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Abstract. We provide a formula that expresses the number of (n − 2)-gaps of a generic digital n-object.
Such a formula has the advantage to involve only a few simple intrinsic parameters of the object and it is
obtained by using a combinatorial technique based on incidence structure and on the notion of free cells.
This approach seems suitable as a model for an automatic computation, and also allow us to find some
expressions for the maximum number of i-cells that bound or are bounded by a fixed j-cell.

1. Introduction

With the word “gap” in Digital Geometry we mean some basic portion of a digital object that a discrete
ray can cross without intersecting any voxel of the object itself. Since such a notion is strictly connected with
some applications in the field of Computer graphics (e.g. the rendering of a 3D image by the ray-tracing
technique), many papers (see for example [1–4]) concerned the study of 0- and 1-gaps of 3-dimensional
objects. Recently (see [5]), we have found a formula for expressing the number of 1-gaps of a digital 3-object
by means of the number of its free cells of dimension 1 and 2. During the submission process of that paper,
the anonymous referee raised to our attention the existence of another recent and more general formula
presented in [6] which gives the number of a generical (n − 2)-gaps of any digital n-object. Unfortunately,
such formula involves some parameters (the number of (n − 2)-blocks and of n-, (n − 1)- and (n − 2)- cells)
that are non-intrinsic or that can not be easily obtained by the geometrical knowledge of the object. For
such a reason, in the present paper, we propose a generalization of the formula obtained in [5] that allow
us to express the number of (n− 2)-gaps using only two basic parameters, that is the number of free (n− 2)-
and (n − 1)-cells of the object itself. Although we prove the equivalence between these two formulas, the
latter approach seems simpler and more suitable as a model for an automatic computation.

In order to obtain our formula, we adopt a combinatorial technic based on the notion of incidence
structure, which also allow us to find a couple of interesting expressions for the maximum number of i-cells
that bound or are bounded by a fixed j-cell.

In the next section we recall and formalize some basic notions and notations of digital geometry. In
Section 3, we introduce the notions of tandem and gap, and we give some elementary facts about them. In
Section 4, we prove some propositions concerning, in particular, the number of (n−1)-cells of the boundary
of a digital object that are bounded by a given (n − 2)-cell satisfying some particular condition, and we use
such results to obtain our main formula for the number of (n− 2)-gaps. Finally, in Section 5, we summarize
the goal of the paper and we give some suggestions for other future researches.
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2. Preliminaries

Throughout this paper we use the grid cell model for representing digital objects, and we adopt the
terminology from [7, 8].

Let x = (x1, . . . xn) be a point ofZn,θ ∈ {−1, 0, 1}n be an n-word over the alphabet {−1, 0, 1}, and i ∈ {1, . . . n}.
We define i-cell related to x and θ, and we denote it by e = (x, θ), the Cartesian product, in a certain fixed
order, of n − i singletons

{
x j ± 1

2

}
by i closed sets

[
x j − 1

2 , x j +
1
2

]
, i.e. we set

e = (x, θ) =
n∏

j=1

[
x j +

1
2
θ j −

1
2

[θ j = 0], x j +
1
2
θ j +

1
2

[θ j = 0]
]
,

where [•] denotes the Iverson bracket [9]. The word θ is called the direction of the cell (x, θ) related to the
point x.

Let us note that an i-cell can be related to different point x ∈ Zn, and, once we have fixed it, can be related
to different direction. So, when we talk generically about i-cell, we mean one of its possible representation.

The dimension of a cell e = (x, θ), denoted by dim(e) = i, is the number of non-trivial intervals of its
product representation, i.e. the number of null components of its direction θ. Thus, dim(e) =

∑n
j=1[θ j = 0]

or, equivalently, dim(e) = n − θ · θ. So, e is an i-cell if and only if it has dimension i.
We denote by C(i)

n the set of all i-cells of Rn and by Cn the set of all cells defined in Rn, i.e. we set
Cn =

∪n
j=0 C

( j)
n . An n-cell of Cn is also called an n-voxel. So, for convenience, an n-voxel is denoted by v,

while we use other lower case letter (usually e) to denote cells of lower dimension. A finite collection D of
n-voxels is a digital n-object. For any i = 0, . . . ,n, we denote by Ci(D) the set of all i-cells of the object D,
that is D ∩ C(i)

n , and by ci(D) (or simply by ci if no confusion arise) its cardinality |Ci(D)|.

Definition 2.1. Let e = (x, θ) be an i-cell. The center of e is defined by cnt(e) = x + 1
2θ.

Remark 2.2. Let us note that for a cell e = (x, θ), we have cnt(e) = x if and only if dim(e) = n. Moreover,
thanks to Definition 2.1, an i-cell related to x and θ can be shortly represented in the following way:

e =
n∏

j=1

[
cnt(e) j −

1
2

[θ j = 0], cnt(e) j +
1
2

[θ j = 0]
]
.

Definition 2.3. Let e = (x, θ) be an i-cell related to the point x and to the direction θ. We define the dual e′

of e, the cell represented by the following cartesian product:

e′ =
n∏

j=1

[
cnt(e) j −

1
2

[θ j , 0], cnt(e) j +
1
2

[θ j , 0]
]
.

By the above expression and the definition of dimension of a cell, we have that the dimension of the
dual e′ of a cell e = (x, θ) coincides with the number of non-null components of the direction θ, that is
dim(e′) =

∑n
j=1[θ j , 0]. Consequently, the dual e′ of an i-cell e is an (n − i)-cell.

Definition 2.4. Let D be a digital object. The dual D′ of D is the set of all dual cells e′, with e ∈ D.

We say that two n-cells v1, v2 are i-adjacent (i = 0, 1, . . . ,n− 1) if v1 , v2 and there exists at least an i-cell
e such that e ⊆ v1 ∩ v2, that is if they are distinct and share at least an i-cell. Two n-cells v1, v2 are strictly
i-adjacent, if they are i-adjacent but not j-adjacent, for any j > i, that is if v1 ∩ v2 ∈ C(i)

n . The set of all n-cells
that are i-adjacent to a given n-voxel v is denoted by Ai(v) and called the i-adjacent neighborhoods of v. Two
cells v1, v2 ∈ Cn are incident each other, and we write e1Ie2, if e1 ⊆ e2 or e2 ⊆ e1.

Definition 2.5. Let e1, e2 ∈ Cn. We say that e1 bounds e2 (or that e2 is bounded by e1), and we write e1 < e2, if
e1Ie2 and dim(e1) < dim(e2). The relation < is called the bounding relation.
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Definition 2.6. Let e be an i-cell of a digital n-object D (with i = 0, . . . n − 1). We say that e is simple if e
bounds one and only one n-cell.

Definition 2.7. Let D and G be two finite subsets of Cn. We say that D and G form a dual pair iff there
exists a bijection φ : D → G that inverts the bounded relation, that is for any couple e, f ∈ D, if e < f then
φ( f ) < φ(e), and for any e ∈ D, dim(φ(e)) = n − dim(e).

Proposition 2.8. Let D be a digital n-object and D′ its dual. Then D and D′ form a dual pair.

Proof. Let us consider the mapping φ : D → D′ that associates to each cell e = (x, θ) ∈ D its dual φ(e) = e′.
Since, by Remark 2.2 and Definition 2.3, both e and e′ are uniquely determinated by the point x and the
direction θ, it is clear that φ is a bijection.
By a basic property of the Iverson notation, for every cell e = (x, θ), we have

dim(φ(e)) = dim(e′) =
n∑

j=1

[θ j , 0] =
n∑

j=1

(
1 − [θ j = 0]

)
= n −

n∑
j=1

[θ j = 0] = n − dim(e).

Moreover, φ inverts the bounding relation < over Cn. Indeed, for every pair of cells e = (x, θ) and f = (y, ψ)
in D such that e < f , without loss of generality, we have e ⊆ f and dim(e) < dim( f ). Thus, by Remark 2.2,
we get

n∏
j=1

[
cnt(e) j −

1
2

[θ j = 0], cnt(e) j +
1
2

[θ j = 0]
]
⊆

n∏
j=1

[
cnt( f ) j −

1
2

[ψ j = 0], cnt( f ) j +
1
2

[ψ j = 0]
]
.

Hence, for every j = 1, . . . ,n, we have

cnt( f ) j −
1
2

[ψ j = 0] ≤ cnt(e) j −
1
2

[θ j = 0] ≤ cnt(e) j +
1
2

[θ j = 0] ≤ cnt( f ) j +
1
2

[ψ j = 0].

and so, we obtain

cnt(e) j −
1
2

[θ j , 0] = cnt(e) j −
1
2

(
1 − [θ j = 0]

)
= cnt(e) j +

1
2

[θ j = 0] − 1
2
≤ cnt( f ) j +

1
2

[ψ j = 0] − 1
2

= cnt( f ) j −
1
2

[ψ j , 0] ≤ cnt( f ) j +
1
2

[ψ j , 0] = cnt( f ) j +
1
2

(
1 − [ψ j = 0]

)
= cnt( f ) j −

1
2

[ψ j = 0] +
1
2
≤ cnt(e) j −

1
2

[θ j = 0] +
1
2
= cnt(e) j +

1
2

[θ j , 0],

which implies

n∏
j=1

[
cnt( f ) j −

1
2

[ψ j , 0], cnt( f ) j +
1
2

[ψ j , 0]
]
⊆

n∏
j=1

[
cnt(e) j −

1
2

[θ j , 0], cnt(e) j +
1
2

[θ j , 0]
]
.

Thus, f ′ ⊆ e′, i.e. φ( f ) ⊆ φ(e). Finally, since dim(e) < dim( f ), we have dim(φ( f )) = n−dim( f ) < n−dim(e) =
dim(φ(e)) and so φ( f ) < φ(e).

Definition 2.9. An incidence structure (see [10]) is a triple (V,B,I) where V and B are any two disjoint sets
and I is a binary relation between V and B, that is I ⊆ V × B. The elements of V are called points, those of
B blocks. Instead of (p,B) ∈ I, we simply write pIB and say that “the point p lies on the block B” or “p and
B are incident”.

If p is any point of V, we denote by (p) the set of all blocks incident to p, i.e. (p) = {B ∈ B : pIB}. Similarly,
if B is any block of B, we denote by (B) the set of all points incident to B, i.e. (B) = {p ∈ V : pIB}. For a point
p, the number rp = |(p)| is called the degree of p, and similarly, for a block B, kB = |(B)| is the degree of B.

We remind the following fundamental proposition of incidence structures.
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Proposition 2.10. Let (V,B,I) be an incidence structure. We have∑
p∈V

rp =
∑
B∈B

kB, (1)

where rp and kB are the degrees of any point p ∈ V and any block B ∈ B, respectively.

3. Theoretical backgrounds

In [3] and [5], a constructive definition of gap for a digital object D in spaces of dimensions 2 and 3 was
proposed, and a relation between the number of such a gaps and the numbers of free cells was found.

In order to generalize those results for the n-dimensional space, we need to introduce some definitions
and to make some considerations.

Definition 3.1. Let e be an i-cell (with 0 ≤ i ≤ n − 1) of Cn. Then:

(1) An i-block centered on e is the union of all the n-voxels bounded by e, i.e. Bi(e) =
∪{v ∈ C(n)

n : e < v}.

(2) An L-block centered on e is an (n− 2)-block centered on e from which we take away one of its four n-cells,
that is L(e) = Bn−2(e) \ {v}, where v ∈ Cn(Bn−2(e)).

Remark 3.2. Let us note that, for any i-cell e, Bi(e) is the union of exactly 2n−i n-voxels, e ∈ Bi(e), and that an
L-block is exactly composed of three n-voxels.

Definition 3.3. Let v1, v2 be two n-voxels of a digital object D, and e be an i-cell (i = 0, . . . ,n−1). We say that
ti = {v1, v2} forms an i-tandem of D over e if D∩Bi(e) = {v1, v2}, v1 and v2 are strictly i-adjacent and v1 ∩ v2 = e.

Definition 3.4. Let D be a digital n-object and e be an i-cell (with i = 0, . . . , n− 2). We say that D has an i-gap
over e if there exists an i-block Bi(e) such that Bi(e) \D is an i-tandem over e. The cell e is called i-hub of the
related i-gap. Moreover, we denote by 1i(D) (or simply by 1i if no confusion arises) the number of i-gap of
D.

Examples of gaps for 3D case are given in Figure 1.

Figure 1: Configurations of 1- and 0-gaps in C3.

Proposition 3.5. A digital n-object D has an (n − 2)-gap over an (n − 2)-hub e iff there exist two n-voxels v1 and v2
such that:

1) e < v1 and e < v2;
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2) v1 ∈ An−2(v2) \ An−1(v2);

3) An−1(v1) ∩ An−1(v2) ∩D = ∅.

Proof. Let us suppose that D has an (n − 2)-gap over an (n − 2)-hub e. Then there exists an (n − 2)-block
B = Bn−2(e) such that B\D is an (n−2)-tandem over e. Hence B\D is composed of two strictly (n−2)-adjacent
n-voxel, let us say v1, v2, and v1 ∩ v2 = e. This implies that e ⊂ v1 and e ⊂ v2, and so e < v1 and e < v2.

Now, let us suppose that v1 < An−2(v2) \ An−1(v2). Then it should be v1 < An−2(v2) or v1 ∈ An−1(v2). Both
expressions lead to a contradiction, since v1 and v2 are strictly (n − 2)-adjacent.

Finally, let us suppose that An−1(v1) ∩ An−1(v2) ∩ D , ∅. Then it should exists an n-voxel v3 ∈ D such
that v3 ∈ An−1(v1) and v3 ∈ An−1(v2). Hence {v1, v2, v3} forms an L-block. A contradiction since v1 and v2 are
strictly (n − 2)-adjacent.

Conversely, let us suppose that conditions 1), 2), and 3) hold, and, by contradiction, that for any (n− 2)-
cell e ∈ D, E = Bn−2(e) \D is not an (n − 2)-tandem over e. Then E is either an i-block (i = n − 2, n − 1) or an
L-block whose facts contradict our hypothesis.

Definition 3.6. An i-cell e (with i = 0, . . . , n − 1) of a digital n-object D is free iff Bi(e) * D.

For any i = 0, . . . , n − 1, we denote by C∗i (D) (respectively by C′i (D)) the set of all free (respectively
non-free) i-cells of the object D. Moreover, we denote by c∗i (D) (or simply by c∗i ) the number of free i-cells
of D, and by c′i (D) (or simply by c′i ) the number of non-free cells. It is evident that {C∗i (D),C′i (D)} forms a
partition of Ci(D) and that ci = c∗i + c′i .

Definition 3.7. The i-border (i = 1, . . . , n − 1) bdi(D) of a digital n-object D is the set of all its i-cells such that
Bi(e) intersects both D andCn \D. The union of all i-borders (0 ≤ i ≤ n−1) is called border of D and denoted
by bd(D).

An immediate consequence of Definitions 3.6 and 3.7 is given by the following proposition.

Proposition 3.8. An i-cell e (i = 0, . . . , n − 1) of a digital object D is free iff e ∈ bd(D).

Remark 3.9. The border bd(D) of a digital n-object is composed of the set of all free cells of D. Moreover, c′i
coincides with the number of all i-blocks Bi(e) such that Bi(e) ⊆ D.

4. Main results

Definition 4.1. Let e be an i-cells of Cn. The j-flower of e (i < j ≤ n) is the set of cells F j(e) constituted by all
j-cells that are bounded by e, that is we set F j(e) = {c ∈ C( j)

n : e < c}. The cell e is called the center of the flower,
while an element of F j(e) is called a j-petal (or simply petal if confusion does not arise) of the j-flower F j(e).

Let us note that Definition 4.1 is a generalization of the notion of i-block given in Definition 3.1. Indeed
an i-block centered on an i-cell e can be regarded as the n-flower of e.

Notation 4.2. Let i, j be two natural number such that 0 ≤ i < j. We denote by ci→ j the maximum number
of i-cells of Cn that bound a j-cell. Moreover, we denote by ci← j the maximum number of j-cell of Cn that
are bounded by an i-cell.

Let us note that, for any 0 ≤ i < j, ci← j represents the number of j-petal of the j-flower F j(e), where e is a cell
of dimension i.

Proposition 4.3. For any i, j ∈N such that 0 ≤ i < j, holds

ci→ j = 2 j−i
(

j
i

)
.
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Proof. Since a j-cell of Cn can be regarded as an hypercube of dimension j, the number ci→ j corresponds

with the number of i-faces of this hypercube which is 2 j−i
(

j
i

)
(see, for example, [11]).

Proposition 4.4. For any i, j ∈N such that 0 ≤ i < j, holds

ci← j = 2 j−i
(
n − i
j − i

)
.

Proof. Let e be an i-cell ofCn, and let F j(e) be the related j-flower. The dualΦ′ ofΦ = F j(e)∪{e} is an incidence
structure (V,B,I), where V = {p′ : p ∈ F j(e)}, B = {e′} and I is the dual relation of the bounding relation <.
Moreover, we have dim(e′) = n − i and dim(p′) = n − j. Hence, up to a bijection, Φ′ is the set composed of
the (n − i)-cell e′ and by all the possible (n − j)-cells which bound e′ . It follows that the maximum number
ci← j of j-cells that are bounded by a given i-cell coincides with the maximum number of (n − j)-cells that
bound an (n − i)-cell, that is, by Proposition 4.3,

ci← j = cn− j→n−i = 2n−i−n+ j
(
n − i
n − j

)
= 2 j−i

(
n − i
j − i

)
.

Lemma 4.5. Let D be a digital n-object. Then

cn−1 = 2ncn − c′n−1.

Proof. Let us consider the set

F =
∪

v∈Cn(D)

{(e, v) : e ∈ Cn−1(D), e < v}.

It is evident that
∣∣∣F∣∣∣ = ∣∣∣∣{(e, v) : e ∈ Cn−1(D), e < v}

∣∣∣∣ · ∣∣∣∣Cn(D)
∣∣∣∣ = cn−1→n · cn = 2ncn. Let us set F∗ = F ∩ (C∗n−1(D) ×

Cn(D)) and F′ = F ∩ (C′n−1(D) × Cn(D)). The map ϕ : F∗ → C∗n−1(D), defined by ϕ(e, v) = e, is a bijection. In
fact, besides being evidently surjective, it is also injective, since, if by contradiction there were two distinct
pairs (e, v1) and (e, v2) ∈ F∗ associated to e, then Bn−1(e) = {v1, v2} should be an (n − 1)-block contained in D.
This contradicts the fact that the (n − 1)-cell e is free. Thus |F∗| = |C∗n−1(D)| = c∗n−1.

On the other hand,
∣∣∣F′∣∣∣ = ∣∣∣∣ ∪

v∈Cn(D)

{(e, v) : e ∈ C′n−1(D), e < v}
∣∣∣∣ = ∣∣∣∣ ∪

e∈C′n−1(D)

{(e, v) : v ∈ Cn(D), e < v}
∣∣∣∣ = ∣∣∣∣{(e, v) : v ∈

Cn(D), e < v}
∣∣∣∣ · ∣∣∣∣C′n−1(D)

∣∣∣∣ = cn−1←n · c′n−1 = 2c′n−1. Since {F∗,F′} is a partition of F, we finally have |F| = |F∗|+ |F′|,
that is 2ncn = c∗n−1 + 2c′n−1 = cn−1 − c′n−1 + 2c′n−1 = cn−1 + c′n−1, and then the thesis.

Notation 4.6. Let e be an i-cell of a digital n-object D, and 0 ≤ i < j. We denote by b j(e,D) (or simply by b j(e)
if no confusion arises) the number of j-cells of bd(D) that are bounded by e.

Let us note that if e is a non-free i-cell, then b j(e) = 0.

Definition 4.7. A free i-cell of a digital n-object that is not an i-hub is called i-nub.

Notation 4.8. For any i = 0, . . . , n − 1, we denote by Hi(D) and by Ni(D) (or simply by Hi and by Ni if no
confusion arises) the sets of i-hubs and i-nubs of D, respectively. We have |Hi| = 1i and |Ni| = c∗i − 1i.

We are interested in classifying all the possible configurations of n-voxels bounded by an (n − 2)-cell e.

Lemma 4.9. Let e be an (n − 2)-cell of Cn, and V = {v ∈ C(n)
n : e < v} be the set of n-voxels bounded by e. Then one

and only one of the following five cases occurs (See Figure 2 for an example for 3D case):
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Figure 2: The five possible cases for the set V = {v ∈ C(n)
n : e < v} in 3D case. The black thick segment represents the edge e.

• V is a singleton and e is a simple cell;

• V is an (n − 1)-block centered on an (n − 1)-cell that is bounded by e;

• V is (n − 2)-gap and e is its (n − 2)-hub;

• V is an L-block and e is its center;

• V is an (n − 2)-block and e is its center.

Proof. By Definition 3.1(1), the largest set of n-voxels bounded by e is the (n − 2)-block centered on e.
Moreover, by Remark 3.2, cn(Bn−2(e)) = 4. Hence, the number cn(V) of n-voxels of V have to be between one
and four and, up to symmetries, we can distinguish the following cases.
If cn(V) = 1, V is a single n-voxel. If cn(V) = 2, we have two configurations, depending on the relative
position of the two n-voxels v1 and v2. More precisely, if v1 and v2 are strictly (n−1)-adjacent, then they form
an (n − 1)-block centered on an (n − 1)-cell that is bounded by e; instead, if they are strictly (n − 2)-adjacent,
they form an (n − 2)-gap having e as (n − 2)-hub. If cn(V) = 3, by Definition 3.1(2) and Remark 3.2, the
unique possible configuration is given by the L-block centered on e. Finally, if cn(V) = 4, V coincides with
the (n − 2)-block centered on e.

Proposition 4.10. Let v be an n-voxel and e be one of its i-cells, i = 0, . . . , n − 1. Then, for any i < j ≤ n, it results:

b j(e) =
ci→ jc j→n

ci→n
.

Proof. Let us consider the incidence structure I = (Ci(v),C j(v), <). By Proposition 2.10, it is
∑

a∈Ci(v)

ra =
∑

a∈C j(v)

ka.

Evidently, |Ci(v)| = ci = ci→n and |C j(v)| = c j = c j→n, while, for any i-cell a of Ci(v) (respectively j-cell a of
C j(v)), ra = b j(e) (respectively ka = ci→ j). Hence we have b j(e)ci→n = ci→ jc j→n, from which we get the
thesis.

Corollary 4.11. Let v be an n-voxel and e be one of its i-cell, i = 0, . . . ,n − 1. Then, for any i < j ≤ n, we have

b j(e) =
(
n − i
j − i

)
.

Proof. By Proposition 4.10, it is

b j(e) =
ci→ jc j→n

ci→n
=

2 j−i( j
i

)
2n− j(n

j
)

2n−i(n
i
) =

j!
( j − i)!i!

· n!
(n − j)! j!

· (n − i)!i!
n!

=
(n − i)!

(n − j)!( j − i)!
=

(
n − i
j − i

)
.
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Lemma 4.12. Let e be an (n − 1)-cell of Cn. Then the number of i-cells of the (n − 1)-block centered on e is

ci(Bn−1(e)) =
3n + i

2n
ci→n.

Proof. By Remark 3.2, Bn−1(e) is composed of two (n − 1)-adjacent n-voxels. Each of such voxels has
exactly ci→n i-cells, but some of these cells are in common. The number of these common i-cells coincides
with the number of i-cells of the center e of the given block. So, we have ci(Bn−1(e)) = 2ci→n − ci→n−1 =

2 · 2n−i
(
n
i

)
− 2n−1−i

(
n − 1

i

)
= 2 · 2n−i

(
n
i

)
− 2n−i−1

(
n
i

)
n − 1

n
= 2n−i

(
n
i

) (
2 − n − i

2n

)
=

3n + i
2n

ci→n.

Lemma 4.13. Let e be an (n− 1)-cell of Cn. Then the number of free (n− 1)-cells of the (n− 1)-block centered on e is:

c∗n−1(Bn−1(e)) = 2(2n − 1).

Proof. By applying Lemma 4.5 to the digital object Bn−1(e), we have c′n−1 + c∗n−1 = 2ncn − c′n−1. But for an
(n − 1)-block it is cn = 2 and c′n−1 = 1. Then c∗n−1 = 2(2n − 1).

Proposition 4.14. Let e be a free (n− 2)-cells that belongs to the center of an (n− 1)-block Bn−1( f ), then bn−1(e) = 2.

Proof. Let us consider the incidence structure (Cn−2(Bn−1( f )),C∗n−1(Bn−1( f )), <). By Lemma 4.12, it is |Cn−2(Bn−1( f ))| =
cn−2 = 2(n − 1)(2n − 1), and by Lemma 4.13, we have |C∗n−1(Bn−1( f ))| = c∗n−1 = 4n − 2.
Moreover, by Proposition 2.10, it is∑

a∈Cn−2(Bn−1( f ))

ra =
∑

a∈C∗n−1(Bn−1( f ))

ka.

Since for any a ∈ C∗n−1(Bn−1( f )) it is ka = cn−2→n−1, we have∑
a∈C∗n−1(Bn−1( f ))

ka = c∗n−1 · cn−2→n−1 = (4n − 2) · 2 · (n − 1) = 4(2n − 1)(n − 1).

Let us consider the sets

F = {a ∈ Cn−2(Bn−1( f )) : a < f }
and

G = {a ∈ Cn−2(Bn−1( f )) : a ≮ f }.
Since {F,G} forms a partition of Cn−2(Bn−1( f )), we can write∑

a∈Cn−2(Bn−1( f ))

ra =
∑
a∈F

ra +
∑
a∈G

ra.

For any a ∈ F, ra = bn−1(e), and so∑
a∈F

ra = |F|bn−1(e) = cn−2→n−1bn−1(e) = 2(n − 1)bn−1(e).

Instead, thanks to Proposition 4.10, for any a ∈ G, we have

ra = bn−1(e) =
cn−2→n−1 · cn−1→n

cn−2→n
= 2.

Hence, we get that∑
a∈G

ra = 2(cn−2 − cn−2→n−1) = 2(2(n − 1)(2n − 1) − 2(n − 1)) = 4(n − 1)(2n − 1) − 4(n − 1).

To sum up, we can write 4(n − 1)(2n − 1) − 4(n − 1) + 2(n − 1)bn−1(e) = 4(2n − 1)(n − 1), from which we get
the thesis.
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Lemma 4.15. Let e be an (n − 2)-cell of Cn. Then the number of i-cells of the L-block centered on e is:

ci(L(e)) =
(2n + i

n

)
ci→n.

Proof. By Remark 3.2, L(e) is composed of three n-voxels, which are pairwise (n − 1)-adjacent in exactly
two non-free (n − 1)-cells. Each of these three voxels has exactly ci→n i-cells, but some of these cells are
in common. The number of such common i-cells coincides with the number of i-cells of the two non-free

(n− 1)-cells. So, we have ci(L(e)) = 3ci→n − 2ci→n−1 = 3 · 2n−i
(
n
i

)
− 2 · 2n−i−1

(
n − 1

i

)
= 3 · 2n−i

(
n
i

)
− 2n−i

(
n
i

)
n − i

n
=

2n−i
(
n
i

) (
3 − n − i

n

)
=

(2n + i
2n

)
ci→n.

Lemma 4.16. Let e be an (n − 1)-cell of Cn. Then the number of free (n − 1)-cells of the L-block centered on e is:

c∗n−1(L(e)) = 2(3n − 2).

Proof. By applying Lemma 4.5 to the digital object L(e), we have c′n−1 + c∗n−1 = 2ncn − c′n−1. But for an L-block
it is cn = 3 and c′n−1 = 2. Then c∗n−1 = 2(3n − 2).

Proposition 4.17. Let e be a free (n − 2)-cells which is the center of an L-block L(e). Then bn−1(e) = 2.

Proof. Let us consider the incidence structure (Cn−2(L(e)),C∗n−1(L(e)), <). By Lemma 4.15, we have |Cn−2(L(e))| =
cn−2 = 2(n − 1)(3n − 2), and by Lemma 4.16, it is |C∗n−1(L(e))| = c∗n−1 = 2(3n − 2).

By Proposition 2.10, it is∑
a∈Cn−2(L(e))

ra =
∑

a∈C∗n−1(L(e)

ka. (2)

Since for any a ∈ C∗n−1(L(e)) it is ka = cn−1→n−2, we have∑
a∈C∗n−1(L(e))

ka = c∗n−1 · cn−1→n−2 = 2(3n − 2) · 2 · (n − 1) = 4(3n − 2)(n − 1).

Let us set F = C′n−1(L(e)), and let us consider the sets:

A = {e},

B = {c ∈ Cn−2(L(e)) : c ≮ f , for some f ∈ F}.
C = {c ∈ Cn−2(L(e)) : c < f , for some f ∈ F}.

Let us observe that |F| = 2 because the number of (n − 1)-block of L(e) is 2. Since {A,B,C} forms a partition
of Cn−2(L(e)), it results∑

a∈Cn−2(L(e))

ra = re +
∑
a∈B

ra +
∑
a∈C

ra, (3)

where, evidently, re = bn−1(e).
Moreover, by Proposition 4.14, it is

∑
a∈B ra = (2cn−2→n−1 − 2) · 2 = (2 · 2(n − 1) − 2) · 2 = 8(n − 1) − 4. Finally,

by Proposition 4.10, we have
∑

a∈C ra = 2(cn−2 − 2cn−2→n−1 + 1) = 2(2(3n − 2)(n − 1) − 2 · 2(n − 1) + 1) =
4(3n − 2)(n − 1) − 8(n − 1) + 2.

Thus, replacing these results into Formulas (3) and (2), we obtain 4(3n − 2)(n − 1) = bn−1(e) + 8(n − 1) −
4 + 4(3n − 2)(n − 1) − 8(n − 1) + 2, from which we get the thesis.

Proposition 4.18. Let D be a digital object of Cn and e ∈ Hn−2. Then bn−1(e) = 4.
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Proof. Let v1 and v2 be the two n-voxels of the (n− 2)-gap through e. Then the number bn−1(e) of free (n− 1)-
cells of D bounded by e coincides with the maximum number of (n − 1)-cells bounded by an (n − 2)-cell,
that is, by Proposition 4.4:

bn−1(e) = cn−2←n−1 = 2(n−1)−(n−2)

(
n − (n − 2)

(n − 1) − (n − 2)

)
= 4.

Proposition 4.19. Let D be a digital object of Cn and e ∈ Nn−2. Then bn−1(e) = 2.

Proof. Every free (n − 2)-cell that is not an (n − 2)-hub is either a simple cell, or bounds the center of an
(n− 1)-block, or is the center of an L-block. Hence, by Corollary 4.11 and Propositions 4.14 and 4.17, we get
the thesis.

Proposition 4.20. Let D be a digital n-object, and i < j ≤ n − 1. Then∑
e∈bdi(D)

b j(e) = ci→ jc∗j.

Proof. The i-border bdi(D) of D can be considered as an incidence structure (V,B,I), where V = bdi(D),
B = bd j(D), and the incidence relation I is the bounding relation <.
In such a structure, the point degree of every vertex e ∈ V coincides with the number b j(e) of j-cells of bd(D)
bounded by e. Moreover, the block degree kβ of every block B coincides with the maximum number ci→ j of
i-cells that bound a j-cell. Hence, by Proposition 2.10,

∑
e∈bdi(D)

b j(e) =
∑

β∈bd j(D)

ci→ j = ci→ j|bd j(D)| = ci→ jc∗j.

Theorem 4.21. The number of (n − 2)-gaps of a digital object D of Cn is given by the formula:

1n−2 = (n − 1)c∗n−1 − c∗n−2. (4)

Proof. Let us consider the setsHn−2 andNn−2 of all (n−2)-hubs and (n−2)-nubs of D, respectively. Evidently
{Hn−2,Nn−2} is a partition of bdn−2(D). Moreover, for i = n − 1 and j = n − 2, Proposition 4.20 give us∑

e∈bdn−2(D)

bn−1(e) = cn−2→n−1c∗n−1 = 2(n − 1)c∗n−1.

Since ∑
e∈bdn−2

bn−1(e) =
∑

e∈Hn−2

bn−1(e) +
∑

e∈Nn−2

bn−1(e),

by Lemmas 4.18 and 4.19, we obtain∑
e∈bdn−2

bn−1(e) = 4|Hn−2| + 2|Nn−2| = 41n−2 + 2(c∗n−2 − 1n−2)

and hence the thesis.

In [6], it was proved that the number of (n − 2)-gap of a digital n-object D can be expressed by

1n−2 = −2n(n − 1)cn + 2(n − 1)cn−1 − cn−2 + βn−2, (5)

where βn−2 is the number of all (n − 2)-blocks contained in D.
Such a formula is equivalent to the expression (4) obtained in Theorem 4.21. Indeed, we have the

following theorem.
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Theorem 4.22. The formulas

1n−2 = (n − 1)c∗n−1 − c∗n−2 (6)

and

1n−2 = −2n(n − 1)cn + 2(n − 1)cn−1 − cn−2 + βn−2 (7)

are equivalent.

Proof. By Lemma 4.5, we have

c∗n−1 = cn−1 − c′n−1 = cn−1 + cn−1 − 2ncn = 2cn−1 − 2ncn.

Hence, replacing the latter expression in (6) , we obtain

1n−2 = (n − 1)c∗n−1 − c∗n−2 = 2(n − 1)cn−1 − 2(n − 1)cn − cn−2 + c′n−2.

Finally, since c′n−2 is the number βn−2 of (n − 2)-blocks contained in D, we get Formula (7).

Conversely, by Lemma 4.5, we have cn =
cn−1+c′n−1

2n . Thus Formula (7) becomes

1n−2 = −2n(n − 1)
cn−1 + c′n−1

2n
+ 2(n − 1)cn−1 + c∗n−2 = −(n − 1)c′n−1 + (n − 1)cn−1 + c∗n−2 = (n − 1)c∗n−1 + c∗n−2,

that is Formula (6). This completes our proof.

5. Conclusion and perspective

In this paper we have found a new formula for expressing the number of (n−2)-gaps of a digital n-object
by means of its free cells. Unlike the equivalent formula (5) given in [6], our expression has the advantage
to involve only few intrinsic parameters. We conjecture that such information could be obtained from some
appropriate data structure related to the digital n-object. This will be the focus of a forthcoming research.

Another field of investigation could consist in finding a formula, analogous to (4), which express the
number of any k-gaps with 0 ≤ k ≤ n − 3, by means of same basic parameters of the digital n-object.
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