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Abstract

Negation is an important operation on uncertainty information. Based on

the information volume of mass function, a new negation of basic probability

assignment is presented. The result show that the negation of mass function

will achieve the information volume increasing. The convergence of negation is

the situation when the Deng entropy is maximum, namely high order Deng en-

tropy. If mass function is degenerated into probability distribution, the negation

of probability distribution will also achieve the maximum information volume,

where Shannon entropy is maximum. Another interesting results illustrate the

situation in maximum Deng entropy has the same information volume as the

whole uncertainty environment.
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Maximum Deng entropy, Maximum information volume

1. Introduction

Uncertainty plays an essential role in the real lief. In order to handle this

issue, there are plenty of theories to express and deal with the uncertainty in the

uncertain environment, for instance, probability theory [1], fuzzy set theory [2],

∗Corresponding author
Email address: dengentropy@uestc.edu.cn; prof.deng@hotmail.com (Yong Deng )

Preprint submitted to Journal of LATEX Templates June 8, 2020



Dempster-Shafer evidence theory (D-S theory) [3, 4], rough sets [5] and so on.5

D-S theory assigns probabilities to the power set of events, so as to better grasp

the unknown and uncertainty of the problem [3, 4]. Based on the advantages of

D-S theory, the paper mainly discusses the related contents of D-S theory.

In many cases, we can not easily come to the decision-making from the

known information [6]. However, negation, namely the opposite side of known10

information, can give us a possible way of knowledge representation [7]. Zhade

in his BISC blog raised the the negation of a probability distribution. Yager

also proposed a new method to calculate the negation, and thought entropy can

increase with negation [8].

The paper also proposed negation operation in D-S theory. Besides, what15

are there the changes after negation operation? What is the cause of these

changes? In physics, some operations can the system more chaos. In our paper,

we will use information volume based on Deng entropy to measure the changes

after negation operation. Information volume can measure the more uncertainty

than Deng entropy, which can be applied to absorb the complex imprecise (or20

unknown) phenomenon in the belief filed efficiently [9, 10]. Besides, information

volume can show the existence of the fractal property [11].

The rest of this paper is organized as follows. In section 2, some preliminaries

are briefly reviewed. In section 3, the proposed negation operation can be

introduced. In section 4, numerical examples are expounded to discuss the25

proposed method. In section 5, we have a brief conclusion.

2. Preliminaries

Several preliminaries are briefly introduced in this section, including D-S

theory, Deng entropy, information volume.

2.1. Dempster-Shafer evidence theory30

Dempster-Shafer evidence theory[3, 4] can be used to deal with uncertainty.

Besides, evidence theory satisfies the weaker conditions than the probability the-
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ory, which provides it with the ability to express uncertain information directly.

Some basic conceptions of evidence theory are given as follows:

Definition 2.1. ( Frame of discernment)

Let Θ be the set of mutually exclusive and collectively exhaustive events Ai [3, 4],

namely

Θ = {A1, A2, · · · , An} (1)

The power set of Θ composed of 2N elements of is indicated by 2Θ, namely [3, 4]:

2Θ = {ϕ, {A1} , {A2} , · · · , {A1, A2} , · · · ,Θ} (2)

Definition 2.2. ( Mass Function)

For a frame of discernment Θ = {A1, A2, · · · , An}, the mass function m is

defined as a mapping of m from 0 to 1[3, 4], namely:

m : 2Θ → [0, 1] (3)

which satifies

m (ϕ) = 0 (4)

∑
A⊆Θ

m (A) = 1 (5)

In D-S theory, a mass function is also called a basic probability assignment35

(BPA) or a piece of evidence or belief structure. The m(A) measures the belief

exactly assigned to A and represents how strongly the piece of evidence supports

A.

2.2. Deng entropy

Deng proposed an Deng Entropy, which is an generalization of Shannon40

entropy [12].

Definition 2.3. (Deng entropy)
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Given a BPA, Deng entropy can be defined as:

HD = −
∑
A⊆Θ

m(A)log2
m(A))

2|A| − 1
(6)

Through a simple transformation, Deng Entropy can be rewrite as follows:

HD =
∑
A⊆Θ

m(A)log2(2
|A| − 1)−

∑
A⊆Θ

m(A)log2m(A) (7)

where m is a BPA defined on the frame of discernment Θ, and A is the

focal element of m, |A| is the cardinality of A. Besides, the term
∑

m(A) ×

log2(2
|A| − 1) could be interpreted as a measure of total nonspecificity in the45

mass function m, and the term −m(A)× log2m(A) is the measure of discord of

the mass function among various focal elements.

2.3. Information volume of mass function

Let the frame of discernment be Θ = {θ1, θ2, θ3, · · · , θN}. Use index i to

denote the times of this loop, and use m(Ai) to denote different mass function50

of different loops. Based on Deng entropy, the information volume of mass

function can be calculated by following steps [9]:

step 1: Input mass function m(A0).

step 2: Continuously separate the mass function of the element whose cardinal

is larger than 1 until convergence. Concretely, repeat the loop from step55

2-1 to step 2-3 until Deng entropy is convergent.

step 2-1: Focus on the element whose cardinal is larger than 1, namely,

|Ai| > 1. And then, separate its mass function based on the

proportion of Deng distribution:

mD(Ai) =
(2|Ai| − 1)∑

Ai∈2Θ(2
|Ai| − 1)

(8)

For example, given a focal element Ai−1 = {θx, θy} and its

mass function m(Ai−1), the separating proportion is that 1
5 :
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1
5 : 3

5 . The ith times of separation divides m(Ai−1) and yields

following new mass function: m(Xi), m(Yi), m(Zi), where

Xi = {θx}, Yi = {θy} and Zi = {θx, θy}. In addition, they

satisfy these equations:

m(Xi) +m(Yi) +m(Zi) =m(Ai−1) (9)

m(Xi) : m(Yi) : m(Zi) =
1

5
:
1

5
:
3

5
(10)

step 2-2: Based on Deng entropy, calculate the uncertainty of all the

mass functions except for those who have been divided. The

result is denoted as Hi(m).

step 2-3: Calculate ∆i = Hi(m)−Hi−1(m). When ∆i satisfies following

condition, jump out of this loop.

∆i = Hi(m)−Hi−1(m) < ε (11)

where ε is the allowable error.60

step 3: Output HIV−mass(m) = Hi(m), which is the information volume of the

mass function.

3. Proposed Negation Operation

Negation operation can provide us a new view to make decision from known

information. Next, we will introduce the proposed negation operation.65

Assume frame of discernment Θ has N elements, 2Θcan be expressed as:

2Θ = {A1, A2, · · · , A2N } (12)

Especially, A1 = ϕ,A2N = Θ. Let m be a BPA. Assume that

2N∑
i=1

mAi = 1 (13)
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Figure 1: The procedure of from step 2-1 to step 2-3

Similarly, m̄Airepresent the negation of mAi , and the procedure of taking nega-

tion is listed as follows.

Step 1 : For each focal element Ai in the frame of discernment, we use

1−mAi to represent the complementary probability of mAi .

m̂Ai = 1−mAi (14)

Step 2 : m̂Ai can be divided into other elements without Ai as follow.

m̄(Aj) = m̂(Ai)×
2|Aj | − 1∑2Θ

Ak ̸=Ai
2|Ak| − 1

(15)

Step 3 : Calculate the sum λ of the negative belief of all the focal elements.

Namely,

λ =
∑

m̄Aj (16)

Step 4 : The step is used to normalize the belief of all the negative focal

elements.

m̄Ai =
1−mAi

λ
(17)
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4. Numerical Examples and Discussion

Example 1 Assume a frame of discernment Θ = {a, b, c}, for a mass func-70

tion which degenerate the probability m (a) = 0.1, m (b) = 0.2, m (c) = 0.7 the

associated negation can be calculated as follows.

m̄ (a) = 0.45

m̄ (b) = 0.4

m̄ (c) = 0.15

Next, we will discuss the final result after multi negation operations in Table

??.

i m̄i(a) m̄i(b) m̄i(c)
1 0.45 0.4 0.15
2 0.275 0.3 0.425
3 0.3625 0.35 0.2875
4 0.3188 0.325 0.3562
5 0.3406 0.3375 0.3219
6 0.3297 0.3313 0.3391
7 0.3352 0.3344 0.3305
8 0.3324 0.3328 0.3348
9 0.3338 0.3336 0.3326
10 0.3331 0.3332 0.3337

Table 1: The change of mass function after negation operation

In ??, i represents the times of negation. It can be seen that the distribution75

tends to be more and more uniform distributed after multi negation operation.

As we all known, in probability theory, uniform distribution represents the most

chaotic system, namely the system has the biggest uncertainty. Besides, if we

use the information volume to measure the uncertainty, what will change ? So,

we use the information volume to calculate the change as Figure 2. It can80

be seen that the BPA have a trend of fluctuation after negation, however, the

information volume can have a trend of increasing.
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Figure 2: The trend of BPA and information volume after negation

Example 2 Assume a frame of discernment Θ = {a, b}, for a mass function

which degenerate the probability m (a) = 0.5, m (b) = 0.4, m (a, b) = 0.1 the

associated negation can be calculated as follows.85

m̄ (a) = 0.3

m̄ (b) = 0.2875

m̄ (a, b) = 0.4125

The specific process of negation calculation is as Figure 3.

Next, we will discuss the final result after multi negation operations in Table

2. From the Table 2, it can be seen that the information volume can increase

with the negation operation.
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Figure 3: The specific process of negation calculation for Example 2

i m̄i(a) m̄i(b) m̄i(a, b) information volume
1 0.3 0.2875 0.4125 1.7026
2 0.2359 0.2343 0.5298 2.9779
3 0.2133 0.213 0.5737 3.2822
4 0.2050 0.2049 0.5902 3.3755
5 0.2018 0.2018 0.5963 3.4190
6 0.2000 0.2000 0.6000 3.4259
7 0.2000 0.2000 0.6000 3.4259
8 0.2000 0.2000 0.6000 3.4259
9 0.2000 0.2000 0.6000 3.4259
10 0.2000 0.2000 0.6000 3.4259

Table 2: The change of mass function after negation operation

5. Conclusion90

In this paper, a negation method of mass function is presented based on the

information volume. We show that the negation will achieve the information

volume increasing, not only in the case of probability distribution but also mass

function. If the input is probability distribution, the relative maximum infor-

mation volume is Shannon entropy. While if the imput is mass function, the95

negation result is the Deng distribution relative to the maximum Deng entropy,

also equals the information volume of total uncertainty environment.
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