Nonlinearity, The Jeśmanowicz, Conjecture And The Miyazaki (2013) Conjecture.

Michael C. Nwogugu
Address: Enugu 400007, Enugu State, Nigeria
Emails: men2225@gmail.com; men2225@aol.com

Skype: men1112
Phone: 234-909-606-8162 or 234-814-906-2100.

Abstract

. In this article, its shown that the Miyazaki (2013) Conjecture is wrong and doesn't apply to most Pythagoreans, (and that the Jesmanowicz Conjecture remains un-proven) within the context of Sub-Rings (ie. Integers).

Keywords: Nonlinearity; Jeśmanowicz Conjecture; Prime Numbers; Dynamical Systems; Mathematical Cryptography; ill-posed problems; Sub-Rings And Ring Theory; Primitive Pythagorean Triples.

1. Introduction.

On Pythagorean numbers, see: Jeśmanowicz (1955/1956). On other approaches to solving Diophantine Equations, see: Rahmawati, Sugandha, et. al. (2019), Darmon \& Merel (1997) and Ibarra \& Dang (2006). On the Jeśmanowicz Conjecture which has generated substantial debate for decades, see: Guo \& Le (1995), Miyazaki (2011; 2013), Miyazaki, Yuan \& Wu (2014); Miyazaki \& Terai (2015), Takakuwa (1996), and Terai (2014). On various approaches for solving related diophantine equations, see: Bennett \& Skinner (2004).

Miyazaki (2013) noted that "..........In 1956 L. Jeśmanowicz conjectured, for any primitive Pythagorean triple (a, b, c) satisfying $a^{2}+b^{2}=c^{2}$, that the equation $a^{x}+b^{y}=c^{z}$ has the unique solution $(x, y, z)=(2,2,2)$ in positive integers x, y and z. This is a famous unsolved problem on Pythagorean numbers........". Miyazaki (2013) conjectured that: "........In this paper we broadly extend many of classical well-known results on the conjecture. As a corollary we can verify that the conjecture is true if $a-b=$ $\pm 1 \ldots$.

For the equation $\mathbf{a}^{\mathbf{x}}+\mathbf{b}^{\mathbf{y}}=\mathbf{c}^{\mathbf{z}}$ in positive integers, the following are combinations of a, b, c, x, y and z; but for each such combination, $\left(\mathbf{a}^{\mathbf{x}}+\mathbf{b}^{\mathbf{y}}\right) / \mathbf{c}^{\mathbf{z}} \approx 1.0000000000000000000000$ (the equation is not exactly equal to 1.0000000000000000000000000 like in pythagorean triples):
i) $\mathrm{a}=3 ; \mathrm{b}=5 ; \mathrm{c}=7 ; \mathbf{x}=\mathbf{6} ; \mathbf{y}=7 ; \mathbf{z}=7$; and $\left(\mathbf{a}^{\mathrm{x}}+\mathbf{b}^{\mathbf{x}}\right) / \mathbf{c}^{\mathbf{x}}=\mathbf{1 . 0 1 8 2 0 6 7 0 0}$.
ii) $\mathrm{a}=60 ; \mathrm{b}=80 ; \mathrm{c}=461 ; \mathbf{x}=\mathbf{6} ; \mathbf{y}=7 ; \mathbf{z}=7$; and $\left(\mathbf{a}^{\mathrm{x}}+\mathrm{b}^{\mathrm{x}}\right) / \mathbf{c}^{\mathrm{x}}=\mathbf{1 . 0 0 9 4 6 2 9 8 2}$.
iii) $\mathrm{a}=434,500 ; \mathrm{b}=425,000 ; \mathrm{c}=75,696,000 ; \mathbf{x}=\mathbf{6} ; \mathbf{y}=7 ; \mathbf{z}=7$; and $\left(\mathbf{a}^{\mathrm{x}}+\mathbf{b}^{\mathrm{x}}\right) / \mathbf{c}^{\mathrm{x}}=\mathbf{1 . 0 0 7 7 6 4 4 2 6}$.
iv) $\mathrm{a}=37,566 ; \mathrm{b}=24,844 ; \mathrm{c}=461 ; \mathbf{x}=23 ; \mathbf{y}=40 ; \mathrm{z}=66$; and $\left(\mathbf{a}^{\mathrm{x}}+\mathbf{b}^{\mathrm{x}}\right) / \mathbf{c}^{\mathrm{x}}=\mathbf{1 . 0 1 0 6 4 7 5 9 6}$.
v) $\mathrm{a}=567,000 ; \mathrm{b}=424,410 ; \mathrm{c}=2,575 ; \mathbf{x}=\mathbf{2 3} ; \mathbf{y}=\mathbf{4 0} ; \mathbf{z}=\mathbf{6 6}$; and $\left(\mathbf{a}^{\mathrm{x}}+\mathrm{b}^{\mathrm{x}}\right) / \mathbf{c}^{\mathbf{x}}=\mathbf{1 . 0 0 0 2 9 2 3 0 3}$.

Given the foregoing, Jesmanowicz's Conjecture can be valid only in the Domain-Of-Integers, but not in the Domain-Of-Real-Numbers. Lolja (2018) explained the differences between the Domain-of-Integers and the Domain-Of-Lines.

On Homomorphisms, see: Wang \& Chin (2012). Chu (2008) and Lu \& Wu (2016) studied dynamical systems pertaining to Diophantine equations (and equations such as $a^{2}+b^{2}=c^{2}$ can approximate Dynamical Systems). Luca, Moree \& Weger (2011) discussed Group Theory. Elia (2005), Jones, Sato, et. al. (1976) and Matijasevič (1981) noted that primes can be represented as Diophantine equations or as polynomials (ie. and the equation $a^{2}+b^{2}=c^{2}$ can represent a prime). On uses of Diophantine Equations in Cryptography, see: Ding, Kudo, et. al. (2018), Okumura (2015), and Ogura (2012) (the equation $a^{x}+b^{y}=c^{z}$ can be used in cryptoanalysis and in creation of public-keys). Zadeh (2019) notes that Diophantine equations have been used in analytic functions.

The Miyazaki (2013) Conjecture and the Jesmanowicz Conjecture are not valid for all or many primitive pythagorean triples in positive integers. The problem is an ill-posed problem because the equation $\mathbf{a}^{\mathbf{x}}+\mathbf{b}^{\mathbf{y}}=\mathbf{c}^{\mathbf{z}}$ varies dramatically over the interval $(0,+\infty)$. A primitive Pythagorean triple is where a, b and c are coprime (ie. there is no common divisor larger than 1). In the following simplest cases of Pythagorean-Triples
where $\mathbf{a}^{\mathbf{2}} \mathbf{b}^{\mathbf{2}}=\mathbf{c}^{\mathbf{2}}$ is valid in positive integers and a, b and c are relatively-prime/co-prime, the condition (ab) $= \pm 1$, doesn't hold:

$$
\begin{aligned}
& 5^{2}+12^{2}=13^{2}, \text { but } 5-12 \neq \pm 1 ; \\
& 7^{2}+24^{2}=25^{2}, \text { but } 24-7 \neq \pm 1 ; \\
& 20^{2}+21^{2}=29^{2}, \text { but } 20-21 \neq \pm 1 ; \\
& 12^{2}+35^{2}=37^{2}, \text { but } 12-35 \neq \pm 1 ; \\
& 9^{2}+40^{2}=41^{2}, \text { but } 9-40 \neq \pm 1 ; \\
& 28^{2}+45^{2}=53^{2}, \text { but } 28-45 \neq \pm 1 ; \\
& 11^{2}+60^{2}=61^{2}, \text { but } 11-60 \neq \pm 1 ; \\
& 33^{2}+56^{2}=65^{2}, \text { but } 33-65 \neq \pm 1 ; \\
& 16^{2}+63^{2}=65^{2}, \text { but } 16-63 \neq \pm 1 ; \\
& 48^{2}+55^{2}=73^{2}, \text { but } 48-55 \neq \pm 1 ; \\
& 36^{2}+77^{2}=85^{2}, \text { but } 36-77 \neq \pm 1 ; \\
& 13^{2}+84^{2}=85^{2}, \text { but } 13-84 \neq \pm 1 ; \\
& 65^{2}+72^{2}=97^{2}, \text { but } 65-72 \neq \pm 1 ; \\
& \text { In the case of } 3^{2}+4^{2}=5^{2}, \text { but } 3-4=-1, \text { but not }+1 .
\end{aligned}
$$

Furthermore:
If a,b,c=1,2,3 and $x, y, z=3,3,2$, then $\mathbf{a}^{\mathbf{x}}+\mathbf{b}^{\mathbf{y}}=\mathbf{c}^{\mathbf{z}} ;$
If $a, b, c=3,3,6$ and $x, y, z=2,3,2$, then $\mathbf{a}^{\mathbf{x}}+\mathbf{b}^{\mathbf{y}}=\mathbf{c}^{\mathbf{z}}$;
If $a, b, c=2,3,5$ and $x, y, z=4,2,2$, then $\mathbf{a}^{\mathbf{x}}+\mathbf{b}^{\mathbf{y}}=\mathbf{c}^{\mathbf{z}}$;
If $\mathrm{a}, \mathrm{b}, \mathrm{c}=5,7,24$ and $\mathrm{x}, \mathrm{y}, \mathrm{z}=4,2,2$, then $\mathbf{a}^{\mathrm{x}}+\mathbf{b}^{\mathbf{y}}=\mathbf{c}^{\mathbf{z}}$; and also ($\left.\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}, \mathrm{z}\right)=(7,24,25,2,2,2$);
If a,b,c=3,40,41 and $\mathrm{x}, \mathrm{y}, \mathrm{z}=4,2,2$, then $\mathbf{a}^{\mathbf{x}}+\mathbf{b}^{\mathbf{y}}=\mathbf{c}^{\mathbf{z}}$; and also ($\left.\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}, \mathrm{z}\right)=(9,40,41,2,2,2$);
If $\mathrm{a}, \mathrm{b}, \mathrm{c}=2,63,65$ and $\mathrm{x}, \mathrm{y}, \mathrm{z}=8,2,2$, then $\mathbf{a}^{\mathbf{x}}+\mathbf{b}^{\mathbf{y}}=\mathbf{c}^{\mathbf{z}}$; and also ($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}, \mathrm{z}$) $=(8,63,65,2,2,2$);
If $\mathrm{a}, \mathrm{b}, \mathrm{c}=2,15,17$ and $\mathrm{x}, \mathrm{y}, \mathrm{z}=6,2,2$, then $\mathbf{a}^{\mathbf{x}}+\mathbf{b}^{\mathbf{y}}=\mathbf{c}^{\mathbf{z}}$; and also ($\left.\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}, \mathrm{z}\right)=(8,15,17,2,2,2$);
and also in all these foregoing mentioned equations, the condition (a-b) $= \pm 1$, doesn't hold. Thus, the Miyazaki (2013) Conjecture and Jesmanowicz Conjecture are wrong or don't apply to all pythagoreans.

The Miyazaki (2013) conjecture is based on the condition/equation (a-b) $= \pm 1$ which is henceforth collectively referred to as the ($a-b$) Conditions, which are:
i) $(\mathrm{a}-\mathrm{b})=+1$, the "First ($a-b$) Condition"; and
ii) $(\mathrm{a}-\mathrm{b})=-1$, the "Second ($a-b$) Condition".

2. The Theorems.

Theorem-1: Jeśmanowicz Conjectured That For Any Primitive Pythagorean Triple (a, b, c), The Equation a ${ }^{\mathrm{x}}$ $+b^{\mathbf{y}}=\mathbf{c}^{\mathbf{z}}$ Has The Unique Solution ($\mathbf{x}, \mathbf{y}, \mathbf{z}$) $=(\mathbf{2}, 2,2)$ In Positive Integers; But For All a, b, c, x, y And z In Positive Integers, The First (a-b) Condition Is Wrong And The Miyazaki Conjecture Is Wrong. Proof. To test the first ($a-b$) Condition, assume that ($\mathrm{x}, \mathrm{y}, \mathrm{z})=(2,2,2)$; then substitute ($\mathrm{a}-\mathrm{b}$) $=1$, or $\mathrm{a}=(1+\mathrm{b})$ into $a^{2}+b^{2}=c^{2}$, and the result is: $(1+b)^{2}+b^{2}=c^{2}$, which is equivalent to: $\left(1+2 b+b^{2}+b^{2}\right)=c^{2}$; which is equivalent to: $\left(1+2 b+2 b^{2}\right)=c^{2}$, which is equivalent to: $\left[1+2 b+2\left(c^{2}-a^{2}\right)\right]=c^{2}$; and $a^{2}=\left(1+2 b+b^{2}\right)$. The following are "subtheorems" each of which can be presented as a separate/independent Theorem.

Sub-Theorem-1:

In equation $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}, c>b>a$, and $(\mathrm{c}-\mathrm{b}) \leq(\mathrm{b}-\mathrm{a})$ and for small values of a, b and c (eg. integers that are singledigits), 2 b can be equal to, or greater than b^{2} (eg. $2 * 2=2^{2}$; and $2 * 1>1^{2}$); and thus in such instances, $\left[1+2 b+2\left(\mathrm{c}^{2}-\right.\right.$ $\left.\left.\mathrm{a}^{2}\right)\right] \neq \mathrm{c}^{2}$ (that is, $\left[1+2 \mathrm{~b}+2 \mathrm{~b}^{2}\right] \neq \mathrm{c}^{2}$), and the First ($a-b$) Condition $[\mathrm{ie} .(\mathrm{a}-\mathrm{b})=1]$, is wrong.

Sub-Theorem-2:
In equation $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}, c>b>a$, and (c-b) $\leq(\mathrm{b}-\mathrm{a})$ and for large values of a, b and c (eg. integers that are greater than single-digits), $2 \mathrm{~b}<\mathrm{b}^{2}$; and as $(\mathrm{a}, \mathrm{b}, \mathrm{c}) \rightarrow+\infty, 2\left(\mathrm{c}^{2}-\mathrm{a}^{2}\right) \geq \mathrm{c}^{2}$, and like above, $1+2 \mathrm{~b}+2\left(\mathrm{c}^{2}-\mathrm{a}^{2}\right) \neq \mathrm{c}^{2}$; and the First $(a-b)$ Condition [ie. $(\mathrm{a}-\mathrm{b})=1$], is wrong.

Sub-Theorem-3:
For most pythagoreans, $c>b>a$, and $(\mathrm{c}-\mathrm{b}) \leq(\mathrm{b}-\mathrm{a})$. The First $(a-b)$ Condition requires that $\left[1+2 \mathrm{~b}+\mathrm{b}^{2}+\mathrm{b}^{2}\right]=\mathrm{c}^{2}$ exist, but then $\left(1+2 b+b^{2}\right) \neq a^{2}$, for most pythagoreans. Thus the First $(a-b)$ Condition (ie. $\left.(a-b)=1\right)$, is wrong (in order for the equation $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$ to be valid, the condition $\left(1+2 \mathrm{~b}+\mathrm{b}^{2}\right)=\mathrm{a}^{2}$ must exist).

Sub-Theorem-4:
For all or most pythagoreans, in equation $a^{2}+b^{2}=c^{2}, c>b>a$, and $(c-b) \leq(b-a)$ and hence, $\left(c^{2}-b^{2}\right) \leq\left(b^{2}-a^{2}\right)$; and from above, $a^{2}=\left[1+2 b+b^{2}\right]$. If $\left[1+2 b+2 b^{2}\right]=c^{2}$, then the condition $\left(b^{2}-\left[1+2 b+b^{2}\right]\right) \geq\left(c^{2}-b^{2}\right)$, should exist but it doesn't because that condition/inequality is equivalent to: $\left[b^{2}-1-2 b-b^{2}\right] \geq\left(c^{2}-b^{2}\right)$, which is equivalent to: $[-1-2 b] \geq\left(c^{2}-b^{2}\right)$, which is impossible because for most pythagoreans, the RHS of the inequality $[-1-2 b] \geq\left(c^{2}-b^{2}\right)$, will always produce a positive integer, while the LHS of that inequality will always produce a negative integer. Therefore, the First $(a-b)$ Condition [ie. $(\mathrm{a}-\mathrm{b})=1$], is wrong.

Thus, the Miyazaki (2013) conjecture is wrong.

Theorem-2: Jeśmanowicz Conjectured That For Any Primitive Pythagorean Triple (a, b, c), The Equation a ${ }^{\mathrm{x}}$ $+b^{\mathbf{y}}=\mathbf{c}^{\mathbf{z}}$ Has The Unique Solution ($\left.\mathrm{x}, \mathrm{y}, \mathrm{z}\right)=(2,2,2)$ In Positive Integers; But For All a, b, c, x, y And z In Positive Integers, The Second (a-b) Condition Is Wrong And The Miyazaki Conjecture Is Wrong. Proof: To test the Second $(a-b)$ Condition (which is: $(\mathrm{a}-\mathrm{b})=-1$), assume that $(\mathrm{x}, \mathrm{y}, \mathrm{z})=(2,2,2)$; then substitute ($\mathrm{a}-$ $b)=-1$, or $a=(b-1)$ into $a^{2}+b^{2}=c^{2}$, and the result is: $(b-1)^{2}+b^{2}=c^{2}$. Thus, $b^{2}-2 b+1+b^{2}=c^{2}$; and $a^{2}=\left(1-2 b+b^{2}\right)$; and $2 b^{2}-2 b+1=c^{2}$; and by substituting $b^{2}=c^{2}-a^{2}$ into the equation, that is equivalent to: $1-2 b+2\left(c^{2}-a^{2}\right)=c^{2}$. The following are "sub-theorems" each of which can be presented as a separate/independent Theorem.

Sub-Theorem-1:

For most pythagoreans, $c>b>a$, and $(c-b) \leq(b-a)$. In equation $a^{2}+b^{2}=c^{2}$, for small values of a, b and c (eg. singledigit integers), 2 b can be equal to, or greater than b^{2} (eg. $1^{2}=1$, while $2 * 1=2>1$; and $2 * 2=4$, while $2^{2}=4$). In such instances, $\left[1-2 b+2\left(c^{2}-a^{2}\right)\right] \neq c^{2}$ (that is, $\left[1-2 b+2 b^{2}\right] \neq c^{2}$) and the Second $(a-b)$ Condition (ie. $\left.[a-b]=-1\right)$, is wrong.

Sub-Theorem-2:

For most pythagoreans, $\mathrm{c}>\mathrm{b}>\mathrm{a}$, and $(\mathrm{c}-\mathrm{b}) \leq(\mathrm{b}-\mathrm{a})$. In the equation $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$, and for large values of a, b and c (eg. integers that are greater than single-digits), $2 \mathrm{~b}<\mathrm{b}^{2}$; and as $(\mathrm{a}, \mathrm{b}, \mathrm{c}) \rightarrow+\infty, 2\left(\mathrm{c}^{2}-\mathrm{a}^{2}\right) \geq \mathrm{c}^{2}$, for some large values of a, b and c; and thus like above, $\left[1-2 b+2\left(\mathrm{c}^{2}-\mathrm{a}^{2}\right)\right] \neq \mathrm{c}^{2}$ (that is, $\left[1-2 \mathrm{~b}+2 \mathrm{~b}^{2}\right] \neq \mathrm{c}^{2}$). The equation $\left[1-2 \mathrm{~b}+2\left(\mathrm{c}^{2}-\mathrm{a}^{2}\right)\right]=\mathrm{c}^{2}$ erroneously implies that $\left[1-2 \mathrm{~b}+\mathrm{c}^{2}-2 \mathrm{a}^{2}\right]=0$, or that $\left[1-2 \mathrm{~b}+\mathrm{b}^{2}-\mathrm{a}^{2}\right]=0$. Thus, the Second $(a-b)$ Condition (ie. $[\mathrm{a}-\mathrm{b}]=-$ 1), is wrong.

Sub-Theorem-3:

For all or most pythagoreans, in equation $a^{2}+b^{2}=c^{2}, c>b>a$, and $(c-b) \leq(b-a)$. The Second $(a-b)$ Condition requires that the condition $\left[1-2 b+b^{2}+b^{2}\right]=c^{2}$ exist, but $\left(1-2 b+b^{2}\right) \neq a^{2}$, and $\left(1-2 b+2 b^{2}\right) \neq c^{2}$, and like above, $\left[1-2 b+2\left(c^{2}-\right.\right.$ $\left.\left.\mathrm{a}^{2}\right)\right] \neq \mathrm{c}^{2}$. Therefore, the Second $(a-b)$ Condition (ie. $[\mathrm{a}-\mathrm{b}]=-1$), is wrong.

Sub-Theorem-4:
For all pythagoreans, in equation $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}, \mathrm{c}>\mathrm{b}>\mathrm{a}$, and $(\mathrm{c}-\mathrm{b}) \leq(\mathrm{b}-\mathrm{a})$ and hence, $\left(\mathrm{c}^{2}-\mathrm{b}^{2}\right)<\left(\mathrm{b}^{2}-\mathrm{a}^{2}\right)$; and from above, $\mathrm{a}^{2}=\left[1-2 \mathrm{~b}+\mathrm{b}^{2}\right]$. If $\left[1-2 \mathrm{~b}+2 \mathrm{~b}^{2}\right]=\mathrm{c}^{2}($ as required by the Second $[a-b]$ Condition $)$, then the condition $\left(\mathrm{b}^{2}-\left[1-2 \mathrm{~b}+\mathrm{b}^{2}\right]\right) \geq$
$\left(c^{2}-b^{2}\right)$ should exist but it doesn't because the condition $\left(b^{2}-\left[1-2 b+b^{2}\right]\right) \geq\left(c^{2}-b^{2}\right)$, is equivalent to $\left[b^{2}-1+2 b-b^{2}\right] \geq$ $\left(c^{2}-b^{2}\right)$, which is equivalent to $[-1+2 b] \geq\left(c^{2}-b^{2}\right)$, which is impossible because for most pythagoreans:
i) $\left(b^{2}-a^{2}\right) \geq[-1+2 b]$ and as stated above, $\left(b^{2}-a^{2}\right) \geq\left(c^{2}-b^{2}\right)$;
ii) $\left(c^{2}-b^{2}\right) \geq[-1+2 b]$;
and therefore, the Second $(a-b)$ Condition (ie. $[\mathrm{a}-\mathrm{b}]=-1$), is wrong.
Thus, the Miyazaki (2013) Conjecture is wrong.

3. Conclusion.

The Miyazaki (2013) Conjecture is wrong for all or most primitive pythagorean triples (and by extension, the Jesmanowicz Conjecture remains un-proven).
4. Bibliography.

Bennett, M. \& Skinner, C. (2004). Ternary Diophantine equations via Galois representations and modular forms. Canadian Journal Of Mathematics, 56, 23-54.

Darmon, H. \& Merel, L. (1997). Winding quotients and some variants of Fermat's last theorem. J. Reine Angew. Math., 490, 81-100.

Ding, J., Kudo, M., et. al. (2018). Cryptanalysis of a public key cryptosystem based on Diophantine equations via weighted LLL reduction. Japan Journal of Industrial and Applied Mathematics, 35, 1123-1152.

Guo, Y. \& Le, M. (1995). A note on Jeśmanowicz' conjecture concerning Pythagorean numbers. Comment. Mat., Univ. St. Pauli, 44, 225-228.

Ibarra, O. \& Dang, Z. (2006). On the solvability of a class of diophantine equations and applications. Theoretical Computer Science, 352(1-3), 342-346.

Jeśmanowicz, L. (1955/1956). Some remarks on Pythagorean numbers, Wiadom. Mat., 1 (1955/1956), 196-202 (in Polish).

Jones, J. P., Sato, D., et. al. (1976). Diophantine Representation of the Set of Prime Numbers. American Mathematical Monthly, 83, 449-464.

Lolja, S. (2018). The Proof of the Fermat's Conjecture in the Correct Domain. Ratio Mathematica, 35, 53-74

Matijasevič, Y. (1981). Primes are nonnegative values of a polynomial in 10 variables. Journal of Soviet Mathematics, \qquad _.

Miyazaki, T. (2011). Jeśmanowicz' conjecture on exponential Diophantine equations. Functional Approximation, Comment. Math., 45, 207-229.

Miyazaki T. (2013). Generalizations of classical results on Jeśmanowicz’ conjecture concerning primitive Pythagorean triples. Journal Of Number Theory, 133, 583-595.

Miyazaki, T., Yuan, P. \& Wu, D. (2014). Generalizations of classical results on Jeśmanowicz's conjecture concerning Pythagorean triples II. Journal of Number Theory, 141, 184-201.

Miyazaki, T. \& Terai, N. (2015). On Jeśmanowicz’ conjecture concerning primitive Pythagorean triples, II. Acta Mathematica Hungarica, 147(2), 286-293.

Ogura, N. (2012). On Multivariate Public-key Cryptosystems. PhD thesis, Tokyo Metropolitan University, Japan.

Okumura, S. A (2015). Public key cryptosystem based on diophantine equations of degree increasing type. Pacific Journal of Industrial Mathematics, 7(4), 33-45.
Rahmawati, R., Sugandha, S., et. al. (2019). The Solution for the Nonlinear Diophantine Equation $(7 \mathrm{k}-1)^{\mathrm{x}}+(7 \mathrm{k})^{\mathrm{y}}$ $=\mathrm{z}^{2}$ with k as the positive even whole number. Journal of Physics: Conference Series, Volume 1179. The 1st International Conference on Computer, Science, Engineering and Technology 27-28 November 2018, Tasikmalaya, Indonesia.

Takakuwa, K. (1996). A remark on Jeśmanowicz’ conjecture. Proc. Japan Acad. Ser. A Math. Sci., 72, 109-110.
Terai, N. (2014). On Jeśmanowicz' conjecture concerning primitive Pythagorean triples. Journal Of Number Theory, 141, 316-323.

Wang, L. \& Chin, C. (2012). Some property-preserving homomorphisms. Journal of Discrete Mathematical Sciences and Cryptography, 15(2-3).

Zadeh, S. (2019). Diophantine equations for analytic functions. Online Journal of Analytic Combinatorics, 14, 1-7.

