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Abstract. 

In this article, its shown that the Miyazaki (2013) Conjecture is wrong and doesn’t apply to most Pythagoreans, 

(and that the Jesmanowicz Conjecture remains un-proven) within the context of Sub-Rings (ie. Integers).  
 

Keywords: Nonlinearity; Jeśmanowicz Conjecture; Prime Numbers; Dynamical Systems; Mathematical 

Cryptography; ill-posed problems; Sub-Rings And Ring Theory; Primitive Pythagorean Triples. 
 

 

1. Introduction. 

On Pythagorean numbers, see: Jeśmanowicz (1955/1956). On other approaches to solving Diophantine 

Equations, see: Rahmawati, Sugandha, et. al. (2019), Darmon & Merel (1997) and Ibarra & Dang (2006). On the 

Jeśmanowicz Conjecture which has generated substantial debate for decades, see: Guo & Le (1995), 

Miyazaki (2011; 2013), Miyazaki, Yuan & Wu (2014); Miyazaki & Terai (2015), Takakuwa (1996), and Terai 

(2014). On various approaches for solving related diophantine equations, see: Bennett & Skinner (2004).   

Miyazaki (2013) noted that “……….In 1956 L. Jeśmanowicz conjectured, for any primitive 

Pythagorean triple (a, b, c) satisfying a
2
+b

2
=c

2
, that the equation a

x
+b

y
=c

z
 has the unique solution 

(x,y,z)=(2,2,2) in positive integers x, y and z. This is a famous unsolved problem on Pythagorean 

numbers…..….”.  Miyazaki (2013) conjectured that: “……...In this paper we broadly extend many of classical 

well-known results on the conjecture. As a corollary we can verify that the conjecture is true if a - b = 

±1………”.   

For the equation a
x
+b

y
=c

z
 in positive integers, the following are combinations of a,b,c, x,y and z; but for 

each such combination, (a
x
+b

y
)/c

z
 ≈1.0000000000000000000000 (the equation is not exactly equal to 

1.0000000000000000000000000 like in pythagorean triples): 

i) a = 3; b= 5; c = 7; x= 6; y = 7; z= 7; and (a
x
+b

x
)/c

x
 = 1.018206700.   

ii) a = 60; b= 80; c = 461; x= 6; y = 7; z= 7; and (a
x
+b

x
)/c

x
 = 1.009462982.   

iii) a = 434,500; b= 425,000; c = 75,696,000; x= 6; y = 7; z= 7; and (a
x
+b

x
)/c

x
 = 1.007764426.   

iv) a = 37,566; b= 24,844; c = 461; x= 23; y = 40; z= 66; and (a
x
+b

x
)/c

x
 = 1.010647596.   

v) a = 567,000; b= 424,410; c = 2,575; x= 23; y = 40; z= 66; and (a
x
+b

x
)/c

x
 = 1.000292303.   

 

Given the foregoing, Jesmanowicz’s Conjecture can be valid only in the Domain-Of-Integers, but not in 

the Domain-Of-Real-Numbers. Lolja (2018) explained the differences between the Domain-of-Integers and the 

Domain-Of-Lines.   

On Homomorphisms, see: Wang & Chin (2012). Chu (2008) and Lu & Wu (2016) studied dynamical 

systems pertaining to Diophantine equations (and equations such as a
2
+b

2
=c

2
 can approximate Dynamical 

Systems). Luca, Moree & Weger (2011) discussed Group Theory. Elia (2005), Jones, Sato, et. al. (1976) and 

Matijasevič (1981) noted that primes can be represented as Diophantine equations or as polynomials (ie. and the 

equation a
2
+b

2
=c

2
 can represent a prime). On uses of Diophantine Equations in Cryptography, see: Ding, Kudo, 

et. al. (2018), Okumura (2015), and Ogura (2012) (the equation a
x
+b

y
=c

z
 can be used in cryptoanalysis and in 

creation of public-keys). Zadeh (2019) notes that Diophantine equations have been used in analytic functions.  
 

The Miyazaki (2013) Conjecture and the Jesmanowicz Conjecture are not valid for all or many 

primitive pythagorean triples in positive integers. The problem is an ill-posed problem because the equation 

a
x
+b

y
=c

z
 varies dramatically over the interval (0,+∞). A primitive Pythagorean triple is where a, b and c are co-

prime (ie. there is no common divisor larger than 1). In the following simplest cases of Pythagorean-Triples 
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where a
2
+b

2
=c

2
 is valid in positive integers and a, b and c are relatively-prime/co-prime, the condition (a-

b)=±1, doesn’t hold: 

5
2
+ 12

2
 = 13

2
, but 5-12 ≠ ±1; 

7
2
+24

2
=25

2
, but 24-7 ≠ ±1; 

20
2
+21

2
=29

2
, but 20-21 ≠ ±1; 

12
2
+35

2
=37

2
, but 12-35 ≠ ±1; 

9
2
+40

2
=41

2
, but 9-40 ≠ ±1; 

28
2
+45

2
=53

2
, but 28-45 ≠ ±1; 

11
2
+60

2
=61

2
, but 11-60 ≠ ±1; 

33
2
+56

2
=65

2
, but 33-65 ≠ ±1; 

16
2
+63

2
=65

2
, but 16-63 ≠ ±1; 

48
2
+55

2
=73

2
, but 48-55 ≠ ±1; 

36
2
+77

2
=85

2
, but 36-77 ≠ ±1; 

13
2
 + 84

2
 =85

2
, but 13-84 ≠ ±1; 

65
2
+72

2
=97

2
, but 65-72 ≠ ±1; 

In the case of 3
2
+4

2
=5

2
, but 3-4= -1, but not +1. 

 

Furthermore: 

If a,b,c=1,2,3 and x,y,z= 3,3,2, then a
x
+b

y
=c

z
; 

If a,b,c=3,3,6 and x,y,z= 2,3,2, then a
x
+b

y
=c

z
; 

If a,b,c=2,3,5 and x,y,z= 4,2,2, then a
x
+b

y
=c

z
; 

If a,b,c=5,7,24 and x,y,z= 4,2,2, then a
x
+b

y
=c

z
; and also (a,b,c,x,y,z)=(7,24,25,2,2,2); 

If a,b,c=3,40,41 and x,y,z= 4,2,2, then a
x
+b

y
=c

z
; and also (a,b,c,x,y,z)=(9,40,41,2,2,2); 

If a,b,c=2,63,65 and x,y,z= 8,2,2, then a
x
+b

y
=c

z
; and also (a,b,c,x,y,z)=(8,63,65,2,2,2); 

If a,b,c=2,15,17 and x,y,z= 6,2,2, then a
x
+b

y
=c

z
; and also (a,b,c,x,y,z)=(8,15,17,2,2,2);  

 

and also in all these foregoing mentioned equations, the condition (a-b)=±1, doesn’t hold. Thus, the Miyazaki 

(2013) Conjecture and Jesmanowicz Conjecture are wrong or don’t apply to all pythagoreans. 
 

The Miyazaki (2013) conjecture is based on the condition/equation (a–b)= ±1 which is henceforth collectively 

referred to as the (a-b) Conditions, which are:  

i) (a–b)= +1, the “First (a-b) Condition”; and  

ii) (a–b)= -1, the “Second (a-b) Condition”. 
 

 

2. The Theorems. 
 

Theorem-1: Jeśmanowicz Conjectured That For Any Primitive Pythagorean Triple (a, b, c), The Equation a
x
 

+ b
y
 = c

z
 Has The Unique Solution (x, y, z)=(2, 2, 2) In Positive Integers; But For All a, b, c, x, y And 

z In Positive Integers, The First (a-b) Condition Is Wrong And The Miyazaki Conjecture Is Wrong. 

Proof: To test the first (a-b) Condition, assume that (x,y,z) = (2,2,2); then substitute (a–b)= 1, or a=(1+b) into 

a
2
+b

2
=c

2
, and the result is: (1+b)

2
+b

2
=c

2
, which is equivalent to: (1+2b+ b

2
+b

2
)= c

2
; which is equivalent to:  

(1+2b+ 2b
2
)=c

2
, which is equivalent to: [1+2b+2(c

2
-a

2
)]=c

2
; and a

2
=(1+2b+b

2
). The following are “sub-

theorems” each of which can be presented as a separate/independent Theorem.  

 

Sub-Theorem-1:  

In equation a
2
+b

2
=c

2
, c>b>a, and (c-b)≤(b-a) and for small values of a, b and c (eg. integers that are single-

digits), 2b can be equal to, or greater than b
2
 (eg. 2*2=2

2
; and 2*1>1

2
); and thus in such instances, [1+2b+2(c

2
-

a
2
)] ≠ c

2
 (that is, [1+2b+2b

2
] ≠ c

2
), and the First (a-b) Condition [ie. (a–b)=1], is wrong.      
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Sub-Theorem-2:  

In equation a
2
+b

2
= c

2
, c>b>a, and (c-b)≤(b-a) and for large values of a, b and c (eg. integers that are greater 

than single-digits), 2b<b
2
; and as (a,b,c) →+∞, 2(c

2-a
2
) ≥ c

2
, and like above, 1+2b+2(c

2
-a

2
) ≠ c

2
; and the First 

(a-b) Condition [ie. (a–b)=1], is wrong.         

 

Sub-Theorem-3:  

For most pythagoreans, c>b>a, and (c-b)≤(b-a). The First (a-b) Condition requires that [1+2b+ b
2
+b

2
]=c

2
 exist, 

but then (1+2b+b
2
) ≠ a

2
, for most pythagoreans. Thus the First (a-b) Condition (ie. (a–b)=1), is wrong (in order 

for the equation a
2
+b

2
=c

2
 to be valid, the condition (1+2b+b

2
)=a

2
 must exist). 

 

Sub-Theorem-4:  

For all or most pythagoreans, in equation a
2
+b

2
=c

2
, c>b>a, and (c-b)≤(b-a) and hence, (c

2
-b

2
) ≤ (b

2
-a

2
); and from 

above, a
2
=[1+2b+b

2
]. If [1+2b+2b

2
]= c

2
, then the condition (b

2
-[1+2b+b

2
]) ≥ (c

2
-b

2
), should exist but it doesn’t 

because that condition/inequality is equivalent to: [b
2
-1-2b-b

2
] ≥ (c

2
-b

2
), which is equivalent to: [-1-2b] ≥ (c

2
-b

2
), 

which is impossible because for most pythagoreans, the RHS of the inequality [-1-2b] ≥ (c
2
-b

2
), will always 

produce a positive integer, while the LHS of that inequality will always produce a negative integer. Therefore, 

the First (a-b) Condition [ie. (a–b)=1], is wrong. 

 

Thus, the Miyazaki (2013) conjecture is wrong.    ▄ 

 

 

Theorem-2: Jeśmanowicz Conjectured That For Any Primitive Pythagorean Triple (a, b, c), The Equation a
x
 

+ b
y
 = c

z
 Has The Unique Solution (x, y, z)=(2, 2, 2) In Positive Integers; But For All a, b, c, x, y And 

z In Positive Integers, The Second (a-b) Condition Is Wrong And The Miyazaki Conjecture Is Wrong. 

Proof: To test the Second (a-b) Condition (which is: (a–b)=-1), assume that (x,y,z) = (2,2,2); then substitute (a–

b)=-1, or a=(b-1) into a
2
+b

2
= c

2
, and the result is: (b-1)

2
+b

2
= c

2
. Thus, b

2
-2b+1+b

2
= c

2
; and a

2
= (1-2b+b

2
); and 

2b
2
-2b+1= c

2
; and by substituting b

2
= c

2
-a

2
 into the equation, that is equivalent to: 1-2b+2(c

2-a
2
) = c

2
. The 

following are “sub-theorems” each of which can be presented as a separate/independent Theorem.  
 

Sub-Theorem-1:  

For most pythagoreans, c>b>a, and (c-b)≤(b-a). In equation a
2
+b

2
= c

2
, for small values of a, b and c (eg. single-

digit integers), 2b can be equal to, or greater than b
2
 (eg. 1

2
=1, while 2*1=2>1; and 2*2=4, while 2

2
=4). In such 

instances, [1-2b+ 2(c
2-a

2
)] ≠ c

2
 (that is, [1-2b+2b

2
] ≠ c

2
) and the Second (a-b) Condition (ie. [a–b]= -1), is 

wrong.      

 

Sub-Theorem-2:  

For most pythagoreans, c>b>a, and (c-b)≤(b-a). In the equation a
2
+b

2
=c

2
, and for large values of a,b and c (eg. 

integers that are greater than single-digits), 2b<b
2
; and as (a,b,c)→+∞, 2(c

2-a
2
) ≥ c

2
, for some large values of a, 

b and c; and thus like above, [1-2b+2(c
2
-a

2
)] ≠ c

2
 (that is, [1-2b+2b

2
] ≠ c

2
). The equation [1-2b+2(c

2
-a

2
)] = c

2
 

erroneously implies that [1-2b+c
2
-2a

2
]=0, or that [1-2b+b

2
-a

2
]=0. Thus, the Second (a-b) Condition (ie. [a–b]=-

1), is wrong.      

 

Sub-Theorem-3:  

For all or most pythagoreans, in equation a
2
+b

2
=c

2
, c>b>a, and (c-b)≤(b-a). The Second (a-b) Condition requires 

that the condition [1-2b+b
2
+b

2
]=c

2 
exist, but (1-2b+b

2
) ≠ a

2
, and (1-2b+2b

2
) ≠ c

2
, and like above, [1-2b+2(c

2
-

a
2
)] ≠ c

2
. Therefore, the Second (a-b) Condition (ie. [a–b]= -1), is wrong. 

 

Sub-Theorem-4:  

For all pythagoreans, in equation a
2
+b

2
=c

2
, c>b>a, and (c-b)≤(b-a) and hence, (c

2
-b

2
)<(b

2
-a

2
); and from above, 

a
2
=[1-2b+b

2
]. If [1-2b+2b

2
]= c

2
 (as required by the Second [a-b] Condition), then the condition (b

2
-[1-2b+b

2
]) ≥ 
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(c
2
-b

2
) should exist but it doesn’t because the condition (b

2
-[1-2b+b

2
]) ≥ (c

2
-b

2
), is equivalent to [b

2
-1+2b-b

2
] ≥ 

(c
2
-b

2
), which is equivalent to [-1+2b] ≥ (c

2
-b

2
), which is impossible because for most pythagoreans:  

i) (b
2
-a

2
)≥ [-1+2b] and as stated above, (b

2
-a

2
) ≥ (c

2
-b

2
); 

ii) (c
2
-b

2
)≥ [-1+2b];  

and therefore, the Second (a-b) Condition (ie. [a–b]= -1), is wrong. 

 

Thus, the Miyazaki (2013) Conjecture is wrong. ▄ 

 

 

 

3. Conclusion. 

The Miyazaki (2013) Conjecture is wrong for all or most primitive pythagorean triples (and by extension, the 

Jesmanowicz Conjecture remains un-proven).    
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