQ  or an arbitrary locally compact field with norm 

K
... . The corresponding conformal field 

( )zxµ , where Kz∈ , is defined by the propagator 
 

                                                ( ) ( ) 2
log

K
wzgwxzx −−= µννµ     (24) 

 
and the vertex as well as the string amplitudes acquire the form (14) and (15), respectively, where 
dz is now the Haar measure on K . Instead of SL(2,C) here we have SL(2,K) invariance. 
For an open p-adic string amplitude we can consider formulae (13’) and (14) as a definition of a 

conformal theory, where ( )τpQwz ∈,  and ...  should be replaced by the p-adic norm 
p

... . The N-

point p-adic amplitude is given by eq. (15’) where ( )nzz ...1τθ  will denote one of the possible p-adic 

analogues of the characteristic function on the simplex (18), i.e., 
 

                               ( ) ( ) ( )∫ ∏∏
==

=
N
pQ

N

i
iN

N

i
iiN

open
N dzzzzkVkkA

1
1

1
1, ,...,,..., ττ θ .    (25) 

 
This divergent expression has an SL(2,Qp) invariance and after extraction of the volume of the 
group on the mass shell 22 =ik  it can be represented in the Koba-Nielsen form 

 



 15 

                 ( ) ( ) ( ) ( ) ( ) [ ]( )
( )
∫ ∏∏

−

−

=
−∞

=

∞=
3

1

3
13,1,0

1
1, ,...,01,...,

N
pQ

N

i
iN

N

i
iiN

open
N dzzzzkVccckkA ττ θ     (26) 

 
where [ ]( )Nzz ...1,1,0 ∞τθ  is now the p-adic analogue of the finite simplex defined by (18) and (19).  

The tree amplitude for scattering of four fermions can be given by 
 

               ( ) [ ]( ) ( ) ( ) ( ) ( )∫ −− ∞<−= 01
2
1

;;; 2/12/12/12/11,0
2

443322114 VzVVVzdzgukukukukA F θ .    (27) 

 
Performing the corresponding calculation we obtain 
 

      ( ) { }=−−−






−= ∫
++−++−

1

0

112
443322114 11

2
1

;;; 4332 µ
βγ

µ
αδ

µ
γδ

µ
αβ

δγβα γγγγ zzzzdzguuuuukukukukA
kkkk

F  

                                             















 −−−






 −−= µ
βγ

µ
αδ

µ
γδ

µ
αβ

δγβα γγγγ
2

1,
22

,
2

1
2
1 2 st

B
st

Buuuug .    (28) 

 
The transition amplitude from two fermions to two bosons can be written in the form 
 

               ( ) [ ]( ) ( ) ( ) ( ) ( )∫ −−− ∞−= 01
2
1

;;; 2/12/1011,0
2

4433221122 VzVVVzdzgkkukukA BF θζζ .    (29) 

 
Performing the calculations with the corresponding correlators and imposing the kinematical 
conditions on the mass shell, one obtains 
 

         [ ]( ) ( )( ) [ ]
∫



 +




 +/⋅−−= +−+−
1233414223
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1,0
2

22 2
1

1
2
1 3243 uukuukzzzzdzgA

kkkk

BF
µλνλνµ γγγζζζζθ    

                      ( ) ( ) ( )[ ]}1323413234142431 ukuuukuukz /−/+/−− ζζζζζζ .    (30) 

 
Analogously, one can obtain the four-boson scattering amplitude. The formulae obtained above, 
(28) and (30), can easily be generalized to the p-adic case. As in the bosonic string case, we have to 
replace the standard norm by a p-adic one. In particular, the p-adic four-fermion string amplitude 
can be written as follows: 
 

( )( ) [ ]( ) [ ]∫ −−−⋅−= −−−−

pQ
pp

st

p

st
F zzzzzdzuuuugukukukukA µ

βγ
µ
αδ

µ
γδ

µ
αβε

δγβα γγγγθ 11
2
1

;;;
2/12/1

1,04321
2

443322114 .      

                                                                                                                                                    (31) 
 
The explicit form of eq. (31) depends on the chosen form of the p-adic analogue of the 
characteristic function [ ] ( )zτθ ,1,0 , where τ  denotes one of the three quadratic extensions. For 

instance, when ετ =  and 
 

                                      [ ]( ) ( ) ( )( )zSignSignzSignz −−−= 11
2
1

1,0 εεεεθ ,    (32) 

 
we can write the following p-adic amplitude 
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                     ( ) ( ) ( )[ ]{ +−

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2
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                                ( ) ( )[ ] }µ
βγ
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αδ γγππππ 2/12/2/12/

~,,~
stpstp BB −+−−+− −−     (33) 

 
where ( ) ( )ikuiu αα =   and  ( )bapB ππ ,  are p-adic beta functions. So, 
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                         ( )( ) 

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−−
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µ
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µ
αδ γγst

ttss

pp

pppp

11 2

2/12/12/2/

.    (34) 

 
This amplitude evidently contains poles at the real points 0=s , 0=t , 2=s  and 2=t , as well as 
poles at the complex points. 
Performing the integration in eq. (31) over the whole field pQ , one obtains the expression 
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
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
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2
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22
,

2
1

2
1 2

,4

st
B

st
BgA pppF     (35) 

 
which contains a u-pole as well. 
Thence, from the eq. (31), we have that: 
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
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2
1
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B
st
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                                 p-adic, adelic and zeta-strings [17] [18] [19] [20] [21]  
 
Like in the ordinary string theory, the starting point of p-adic strings is a construction of the 
corresponding scattering amplitudes. Recall that the ordinary crossing symmetric Veneziano 
amplitude can be presented in the following forms: 
 
 

( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( )
( )

( )
( )
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







+Γ
ΓΓ+

+Γ
ΓΓ+

+Γ
ΓΓ=−= ∫

−

∞

−
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b
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a
g
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gdxxxgbaA

R

ba

ζ
ζ

ζ
ζ

ζ
ζ 111

1, 22112  

            ( )( )∫ ∏ ∫∫
=








 ∂∂−=
4

1

222 exp
2

exp
j

j
j XikdXXd

i
DXg µ

µ
µ

αµ
α σσ

π
,    (1 – 4) 

 

where 1=h , π/1=T , and ( )
2

1
s

sa −−=−= α , ( )tb α−= , ( )uc α−=  with the condition 

8−=++ uts , i.e. 1=++ cba . 
The p-adic generalization of the above expression 
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                                                       ( ) ∫
−

∞

−

∞∞ −=
R

ba
dxxxgbaA

112 1, , 

 
is: 

                                                ( ) ∫
−− −=

pQ

b

p

a

ppp dxxxgbaA
112 1, ,    (5) 

 
where 

p
...  denotes p-adic absolute value. In this case only string world-sheet parameter x  is treated 

as p-adic variable, and all other quantities have their usual (real) valuation. 
Now, we remember that the Gauss integrals satisfy adelic product formula 
 

                    ( ) ( )∫ ∏ ∫
∈

∞∞ =++
R

Pp
Q pp

p

xdbxaxxdbxax 122 χχ ,    ×∈Qa ,    Qb∈ ,    (6) 

 
what follows from 
 

                         ( ) ( )∫ 







−=+ −

vQ vvvvv a

b
aaxdbxax

4
2

2

2

1
2 χλχ ,   ...,...,2, pv ∞= .    (7) 

 
These Gauss integrals apply in evaluation of the Feynman path integrals 
 

                             ( ) ( )∫ ∫ 






−=
'',''

','

''

'
,,

1
',';'',''

tx

tx v

t

tvv qDdttqqL
h

txtxK &χ ,    (8) 

 
for kernels ( )',';'','' txtxKv  of the evolution operator in adelic quantum mechanics for quadratic 

Lagrangians. In the case of Lagrangian  
 

                                                          ( ) 







+−−= 1

42
1

,
2

q
q

qqL λ&
& , 

 
for the de Sitter cosmological model one obtains 
 
                      ( ) ( )∏

∈
∞ =

Pp
p xTxKxTxK 10,';,''0,';,'' ,    Qxx ∈λ,','' , ×∈QT ,    (9) 

 
where 

              ( ) ( ) ( )[ ] ( )









 −+−++−−= −

T

xxT
xx

T
TTxTxK vvvv 8

'''

4
2'''

24
480,';,''

232

2

1

λλχλ .    (10) 

 
Also here we have the number 24 that correspond to the Ramanujan function that has 24 “modes”, 
i.e., the physical vibrations of a bosonic string. Hence, we obtain the following mathematical 
connection: 

                     ( ) ( ) ( )[ ] ( )
⇒








 −+−++−−= −

T

xxT
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T
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'''

4
2'''
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480,';,''
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2

1

λλχλ  
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4
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'
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'
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'

0
2

2
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itwe

dxe
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w

w
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φ

π
π

π

π

.    (10b) 

 
The adelic wave function for the simplest ground state has the form 
 

                                    ( ) ( ) ( ) ( )
∏

∈

∞
∞





∈
∈

=Ω=
Pp

pA ZQx

Zxx
xxx

\,0

,ψ
ψψ ,    (11) 

 
where ( ) 1=Ω

p
x  if 1≤

p
x  and ( ) 0=Ω

p
x  if 1>

p
x . Since this wave function is non-zero only in 

integer points it can be interpreted as discreteness of the space due to p-adic effects in adelic 
approach. The Gel’fand-Graev-Tate gamma and beta functions are: 
 

           ( ) ( ) ( )
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−==Γ ∞∞

−
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xdxxa
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ζχ 11

,   ( ) ( )∫ −
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xdxxa

1
1 1

1χ ,    (12) 

                               ( ) ( ) ( ) ( )∫ ∞∞∞∞
−
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−

∞∞ ΓΓΓ=−=
R
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11
1, ,    (13) 

                               ( ) ( ) ( ) ( )cbaxdxxbaB pppQ p

b

p

a

pp
p

ΓΓΓ=−= ∫
−− 11

1, ,    (14) 

 
where Ccba ∈,,  with condition 1=++ cba  and ( )aζ  is the Riemann zeta function. With a 
regularization of the product of p-adic gamma functions one has adelic products: 
 
                  ( ) ( )∏

∈
∞ =ΓΓ

Pp
p uu 1,   ( ) ( )∏

∈
∞ =

Pp
p baBbaB 1,, ,   ,1,0≠u   ,,, cbau =     (15) 

 
where 1=++ cba . We note that ( )baB ,∞  and ( )baBp ,  are the crossing symmetric standard and p-

adic Veneziano amplitudes for scattering of two open tachyon strings. Introducing real, p-adic and 
adelic zeta functions as 
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                                         ( ) ( ) ( ) ( ) ( )∏
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∞∞ ==
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pA aaaaa ζζζζζ ,    (18) 

   
one obtains 
 
                                                          ( ) ( )aa AA ζζ =−1 ,    (19) 
 
where ( )aAζ  can be called adelic zeta function. We have also that 
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Let us note that ( )2exp xπ−  and ( )

p
xΩ  are analogous functions in real and p-adic cases. Adelic 

harmonic oscillator has connection with the Riemann zeta function. The simplest vacuum state of 
the adelic harmonic oscillator is the following Schwartz-Bruhat function: 
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pp
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A xex
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whose the Fourier transform 
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2 πψχψ     (21) 

 
has the same form as ( )xAψ . The Mellin transform of ( )xAψ  is 
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    (22) 

 
and the same for ( )kAψ . Then according to the Tate formula one obtains (19). 
The exact tree-level Lagrangian for effective scalar field ϕ  which describes open p-adic string 
tachyon is  

                                       
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where p  is any prime number, 22 ∇+−∂= t�  is the D-dimensional d’Alambertian and we adopt 

metric with signature ( )++− ... . Now, we want to show a model which incorporates the p-adic 
string Lagrangians in a restricted adelic way. Let us take the following Lagrangian  
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Recall that the Riemann zeta function is defined as 
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Employing usual expansion for the logarithmic function and definition (25) we can rewrite (24) in 
the form 
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where 1<φ . 








2
�ζ  acts as pseudodifferential operator in the following way: 
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where   ( ) ( ) ( )dxxek ikx φφ ∫
−=~

   is the Fourier transform of ( )xφ . 

Dynamics of this field φ  is encoded in the (pseudo)differential form of the Riemann zeta function. 
When the d’Alambertian is an argument of the Riemann zeta function we shall call such 
string a “zeta string”. Consequently, the above φ  is an open scalar zeta string. The equation of 
motion for the zeta string φ  is 
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which has an evident solution 0=φ . 
For the case of time dependent spatially homogeneous solutions, we have the following equation of 
motion 
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With regard  the open and closed scalar zeta strings, the equations of motion are 
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and one can easily see trivial solution 0== θφ . 
 
                                                        
 
 
 
 
                                                   Mathematical connections 
 
With regard the mathematical connections, we have the following two new interesting relationships, 
with the fundamental equation concerning the zeta-strings and the equation connected with the p-
adic beta functions: 
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We note also the link with π , thence with 
2

15 −=φ , i.e. the Aurea ratio by the simple formula 

 
                                                         
                                                       πφ 2879,0arccos =     (34)  
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