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Abstract

We provide a rigorous analysis of AIXI’s behaviour
under repeated Newcomblike settings. In this con-
text, a Newcomblike problem is a setting where an
agent is tied against an environment that contains a
perfect predictor, whose predictions are used to de-
termine the environmet’s outputs. Since AIXI lacks
good convergence properties, we chose to focus the
analysis on determining whether an environment
appears computable to AIXI, that is, if it maps ac-
tions to observations in a way that a computable
program can achieve. It is in this sense that, it turns
out, AIXI can learn to one-box in repeated Opaque
Newcomb, and to smoke in repeated Smoking Le-
sion, but may fail all other Newcomblike problems,
because we found no way to reduce them in a com-
putable form. However, we still suspect that AIXI
can succeed in the repeated settings.

1 Motivation and past work
The question of how Newcomb’s problem would be handled
by agents that learn their environments seems underexplored.
Xi Li [Li, 2019] attempts to analyse how AIXI handles New-
comb’s problem, without analyzing the setup in general.

Oesterheld [Oesterheld, 2019] tries to derive what decision
theory is implemented by approval directed agents. A team
in a previous iteration of AISC is analyzing how bandit algo-
rithms would behave in Newcomb-like situations and found
that, while they don’t implement any decision theory among
CDT, EDT, or FDT, they implement ratifiable policies; an ac-
tion is ratifiable if that action is optimal conditional on that
action being taken.

Another attempt [Everitt et al., 2019] analyses sequential
Newcomb-like problems with CDT and EDT. CDT had one
natural extension to this problem space, while EDT had two;
depending on whether the agent updates based on its actions
or policy.

Botworld [Soares and Fallenstein, 2014] is a toy environ-
ment developed by MIRI in which to study self-modifying
agents embedded in their environment. A Newcomb-like sce-
nario explored in Botworld is The Precommitment Game,
where an agent similar to AIXI fails to take the optimal action

when tied against an opponent that can read a portion of its
source code in an infinitely repeated setting.

Outside of the Botworld toy models, Newcomb problems
have historically been analyzed in the context of agents al-
ready knowing the environment and taking actions based on
the rules dictated by their decision theory. Vanessa Kosoy
[Kosoy, 2019] has pointed out that we can’t decouple the
problem of learning a model of the world from the problem of
taking a decision given such a model, and given an example
of how Quasi Bayesian Agents can solve repeated counter-
factual mugging.

This makes it suspect that analysing how learning agents
behave in Newcomblike situations may be a better idea
than the Decision Theory approach, where the agent already
knows the environment and takes actions based on the rules
dictated by its decision theory. In any case, developing a
thorough analysis of every known Newcomb-like problem,
as handled by learning agents such as AIXI, reflective oracles
[Fallenstein et al., 2015], or Quasi Bayesian Agents [Kosoy,
2019], seems important.

2 AIXI’s definition
AIXI [Hutter, 2004] is a theoretical model of artificial general
intelligence, under the framework of reinforcement learning,
that describes optimal agent behavior given unlimited com-
puting power and minimal assumptions about the environ-
ment.

In reinforcement learning, the agent-environment interac-
tion consists of a turn-based game with discrete time-steps
[Sutton et al., 1998]. At time-step t, the agent sends an ac-
tion at to the environment, which in turn sends the agent
a percept that consists of an observation and reward tuple,
et = (ot, rt). This procedure continues indefinitely or even-
tually terminates, depending on the episodic or non-episodic
nature of the task.

Actions are selected from an action space A that is usually
finite, and the percepts from a percept space E = O × R,
where O is the observation space, and R is the reward space
that is usually bounded to [0, 1].

For any sequence x1, x2, ... , the part between t and k is
denoted xt:k = xt...xk. The shorthand x<t = x1:t−1 denotes
sequences starting from time-step 1 and ending at t−1, while
x1:∞ = x1x2... denotes an infinite sequence. Sequences can
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be appended to each other, for example, x<txt:k = x1:k. Fi-
nally, x∗ is any infinite string beginning with x.

The environment is modeled by a deterministic program
q of length l(q), and the future percepts e<m = U(q, a<m)
up to a horizon m are computed by a universal (monotone
Turing) machine U executing q given a<m. The probability
of percept et given history ae<tat is thus given by:

P (et | ae<tat) =
∑

q:U(q,a≤t)=e≤t∗

2−l(q) (1)

where Solomonoff’s universal prior is used to assign a prior
belief to each program.

An agent can be identified with its policy, which is a distri-
bution over actions π(at | ae<t).

If the agent is rational in the Von Neumann-Morgenstern
sense [Morgenstern and Von Neumann, 1953], it should max-
imize the expected return, as computed by the value function:

V π (ae<t) =
∑
at∈A

π (at|ae<t)

·
∑
et∈E

P (et|ae<tat) [γtrt + γt+1V
π (ae1:t)]

(2)

where γ : N → [0, 1] is a discount function with convergent
sum.

In other words, the AIXI agent uses the policy:

πAIXI(ae<t) = argmax
π∈Π

V π(ae<t) (3)

3 AIXI’s optimality
Let µ be the true environment. AIXI is known to have the
property of on-policy value convergence; that is:

V πξ − V πµ → 0

This means that AIXI learns how good its policy is, asymp-
totically. Unfortunately, this is not the same as asymptotic
optimality, a property that AIXI indeed lacks:

V ?µ − V πµ → 0

Why this is the case is somewhat complicated [Amodei
and Clark, 2016] and relies on two facts: an “unreasonable”
enough UTM can make AIXI perform arbitrarily bad, and we
don’t know how to formally specify a “reasonable” UTM.

Our opinion on this is that those reasons are not very
concerning. Let ζ be a prior over programs. It can be a
Solomonoff prior (which hereafter we denote with ξU to in-
dicate that it is relative to a Universal Turing Machine U ) or
any other prior (such as a prior that only contains bandit en-
vironments). We use AIζ to denote a version of AIXI that is
modified to use ζ instead of ξU .

We know that if ζ contains only ergodic MDPs, and if
the true environment is actually ergodic, then AIζ exhibits

asymptotic optimality. Ergodic MDPs are the largest envi-
ronment class for which we know this, and so far there are
no results saying that this is the largest class for which this
is possible, so we’ll probably prove similar results for larger
and larger classes.

In any case, repeated games are ergodic MDPs, so when
we analyse AIXI’s responses in repeated Newcomblike prob-
lems, we’ll tacitly assume that we are working with AIζ,
where ζ is the largest environment class for which AIζ ex-
hibits asymptotic optimality, and we’ll focus on checking
whether the true environment appears computable to AIXI.
Roughly speaking, an environment (that may be uncom-
putable because of having oracle access to AIXI’s policy) ap-
pears computable to AIXI if it maps actions to observations
in a way that a computable program in ζ can achieve. It turns
out that this is sometimes possible, and sometimes not, de-
pending on the problem setting.

4 Newcomblike problems
For the purposes of this analysis, a Newcomblike problem
is a setting where an agent, such as AIXI, is tied against an
environment such that:
• It contains a perfect predictor (in the form of oracle ac-

cess to AIXI’s policy);
• The outputs of the environment depend on the predic-

tor’s predictions.

4.1 Notation and modeling choices
Let eNewcomblike be a Newcomblike environment. We for-
malize the setup in the following way.

At each step t, πAIXIζ outputs at ∈ A (for example,
A = {a1, a2} for one-box or two-box) according to the usual
(uncomputable) algorithm. The environment eNewcomblike
will output et = (ot, rt), with ot ∈ O (for example, O =
{oe, of , . . . } for observing an empty box or a full box before
acting in transparent Newcomb) and rt ∈ [0, 1] ∩ Q (dollars
received normalized to [0, 1]).

Unless otherwise stated, every episode is completely inde-
pendent from the others, and AIXI can retain memory of past
episodes. Every episode consists of one timestep worth of
action-observation pair.

We use the notation [x = y] to mean 1 if x = y, and 0
otherwise.

4.2 Opaque Newcomb
An agent finds herself standing in front of a trans-
parent box labeled “A” that contains $1,000, and
an opaque box labeled “B” that contains either
$1,000,000 or $0. A reliable predictor, who has
made similar predictions in the past and been
correct 99% of the time, claims to have placed
$1,000,000 in box B iff she predicted that the agent
would leave box A behind. The predictor has al-
ready made her prediction and left. Box B is
now empty or full. Should the agent take both
boxes (“two-boxing”), or only box B, leaving the
transparent box containing $1,000 behind (“one-
boxing”)?

https://www.lesswrong.com/posts/xhzbgjYYMmmErENB6/versions-of-aixi-can-be-arbitrarily-stupid


eNewcomb acts in the following way. Given a history h =
ae<t:
• Let P(h) be the function that is a1 if the predictor pre-

dicts that AIXI one-boxes, a2 otherwise.
– The predictor has access to a copy of πAIXIζ , and

to an oracle that can compute πAIXIζ (h), therefore
P(h) = πAIXIζ (h)

• When it is AIXI’s turn to move, it outputs at =
πAIXIζ (h), and then the environment outputs et =

eNewcomb(hat) with:

– ot ∈ {o+
1 , o
−
1 , o

+
2 , o
−
2 } (the number indicates how

many boxes were received, the sign whether there
was money in the “Newcomb” box), where the de-
pendency mapping between the agent’s action and
the predictor’s prediction is:
∗ ot = o+

1 ⇐⇒ P(h) = a1 and at = a1

∗ ot = o−1 ⇐⇒ P(h) = a2 and at = a1

∗ ot = o+
2 ⇐⇒ P(h) = a1 and at = a2

∗ ot = o−2 ⇐⇒ P(h) = a2 and at = a2

– rt = [P(h) = a1] · 1000000 + [at = a2] · 1000
Clearly, P(h) = at.

Thus, let’s say that at = a1. Then ot = o+
1 and rt =

1000000.
Conversely, if at = a2 then ot = o−2 and rt = 1000.
The (computable) program that encodes this dynamic is

qNewcomb(hat) = (o+
1 · [at = a1] + o−2 · [at = a2],

[at = a1] · 1000000 + [at = a2] · 1000)
This is in AIXI’s model, and its optimal action is to one-

box, which corresponds to the optimal action for the true en-
vironment.

4.3 Transparent Newcomb
Events transpire as they do in Newcomb’s problem,
except that this time both boxes are transparent—so
the agent can see exactly what decision the predic-
tor made before making her own decision. The pre-
dictor placed $1,000,000 in box B iff she predicted
that the agent would leave behind box A (which
contains $1,000) upon seeing that both boxes are
full. In the case where the agent faces two full
boxes, should she leave the $1,000 behind?

The observations here are:
• ot ∈ {o+

1f , o
−
1f , o

+
2f , o

−
2f , o

+
1e, o

−
1e, o

+
2e, o

−
2e}

– The number indicates how many boxes were re-
ceived, and the sign whether there was money in
the “Newcomb” box (in the future I’m gonna use
∗ ∈ {+,−} and # ∈ {1, 2} as placeholders).

– The observation also shows the start of the next
game, with f/e indicating whether AIXI sees a full
box or an empty box before making the choice.

eTransp acts in the following way. AIXI’s first action (on an
empty history) is ignored by the environment. Then, given a
history h = ae<tat:

• Let P(h) be the function that is a1 if the predictor pre-
dicts that AIXI one-boxes in turn t+ 1 (given that AIXI
sees a full box), a2 otherwise.

– The predictor has access to a copy of πAIXIζ , and
to an oracle that can compute πAIXIζ (he∗#f ), with
ot = o∗#f , therefore P(h) = πAIXIζ (he∗#f ).

• When it is AIXI’s turn to move, it outputs at+1 =
πAIXIζ (het), and then the environment outputs et+1 =

eTransp(hetat+1) with:
– ot+1 = o∗#x where:
– x = f ⇐⇒ P(hetat+1) = a1

– x = e⇐⇒ P(hetat+1) = a2

– ∗ = +⇐⇒ ot = o∗
′

#′f

– ∗ = − ⇐⇒ ot = o∗
′

#′e

– # = 1⇐⇒ at+1 = a1 - # = 2⇐⇒ at+1 = a2

– rt+1 = [ot = o∗#f ] · 1000000 + [at+1 = a2] · 1000
Clearly, P(h) = a1 ⇐⇒ ot = o∗#f .

Two programs that encode this dynamic are:

qTransp1 (hat) =

{
ot = o

∗ft−1

#atxseed
,

rt = [ot−1 = of ] · 1000000 + [at = a2] · 1000,

qTransp2 (hat) =

{
ot = o

∗ft−1

#atxat
,

rt = [ot−1 = of ] · 1000000 + [at = a2] · 1000,
The output of these programs depends on the future history,

so they are not in AIXI’s model.

4.4 Parfit’s hitchhiker
An agent is dying in the desert. A driver comes
along who offers to give the agent a ride into the
city, but only if the agent will agree to visit an ATM
once they arrive and give the driver $1,000. The
driver will have no way to enforce this after they
arrive, but she does have an extraordinary abil-
ity to detect lies with 99% accuracy. Being left
to die causes the agent to lose the equivalent of
$1,000,000. In the case where the agent gets to the
city, should she proceed to visit the ATM and pay
the driver?

For the purpose of this analysis, the driver has 100% accu-
racy.
eParfit acts in the following way. Given a history h =

ae<t:
• Let I(h) be the indicator function that is 1 if the predic-

tor predicts that AIXI one-boxes, 0 otherwise.
– The predictor has access to a copy of πAIXIξ , and

to an oracle that can compute πAIXIξ (h), therefore
I(h) = πAIXIξ (h)

• When it is AIXI’s turn to move, it outputs at =
πAIXIξ (h), and then the environment outputs et =

eNewcomb(hat) = (at, I(h) ·1000000+(1−at) ·1000)
Thus, AIXI is optimal in this environment.



4.5 Smoking lesion
An agent is debating whether or not to smoke. She
knows that smoking is correlated with an invariably
fatal variety of lung cancer, but the correlation is
(in this imaginary world) entirely due to a common
cause: an arterial lesion that causes those afflicted
with it to love smoking and also (99% of the time)
causes them to develop lung cancer. There is no
direct causal link between smoking and lung can-
cer. Agents without this lesion contract lung cancer
only 1% of the time, and an agent can neither di-
rectly observe nor control whether she suffers from
the lesion. The agent gains utility equivalent to
$1,000 by smoking (regardless of whether she dies
soon), and gains utility equivalent to $1,000,000 if
she doesn’t die of cancer. Should she smoke, or re-
frain?

In this case, the observation ot ∈ {0, 1} can be taken to
indicate that AIXI finds out whether it has the lesion or not
after choosing whether to smoke or not.
eLesion acts in the following way. Given a history h =

ae<t:
• The environment determines, through some random pro-

cess xt that is independent of the history h, whether
AIXI has the lesion or not, in turn t
• When it is AIXI’s turn to move, it outputs at =
πAIXIζ (h) which indicates whether it smokes or not,
and then the environment outputs et = (xt, (1 − xt) ·
1000000 + at · 1000)

This program is computable and in AIXI’s model.
Clearly, smoking is always better than not smoking, be-

cause rt(1) = (1 − xt) · 1000000 + 1000 > (1 − xt) ·
1000000 = rt(0).

4.6 XOR Blackmail
An agent has been alerted to a rumor that her
house has a terrible termite infestation that would
cost her $1,000,000 in damages. She doesn’t know
whether this rumor is true. A greedy predictor with
a strong reputation for honesty learns whether or
not it’s true, and drafts a letter:

“I know whether or not you have termites, and I
have sent you this letter iff exactly one of the fol-
lowing is true:
• (i) the rumor is false, and you are going to pay

me $1,000 upon receiving this letter;
• (ii) the rumor is true, and you will not pay me

upon receiving this letter.”
The predictor then predicts what the agent would
do upon receiving the letter and sends the agent the
letter iff exactly one of (i) or (ii) is true. Thus, the
claim made by the letter is true. Assume the agent
receives the letter. Should she pay up?

An episode consists of 2 timesteps here.
In this case, the observation ot ∈ {0, 1} can be taken to

indicate:

• For odd values of t, whether AIXI receives a letter on
turn t+ 1

• For even values of t, whether AIXI has termites after
choosing whether to pay or not, in turn t

eBlackmail acts in the following way. Given a history h =
ae<t:

• If t is odd:

– AIXI takes an action at that is ignored for the com-
putation of et

– There is a random process xt that determines
whether AIXI has termites in turn t+ 1

– LetP(hat1) be the indicator function that is 1 if the
predictor predicts that AIXI pays upon receiving a
letter on turn t+ 1, and 0 otherwise.
∗ The predictor has access to a copy of πAIXIζ ,

and to an oracle that can compute πAIXIζ (hat1),
therefore P(hat1) = πAIXIζ (hat1)

– The environment outputs ot = xt xor I(hat1) and
rt = 0

• If t is even:

– If ot−1 = 0 then there is no letter and AIXI’s action
at is ignored for the computation of ot = xt−1 and
rt = −ot · 1000000

– If ot−1 = 1 then there is a letter and AIXI outputs
at = πAIXIζ (h), and then the environment outputs
ot = xt−1 and rt = −at · 1000− ot · 1000000

What is relevant here is the behaviour of AIXI when t is
even and ot−1 = 1 (there is a letter in turn t). Since there is
a dependency on the future history, this program can’t be in
AIXI’s model.

4.7 Counterfactual mugging
Omega appears and says that it has just tossed a
fair coin, and given that the coin came up tails, it
decided to ask you to give it $100. Whatever you
do in this situation, nothing else will happen differ-
ently in reality as a result. Naturally you don’t want
to give up your $100. But Omega also tells you that
if the coin came up heads instead of tails, it’d give
you $10000, but only if you’d agree to give it $100
if the coin came up tails. Do you give Omega $100?

eMugging acts in the following way. Given a history h =
ae<t:
• Let P(h) be the indicator function that is 1 if the predic-

tor predicts that AIXI pays, 0 otherwise.
• The predictor has access to a copy of πAIXIζ , and to an

oracle that can compute πAIXIζ (h), therefore P(h) =

πAIXIζ (h)

• When it is AIXI’s turn to move, it outputs at =
πAIXIζ (h), and then the environment outputs:

– rt = 1000000⇐⇒ ot−1 = oT & P(heH) = 1

– rt = 0⇐⇒ ot−1 = oT & P(heH) = 0



– rt = 0⇐⇒ ot−1 = oH & at = 0

– rt = −100⇐⇒ ot−1 = oH & at = 1

This program’s output also shows a dependency on the fu-
ture history, so it can’t be in AIXI’s model.

5 Conclusion
None of the Newcomblike problems, with the exception of
Opaque Newcomb and Smoking Lesion, can be put in a com-
putable form. Thus, if AIXI is put in such repeated New-
comblike problems, it can never learn the corresponding op-
timal action.

We can’t decouple the problem of learning a model of the
world from the problem of taking a decision given such a
model, which is why we are analysing how learning agents
behave in Newcomblike situations, and why we think that de-
veloping the right Decision Theory, where the agent already
knows the environment and takes actions based on the rules
dictated by its decision theory, is not the way to go.

Future work could analyse how AIXI would behave if
given access to reflective oracles, as well as focusing on
QBA’s responses. If any of these agents can solve Newcomb-
like problems, then such agents are promising candidates for
Embedded Agency.
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