The $a b c$ Conjecture is False By

Abdelmajid BEN HADJ SALEM

June 2020

Version 2.

The $a b c$ Conjecture is False

Abdelmajid BEN HADJ SALEM

To the memory of my Father who taught me arithmetic
To my wife Wahida, my daughter Sinda and my son Mohamed Mazen

Abstract

In this note, I give the proof that the $a b c$ conjecture is false because, in the case $c>\operatorname{rad}(a b c)$, for $0<\epsilon<1$ we can not find the constant $K(\epsilon)$ so that $c<K(\epsilon) \cdot r a d^{1+\epsilon}(a b c)$ for c very large. A counterexample is given.

1 Introduction

Let a positive integer $a=\prod_{i} a_{i}^{\alpha_{i}}, a_{i}$ prime integers and $\alpha_{i} \geq 1$ positive integers. We call radical of a the integer $\prod_{i} a_{i}$ noted by $\operatorname{rad}(a)$. Then a is written as :

$$
\begin{equation*}
a=\prod_{i} a_{i}^{\alpha_{i}}=\operatorname{rad}(a) \cdot \prod_{i} a_{i}^{\alpha_{i}-1} \tag{1}
\end{equation*}
$$

We note:

$$
\begin{equation*}
\mu_{a}=\prod_{i} a_{i}^{\alpha_{i}-1} \Longrightarrow a=\mu_{a} \cdot \operatorname{rad}(a) \tag{2}
\end{equation*}
$$

The $a b c$ conjecture was proposed independently in 1985 by David Masser of the University of Basel and Joseph Esterlé of Pierre et Marie Curie University (Paris 6) [1. It describes the distribution of the prime factors of two integers with those of its sum. The definition of the $a b c$ conjecture is given below:

Conjecture 1. Let a, b, c positive integers relatively prime with $c=a+b$, then for each $\epsilon>0$, there exists a constant $K(\epsilon)$ such that :

$$
\begin{equation*}
c<K(\epsilon) \cdot \cdot^{2} d^{1+\epsilon}(a b c), \quad K(\epsilon) \text { depending only of } \epsilon . \tag{3}
\end{equation*}
$$

The idea to try to write a paper about this conjecture was born after the publication of an article in Quanta magazine, in November 2018, about the remarks of professors Peter Scholze of the University of Bonn and Jakob Stix of Goethe University Frankfurt concerning the proof of Shinichi Mochizuki [2]. The difficulty to find a proof of the $a b c$ conjecture is due to the incomprehensibility how the prime factors are organized in c giving a, b with $c=a+b$.

We know that numerically, $\frac{\log c}{\log (\operatorname{rad}(a b c))} \leq 1.629912$ 1. A conjecture was proposed that $c<\operatorname{rad}^{2}(a b c)$ 3:

Conjecture 2. Let a, b, c positive integers relatively prime with $c=a+b$, then:

$$
\begin{equation*}
c<\operatorname{rad}^{2}(a b c) \Longrightarrow \frac{\log c}{\log (\operatorname{rad}(a b c))}<2 \tag{4}
\end{equation*}
$$

After studying the $a b c$ conjecture using different choices of the constant $K(\epsilon)$ and having attacked the problem from diverse angles, I have arrived to conclude that, assuming that $c<\operatorname{rad}^{2}(a b c)$ or $c<r a d^{1.63}$ is true, the $a b c$ conjecture does not hold when $0<\epsilon<1$. Then the $a b c$ conjecture as it was defined is false. In this note, I give a counterexample that the $a b c$ conjecture is not true, in the case $\operatorname{rad}(a b c)<c$ taking $\epsilon \in] 0,1[$ without assuming one of the two open questions : $c<\operatorname{rad}^{2}(a b c)$ and $c<\operatorname{rad}^{1.63}(a b c)$ that was proposed in 1996 by A. Nitaj (4).

The paper is organized as follows: in the second section, we give a counterexample that $a b c$ conjecture is false in the case $\operatorname{rad}(a b c)<c$, choosing $\epsilon \in] 0,1[$.

2 Proof the $a b c$ Conjecture is False

We note $R=\operatorname{rad}(a c)$ in the case $c=a+1$ (respectively $R=\operatorname{rad}(a b c)$ if $c=a+b)$.

2.1 Case $c<R$:

As $c<R \Longrightarrow c<R \Longrightarrow c<K(\epsilon) \cdot R^{1+\epsilon}, \forall \epsilon>0$ since we choose $K(\epsilon) \geq 1$ and the conjecture (1) is verified.

2.2 Case $c=R$

Case to reject as a, b, c (respectively a, c) are relatively prime.

2.3 Case $R<c$

I will consider the case $c=a+1$. I give the following counter example:

$$
\begin{gather*}
8^{n}=2^{3 n}=(7+1)^{n}=7^{n}+7^{n-1} n+\ldots+7 n+1=7\left(7^{n-1}+n 7^{n-2}+\ldots+n\right)+1 \Longrightarrow \\
2^{3 n}=7\left(7^{n-1}+n 7^{n-2}+\ldots+n\right)+1 \tag{5}
\end{gather*}
$$

We suppose that for n large, the $a b c$ conjecture holds taking $\left.\epsilon=\epsilon_{0} \in\right] 0,1[$. Then $\exists K\left(\epsilon_{0}\right)>0$ and:

$$
\begin{equation*}
2^{3 n}<K\left(\epsilon_{0}\right) R^{1+\epsilon_{0}} \tag{6}
\end{equation*}
$$

We obtain:

$$
\begin{gather*}
\operatorname{rad}(c)=\operatorname{rad}\left(2^{3 n}\right)=2 \\
\operatorname{rad}(a)=\operatorname{rad}\left(7\left(7^{n-1}+n 7^{n-2}+\ldots+n\right)\right)=7 \cdot \operatorname{rad}\left(7^{n-1}+n 7^{n-2}+\ldots+n\right) \Longrightarrow \\
\operatorname{rad}(a) \leq 7 \cdot\left(7^{n-1}+n 7^{n-2}+\ldots+n\right) \leq n .7^{n} \Longrightarrow \operatorname{rad}(a) \leq 7^{n} n \tag{7}
\end{gather*}
$$

We consider that $n=2 m$ is even so the condition $R<c$ is verified. In this case, $c=2^{3 n}=2^{6 m} \Longrightarrow a=c-1=2^{6 m}-1$. As $2^{3} \equiv-1(\bmod 9) \Longrightarrow$ $2^{6 m}-1 \equiv 0(\bmod 9) \Longrightarrow 3^{2} \mid a$, so we can write $a=3 a_{1}$ with $a_{1} \geq \operatorname{rad}(a)$, it follows $c>a \geq 3 \operatorname{rad}(a)>2 \operatorname{rad}(a) \Longrightarrow c>R$. We re-write the equation (6) in detail:

$$
\begin{equation*}
2^{3 n}<K\left(\epsilon_{0}\right) 2^{1+\epsilon_{0}} r a d^{1+\epsilon_{0}}(a) \leq K\left(\epsilon_{0}\right) 2^{1+\epsilon_{0}} n^{1+\epsilon_{0}} 7^{n\left(1+\epsilon_{0}\right)} \tag{8}
\end{equation*}
$$

That we can write as:

$$
\begin{equation*}
e^{6 m \log 2\left(1-\left(1+\epsilon_{0}\right) \frac{\log 7}{3 \log 2}-\frac{1+\epsilon_{0}}{3 \log 2} \frac{\log 2 m}{2 m}\right)}<K\left(\epsilon_{0}\right) 2^{1+\epsilon_{0}} \tag{9}
\end{equation*}
$$

We choose $\epsilon_{0}=0.06$ and we consider that m is very large $(m \longrightarrow+\infty)$, then we obtain:

$$
\begin{equation*}
e^{6 m \log 2(1-0.99193)} \leq K(0.06) 2^{1.06} \Longrightarrow+\infty \leq K(0.06) 2^{1.06} \tag{10}
\end{equation*}
$$

Hence the contradiction, and the $a b c$ conjecture is false for the value $\epsilon_{0}=$ 0.06.

However, We can announce the following theorems that are very easy to prove:

Theorem 2.1. (The truncated abc conjecture:) Let a, b, c positive integers relatively prime with $c=a+b$, and assuming $c<\operatorname{rad}^{2}(a b c)$ is true, then for each $\epsilon \geq 1$, there exists $K(\epsilon)$ such that :

$$
\begin{equation*}
c<K(\epsilon) \cdot r a d^{1+\epsilon}(a b c) \tag{11}
\end{equation*}
$$

where $K(\epsilon)$ is a constant depending of ϵ proposed as :

$$
K(\epsilon)=e^{\left(\frac{1}{\epsilon^{2}}\right)}, \epsilon \geq 1
$$

and:
Theorem 2.2. (The truncated abc conjecture:) Let a, b, c positive integers relatively prime with $c=a+b$, and assuming $c<\operatorname{rad}^{1.63}(a b c)$ is true, then for each $\epsilon \geq 0.63$, there exists $K(\epsilon)$ such that :

$$
\begin{equation*}
c<K(\epsilon) \cdot r a d^{1+\epsilon}(a b c) \tag{12}
\end{equation*}
$$

where $K(\epsilon)$ is a constant depending of ϵ proposed as :

$$
K(\epsilon)=e^{\left(\frac{1}{\epsilon^{2}}\right)}, \epsilon \geq 0.63
$$

Ouf! The end of the mystery!

Acknowledgements

The author is very grateful to Professors Mihăilescu Preda and Gérald Tenenbaum for their comments about errors found in previous manuscripts concerning proofs proposed of the $a b c$ conjecture.

References

[1] M. Waldschmidt, On the abc Conjecture and some of its consequences presented at The 6th World Conference on 21st Century Mathematics, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore (Pakistan), March 6-9, (2013).
[2] K. Kremmerz for Quanta Magazine, Titans of Mathematics Clash Over Epic Proof of ABC Conjecture. The Quanta Newsletter, 20 September 2018. www.quantamagazine.org. (2018).
[3] P. Mihăilescu, Around ABC. European Mathematical Society Newsletter $\mathbf{N}^{\circ} \mathbf{9 3}$, September 2014. pp 29-34. (2014).
[4] A. Nitaj, Aspects expérimentaux de la conjecture abc. Séminaire de Théorie des Nombres de Paris (1993-1994), London Math. Soc. Lecture Note Ser., Vol n 235. Cambridge Univ. Press. pp. 145-156. (1996)

