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Abstract

In fuzzy set theory, the fuzzy membership function describes the membership

degree of certain elements in the universe of discourse. Besides, Deng entropy

is a important tool to measure the uncertainty of an uncertain set, and it has

been wildly applied in many fields. In this paper, firstly, we propose a method to

measure the uncertainty of a fuzzy MF based on Deng entropy. Next, we define

the information volume of the fuzzy MF. By continuously separating the BPA

of the element whose cardinal is larger than 1 until convergence, the information

volume of the fuzzy sets can be calculated. When the hesitancy degree of a fuzzy

MF is 0, information volume of the fuzzy membership function is identical to

the Shannon entropy. In addition, several examples and figures are expound to

illustrated the proposed method and definition.

Keywords: information volume, fuzzy sets, membership function, Shannon

entropy, Deng entropy.

1. Introduction

In the past decades, plenty of theories have been developed for expressing

and dealing with the uncertainty in the uncertain environment, for instance,
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probability theory [1], fuzzy set theory [2], Dempster-Shafer evidence theory

[3, 4], and D numbers [5].5

Fuzzy set theory has been widely applied in many fields, like uncertainty

measurements [6] and data fusion[7]. However, there are still some issues to be

solved. Among them, how to measure the uncertainty in fuzzy set theory has

attracted much attention.

Since firstly derived from thermodynamics, different kinds of entropy have10

been proposed, such as Shannon entropy [8], Tsallis entropy [9], and nonadditive

entropy [10]. Entropy is one of the methods for measuring uncertainty, which

can be extended to measure the uncertainty degree in fuzzy set. For example,

Kai Yao and Hua Ke propose a entropy operator for membership function[11].

Recently, a new entropy, called Deng entropy [12], is presented for measur-15

ing the uncertainty in evidence theory. Deng entropy is the generalization of

Shannon entropy. Compared with traditional methods, Deng entropy is more

reasonable, and it takes both discord and non-specificity into account. Because

of these efficiency, Deng entropy has various applications, such as data fusion

[13] and decision making [14]. Moreover, based on the maximum entropy princi-20

ple, the maximum form of Deng entropy, named as the maximum Deng entropy

[15], is proposed, whose properties are analyzed in [16].

In the first paper of this series [17], the information volume of mass function

has been defined. In addition, the mass function which can yield the maximum

Deng entropy is called the Deng distribution.25

This is the second paper of this series. In this paper, firstly, we propose

a method to measure the uncertainty of a fuzzy membership function by two

steps. Step 1 is to convert the MF into the associated BPA, and step 2 is to

calculate the uncertainty of the associated BPA based on Deng entropy. And

then, based on the information volume defined in [17], we define the information30

volume of the fuzzy membership function through continuously separating the

associated BPA of the element whose cardinal is larger than 1 until the Deng

entropy converges. The value of the information volume of the fuzzy sets can

be calculated.
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To summarize, the contributions of this paper are as follows:35

(1) A method to measure the uncertainty of a fuzzy membership function is

present.

(2) The definition for the information volume of the fuzzy membership function

is proposed.

(3) When the hesitancy degree of a fuzzy MF equals to zero, the information40

volume of fuzzy MF is identical to the Shannon entropy.

(4) Several examples and figures are expound to illustrated the proposed method

and definition.

The rest of this paper is organized as follows. In section 2, some prelim-

inaries are briefly reviewed. In section 3, based on Deng entropy, a method45

for measuring the uncertainty of a fuzzy membership function is proposed. In

section 4, we define the information volume of the fuzzy membership function.

In section 5, numerical examples are expounded to illustrated the proposed

method and definition. In section 6, we have a brief conclusion.

2. Preliminaries50

Several preliminaries are briefly introduced in this section, including basic

probability assignment, Deng entropy, the maximum Deng entropy, fuzzy sets

and intuitionistic fuzzy sets.

2.1. Basic probability assignment

Dempster-Shafer evidence theory[3, 4] can be used to deal with uncertainty.55

Besides, evidence theory satisfies the weaker conditions than the probability the-

ory, which provides it with the ability to express uncertain information directly.

Some basic conceptions of evidence theory are given as follows:

Definition 2.1: Frame of discernment and its power set

Let Θ, called the frame of discernment, denote an exhaustive nonempty set

of hypotheses, where the elements are mutually exclusive. Let the set Θ have N
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elements, which can be expressed as:

Θ = {θ1, θ2, θ3, · · · , θN} (1)

The power set of Θ, denoted as 2Θ, contains all possible subsets of Θ and

has 2N elements, and 2Θ is represented by

2Θ = {A1, A2, A3, · · · , A2N }

= { ∅, {θ1}, {θ2}, · · · , {θN}, {θ1, θ2},

{θ1, θ3}, · · · , {θ1, θN}, · · · ,Θ } (2)

where the element Ai is called the focal element of Θ, if Ai is nonempty.60

Definition 2.2: Basic probability assignment (BPA)

A BPA is a mass function mapping m from 2Θ to [0, 1], and it is defined

as follows:

m : 2Θ → [0, 1] (3)

which is constrained by the following conditions:

∑
A∈2Θ

m(A) = 1 (4)

m(∅) = 0 (5)

2.2. Deng entropy

In information theory, entropy can be used to measure the uncertainty of a

system. Recently, a novel entropy, named as Deng entropy [12], is proposed to65

measure the uncertainty in evidence theory.

Definition 2.5: Deng entropy
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Deng entropy is defined as:

HDE(m) = −
∑
A∈2Θ

m(A) log(
m(A)

2|A| − 1
) (6)

where |A| is the cardinal of a certain focal element A.

Deng entropy is the generalization of Shannon entropy. When every focal

element is singleton, Deng entropy degenerates into Shannon entropy.70

Through a simple transformation, Eq.(6) can be rewritten as follows:

HDE(m) =
∑
A∈2Θ

log(2|A| − 1)−
∑
A∈2Θ

m(A) logm(A) (7)

where
∑

A∈2Θ log(2|A| − 1) and −
∑

A∈2Θ m(A) logm(A) are measurements of

nonspecificity and discord, respectively. As a result, Deng entropy is a composite

measurement of nonspecificity and discord, which means that it is a tool for

measuring total uncertainty.

2.3. The maximum Deng entropy75

Assume A is the focal element of a certain frame of discernment Θ and m(A)

is the BPA for A. According to [15], the analytic solution of the maximum Deng

entropy and the conditions of BPA distribution is as follows:

Theorem 2.1: The analytic solution of the maximum Deng Entropy and its

BPA distribution80

If and only if m(A) = (2|A|−1)∑
A∈2Θ (2|A|−1)

, Deng entropy reaches its maximum

value, and the analytic solution of the maximum Deng entropy is

HMDE(m) = log
∑
A∈2Θ

(2|A| − 1) (8)

2.4. Fuzzy sets

Let E be a universe of discourse. A fuzzy set A based on E can be charac-

terized by the set of pairs which is defined as [2]:
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Definition 2.6: Fuzzy sets85

A = {〈x, µA (x)〉 |x ∈ E} (9)

where µA : E → [0, 1] is the membership function (MF) of A. µA (x) describes

the membership degree of each element x to the fuzzy set A. The closer µA (x)

is to 1, the more likely x belongs to A.

2.5. Intuitionistic fuzzy sets

Given a universe of discourse E, a intuitionistic fuzzy set (IFS) A is defined90

as follows [18]:

Definition 2.7: Intuitionistic fuzzy sets (IFS)

A = {〈x, µA (x) , γA (x)〉 |x ∈ E} (10)

where µA : E → [0, 1] and γA : E → [0, 1] are the membership function (MF) and

the non-membership function (non-MF) of A, respectively. µA (x) describes the

membership degree of x to the set A, and γA (x) describes the non-membership

degree of x to the set A. For every x ∈ E, 0 ≤ µA (x) + γA (x) ≤ 1. The

hesitancy degree is defined as:

ηA (x) = 1− µA (x)− γA (x) (11)

which represents the hesitancy degree of each element x ∈ E.

3. The uncertainty of a fuzzy membership function

In the past decades, plenty of theories have been developed for expressing95

and dealing with the uncertainty in the uncertain environment, for instance,

probability theory, fuzzy set theory , Dempster-Shafer evidence theory, and so

on. However, there are still some issues to be solved. Among them, how to

measure the uncertainty of fuzzy environment has attracted much attention.
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In this section, firstly, we present a method to measure the uncertainty of100

MF. Then, some numerical examples and discussions are expounded for better

understanding of the proposed conceptions.

3.1. Proposed method for measuring the uncertainty of a fuzzy MF

In the course of information processing in fuzzy environment, it is impor-

tant to identify the uncertainty of the data. Taking intuitionistic fuzzy sets105

(IFS) for example, the uncertainty of MF 〈x1, 0.9, 0.1〉 is larger than that of

〈x2, 0.4, 0.4〉. As a result, in this subsection, an uncertainty measurement for

fuzzy membership function is proposed. The concrete steps are listed as follows:

step 1: Input a fuzzy membership function. Then, convert the fuzzy member-

ship function into BPA distributions. Let µA be MF, γA be non-MF, ηA110

be hesitancy degree and x be the element of universe E. Let U = {θ1, θ2}

be the frame of discernment while X = {θ1} and Y = {θ2} be singletons.

(1) For the MF of classical fuzzy sets, the associated BPA is that:

m(X) = µA (x) ,

m(U) = 1− µA (x) .

(12)

(2) For the MF of intuitionistic fuzzy sets, the associated BPA is that:


m(X) = µA (x) ,

m(Y ) = γA (x) ,

m(U) = ηA (x) = 1− µA (x)− γA (x) .

(13)

It should be noted that, the associated BPA of classical fuzzy MF is a

special case of that of intuitionistic fuzzy MF. Namely, when γA (x) = 0,

the associated BPA of intuitionistic fuzzy MF degenerates into that of115

classical fuzzy MF.

step 2: Calculate the uncertainty of the BPA based on Deng entropy [12]. Then,

output the uncertainty of the fuzzy MF HMF (m).
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(1) The uncertainty of the BPA associated with classical fuzzy MF can

be calculated as:

HMF (m) = −m(X) log
m(X)

21 − 1
−m(U) log

m(U)

22 − 1

= −m(X) logm(X)−m(U) log
m(U)

3
(14)

(2) The uncertainty of the BPA associated with intuitionistic fuzzy MF

can be calculated as:

HMF (m) = −m(X) log
m(X)

21 − 1
−m(Y ) log

m(Y )

21 − 1
−m(U) log

m(U)

22 − 1

= −m(X) logm(X)−m(Y ) logm(Y )−m(U) log
m(U)

3

(15)

3.2. Numerical examples and discussions

In this subsection, some numerical examples are shown to illustrate above120

conceptions. In the following examples, let the universe discourse be E, the

frame of discernment be U = {θ1, θ2}, X = {θ1} and Y = {θ2} be singletons.

The base of the logarithmic function is 2.

Example 3.1: Consider that a classical fuzzy MF is that 〈x1, 0.9〉 where x1 ∈ E.

The procedure of calculating the uncertainty of this MF is as follows:125

step 1: Firstly, convert this MF into BPA distribution:m(X) = 0.9,

m(U) = 1− 0.9 = 0.1.

(16)

step 2: Then, use Deng entropy to calculate the uncertainty of the associated

BPA distribution.

HMF (m) = −0.9 log2(0.9)− 0.1 log2(
0.1

3
) = 0.627492 (17)

As a result, based on Deng entropy, the uncertainty of this MF is 0.627492.
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Next, let us consider another example.

Example 3.2: Let a intuitionistic fuzzy MF be 〈x2, 0.6, 0.2〉 where x2 ∈ E.

The procedure of calculating the uncertainty of this MF is that:

step 1: Firstly, this MF can be converted into BPA distribution:


m(X) = 0.6,

m(Y ) = 0.2,

m(U) = 1− 0.6− 0.2 = 0.2.

(18)

step 2: Then, based on Deng entropy, calculate the uncertainty of the associated

BPA distribution.

HMF (m) = −0.6 log2(0.6)− 0.2 log2(0.2)− 0.2 log2(
0.2

3
) = 1.68794

(19)

Hence, the uncertainty of this MF is 1.68794. This result is larger than the130

result of Example 3.1, which means that 〈x2, 0.6, 0.2〉 is more uncertain than

〈x1, 0.9〉.

Example 3.3: Let a intuitionistic fuzzy MF be 〈x3, 0.2, 0.2〉 where x3 ∈ E.

The procedure of calculating the uncertainty of this MF is as follows:

step 1: Firstly, convert this MF into BPA:


m(X) = 0.2,

m(Y ) = 0.2,

m(U) = 1− 0.2− 0.2 = 0.6.

(20)

step 2: Then, using Deng entropy, we can calculate the uncertainty of the asso-

ciated BPA.

HMF (m) = −0.2 log2(0.2)− 0.2 log2(0.2)− 0.6 log2(
0.6

3
) = 2.32193

(21)
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So, the uncertainty of this MF is 2.32193. Actually, this BPA is the BPA135

distribution of the maximum Deng entropy [15] when the cardinal of the frame

of discernment is 2, which is also called Deng distribution [17]. Besides, 2.32193

is the associated maximum value of Deng entropy, named as the maximum Deng

entropy [15]. This example shows that 〈x3, 0.2, 0.2〉 is the most uncertain case

of intuitionistic fuzzy MF based on Deng entropy.140

4. The information volume of the fuzzy membership function

4.1. Introduction of this section

In Example 3.3, we discuss about the most uncertain case of fuzzy MF and

the value of the maximum Deng entropy. In information theory, the information

volume of probability is the maximum Shannon entropy. When the base of the145

logarithmic function is 2, can we simply consider 2.32193, the value of the

maximum Deng entropy, as the information volume of a fuzzy MF? The answer

is NO. Consider following example:

Example 4.1: Let a intuitionistic fuzzy MF be
〈
x4,

1
5 ,

1
5

〉
where x4 ∈ E. Based

on the steps in section 3.1, the uncertainty of this MF is 2.32193. However, if150

we change the calculating steps as follows, the result will be larger than 2.32193.

step 1: Firstly, convert this MF into BPA:


m(X0) = 1

5 ,

m(Y0) = 1
5 ,

m(U0) = 1− 1
5 −

1
5 = 3

5 .

(22)

step 2: Next, focus on the element whose cardinal is larger than 1, and separate

its BPA based on this proportion: 1
5 : 1

5 : 3
5 . Namely, we focus on m(U0),
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and separate this BPA based on 1
5 : 1

5 : 3
5 . The result is that:



m(X0) = 1
5 ,

m(Y0) = 1
5 ,

m(X1) = 1
5 ×

3
5 = 3

25 ,

m(Y1) = 1
5 ×

3
5 = 3

25 ,

m(U1) = 3
5 ×

3
5 = 9

25 .

(23)

where m(X1), m(Y1) and m(U1) can be seen as derivatives of m(U0).

For better understanding, the calculating procedure of step 2 is illus-

trated in Figure 1.

Figure 1: The procedure of step 2

step 3: Finally, based on Deng entropy, calculate the uncertainty of the new
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BPA distribution.

HMF (m) =− 1

5
log2(

1

5
)− 1

5
log2(

1

5
)− 3

25
log2(

3

25
)

− 3

25
log2(

3

25
)− 9

25
log2(

9
25

3
)

=2.76411 (24)

Based on this calculating steps, the uncertainty of fuzzy MF is 2.76411,155

which is larger than 2.32193. This example shows that, the uncertainty of fuzzy

MF increases when the BPA is separated.

In the first paper of this series [17], the information volume of mass function

is defined based on continuously separating the mass function. Inspired by the

idea of continuous separation, we can also continuously divide the associated160

BPA of fuzzy MF until HMF (m) converges to a certain value, which is actually

the information volume of the fuzzy membership function.

Hence, in the rest of this section, firstly, we define the information volume

of the fuzzy membership function. Then, one example is shown for better un-

derstanding of the definition, and some brief discussions are followed after the165

example.

4.2. The definition of the information volume of the fuzzy membership function

Definition 2.8: The information volume of the fuzzy membership function

Let the universe discourse be E, the frame of discernment be U = {θ1, θ2},

X = {θ1} and Y = {θ2} be singletons. Let the fuzzy MF be 〈x, µA, γA〉 where170

x ∈ E. If the fuzzy MF is based on classical fuzzy sets, y equals to 0. Use index i

to denote the times of the loop. The information volume of a fuzzy membership

function can be calculated by following steps:

step 1: Input the fuzzy MF of the fuzzy sets. Then, convert this fuzzy MF into
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associated BPA: 
m(X0) = µA,

m(Y0) = γA,

m(U0) = ηA = 1− µA − γA.

(25)

where i = 0 means the initial time of the loop.

step 2: Next, continuously separate the associated BPA of the element whose175

cardinal is larger than 1 until convergence. Concretely, repeat the loop

from step 2-1 to step 2-3 until Deng entropy is convergent.

step 2-1: Focus on the element whose cardinal is larger than 1. Since

Ui is the only element that |Ui| > 1, we only focus on Ui. And

then, separate the mass function of Ui based on the proportion

of Deng distribution [17]:

mD(Ai) =
(2|Ai| − 1)∑

Ai∈2Ui (2|Ai| − 1)
(26)

where Ai can be Xi, Yi or Ui.

Since U = {θ1, θ2}, the proportion is that 1
5 : 1

5 : 3
5 . The ith

times of separation divide m(Ui−1) and yield following new

BPAs: m(Xi), m(Yi), m(Ui) which are derived from m(Ui−1).

In addition, they satisfy these equations:

m(Xi) +m(Yi) +m(Ui) =m(Ui−1) (27)

m(Xi) : m(Yi) : m(Ui) =
1

5
:

1

5
:

3

5
(28)

step 2-2: Based on Deng entropy, calculate the uncertainty of the new

BPA distribution. The result is denoted as HMFi(m).180

step 2-3: Calculate ∆i = HMFi(m) − HMFi−1(m). When ∆i satisfies

following condition, jump out of this loop.

∆i = HMFi(m)−HMFi−1(m) < ε (29)
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where ε is the allowable error.

step 3: Output HIV−MF (m) = HMFi(m), which is the information volume of

fuzzy membership function.

4.3. The maximum information volume of fuzzy membership function

Theorem 4.1: The maximum information volume of fuzzy membership func-185

tion

If and only if the associated BPA of fuzzy MF is Deng distribution [17], the

information volume of fuzzy MF achieve its maximum value, which is called the

maximum information volume of fuzzy membership function HMIV−MF (m).

4.4. Numerical examples and discussions190

For better understanding of the proposed definition, some examples are ex-

pounded. In the following examples, the base of the logarithmic function is 2,

and the allowable error is 0.001.

Example 4.2: Let the universe discourse be E, the frame of discernment be

U = {θ1, θ2}. The base of the logarithmic function of Deng entropy is 2. Let a195

intuitionistic fuzzy MF be A = {
〈
x5,

1
2 ,

1
2

〉
|x5 ∈ E}.

Firstly, convert this fuzzy MF into associated BPA: m(X0) = m(Y0) = 1
2 ,

m(U0) = 0.

Because there is no focal element whose cardinal is larger than 1, the step

2-1 can be skipped for all the times of the loop. Then, in step 2-2, use Deng

entropy to calculate the uncertainty of this mass function:

HMFi(m) = −1

2
log2(

1

2
)− 1

2
log2(

1

2
) = 1 (30)

After going through the loop again, the new HMFi(m) is also 1 since step 2-1

is always skipped. As a result, we escape from the loop and get the information200

volume of this mass function HIV−MF (m) = 1.

Actually, this associated BPA of fuzzy MF is the probability distribution

P1 = P2 = 1
2 . Hence, when the hesitancy degree of a fuzzy MF is ηA =

1− µA− γA = 0, the value of HIV−MF (m) is identical to the Shannon entropy.
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Example 4.3: Let the universe discourse be E, the frame of discernment be205

U = {θ1, θ2}. The base of the logarithmic function of Deng entropy is 2. Let a

intuitionistic fuzzy MF be A = {
〈
x6,

1
5 ,

1
5

〉
|x6 ∈ E}.

Based on the definition of the information volume of fuzzy sets, the calcu-

lating procedure is illustrated in Figure 2.

Figure 2: The procedure of from step 2-1 to step 2-3

Then, the convergence procedure of HMFi(m) is listed in Table 1.210

Table 1: The convergence procedure of HMFi(m)

i HMFi(m) i HMFi(m)

1 2.321928 8 3.396431
2 2.764107 9 3.408809
3 3.029415 10 3.416236
4 3.188600 11 3.420692
5 3.284110 12 3.423366
6 3.341417 13 3.424970
7 3.375801 14 3.425933

According to Table 1, when we continuously separate the associated BPA

of the element whose cardinal is larger than 1, the ∆i becomes smaller and

smaller. When i = 14, HMFi(m) − HMFi−1(m) < 0.001, which means that
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Hi(m) finally converges to 3.425933. Hence the information volume of this

fuzzy set is HIV−MF (m) = 3.425933.215

This associated BPA of fuzzy MF is the same as Deng distribution. Un-

der this kind of fuzzy MF, HIV−MF (m) = 3.425933 is actually the maximum

information volume of fuzzy membership function HMIV−MF (m).

5. Conclusion

In this paper, firstly, we propose a method to measure the uncertainty of a220

fuzzy MF through two steps. Step 1 is to convert the MF into BPA, and step 2 is

to calculate the uncertainty of the associated BPA based on Deng entropy. Then,

we define the information volume of the fuzzy MF. By continuously separating

the BPA of the element whose cardinal is larger than 1 until convergence, the

value of the information volume of the fuzzy MF can be calculated. In addition,225

several examples and figures are expound to illustrated the proposed method

and definition. An interesting point is that, when the hesitancy degree of a fuzzy

MF is 0, information volume of the fuzzy membership function is identical to

the Shannon entropy.
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