<u>Nonlinearity, The Jeśmanowicz Conjecture And</u> <u>The Miyazaki (2013) Conjecture.</u>

Michael C. Nwogugu Address: Enugu 400007, Enugu State, Nigeria Emails: <u>mcn2225@gmail.com</u>; <u>mcn2225@aol.com</u> Skype: mcn1112 Phone: 234-909-606-8162 or 234-814-906-2100.

Abstract.

In this article, its shown that the *Miyazaki (2013) Conjecture* is wrong and doesn't apply to most Pythagoreans, (and that the *Jesmanowicz Conjecture* remains un-proven) within the context of Sub-Rings (ie. Integers).

Keywords: Nonlinearity; *Jeśmanowicz Conjecture*; Prime Numbers; Dynamical Systems; Mathematical Cryptography; ill-posed problems; *Sub-Rings* And *Ring Theory*; Primitive Pythagorean Triples.

1. Introduction.

On Pythagorean numbers, see: Jeśmanowicz (1955/1956). On other approaches to solving Diophantine Equations, see: Rahmawati, Sugandha, et. al. (2019), Darmon & Merel (1997) and Ibarra & Dang (2006). On the *Jeśmanowicz Conjecture* which has generated substantial debate for decades, see: Guo & Le (1995), Miyazaki (2011; 2013), Miyazaki, Yuan & Wu (2014); Miyazaki & Terai (2015), Takakuwa (1996), and Terai (2014). On various approaches for solving related diophantine equations, see: Bennett & Skinner (2004).

Miyazaki (2013) noted that "......In 1956 L. Jeśmanowicz conjectured, for any primitive Pythagorean triple (a, b, c) satisfying $a^2+b^2=c^2$, that the equation $a^x+b^y=c^z$ has the unique solution (x,y,z)=(2,2,2) in positive integers x, y and z. This is a famous unsolved problem on Pythagorean numbers......". Miyazaki (2013) conjectured that: ".....In this paper we broadly extend many of classical well-known results on the conjecture. As a corollary we can verify that the conjecture is true if $a - b = \pm 1$".

i) a = 3; b = 5; c = 7; x = 6; y = 7; z = 7; and $(a^x + b^x)/c^x = 1.018206700$.

ii) a = 60; b = 80; c = 461; x = 6; y = 7; z = 7; and $(a^x + b^x)/c^x = 1.009462982$.

iii) a = 434,500; b = 425,000; c = 75,696,000; x = 6; y = 7; z = 7; and $(a^x + b^x)/c^x = 1.007764426$.

iv) a = 37,566; b= 24,844; c = 461; **x= 23**; **y = 40**; **z= 66**; and (a^x+b^x)/c^x = 1.010647596.

v) a = 567,000; b = 424,410; c = 2,575; x = 23; y = 40; z = 66; and $(a^x + b^x)/c^x = 1.000292303$.

Given the foregoing, *Jesmanowicz's Conjecture* can be valid only in the *Domain-Of-Integers*, but not in the *Domain-Of-Real-Numbers*. Lolja (2018) explained the differences between the *Domain-of-Integers* and the *Domain-Of-Lines*.

On Homomorphisms, see: Wang & Chin (2012). Chu (2008) and Lu & Wu (2016) studied dynamical systems pertaining to Diophantine equations (and *equations such as* $a^2+b^2=c^2$ can approximate Dynamical Systems). Luca, Moree & Weger (2011) discussed *Group Theory*. Elia (2005), Jones, Sato, et. al. (1976) and Matijasevič (1981) noted that primes can be represented as Diophantine equations or as polynomials (i.e. and the equation $a^2+b^2=c^2$ can represent a prime). On uses of Diophantine Equations in Cryptography, see: Ding, Kudo, et. al. (2018), Okumura (2015), and Ogura (2012) (the equation $a^x+b^y=c^z$ can be used in cryptoanalysis and in creation of public-keys). Zadeh (2019) notes that Diophantine equations have been used in analytic functions.

The *Miyazaki* (2013) Conjecture and the Jesmanowicz Conjecture are not valid for all or many primitive pythagorean triples in positive integers. The problem is an ill-posed problem because the equation $\mathbf{a}^{\mathbf{x}} + \mathbf{b}^{\mathbf{y}} = \mathbf{c}^{\mathbf{z}}$ varies dramatically over the interval $(0, +\infty)$. A primitive Pythagorean triple is where *a*, *b* and *c* are coprime (ie. there is no common divisor larger than 1). In the following simplest cases of Pythagorean-Triples where $\mathbf{a}^2 + \mathbf{b}^2 = \mathbf{c}^2$ is valid in positive integers and *a*, *b* and *c* are relatively-prime/co-prime, the condition (a-b)=±1, doesn't hold:

 $5^{2} + 12^{2} = 13^{2}$, but $5 - 12 \neq \pm 1$; $7^{2} + 24^{2} = 25^{2}$, but $24 - 7 \neq \pm 1$; $20^{2} + 21^{2} = 29^{2}$, but $20 - 21 \neq \pm 1$; $12^{2} + 35^{2} = 37^{2}$, but $12 - 35 \neq \pm 1$; $9^{2} + 40^{2} = 41^{2}$, but $9 - 40 \neq \pm 1$; $28^{2} + 45^{2} = 53^{2}$, but $28 - 45 \neq \pm 1$; $11^{2} + 60^{2} = 61^{2}$, but $11 - 60 \neq \pm 1$; $33^{2} + 56^{2} = 65^{2}$, but $33 - 65 \neq \pm 1$; $16^{2} + 63^{2} = 65^{2}$, but $16 - 63 \neq \pm 1$; $48^{2} + 55^{2} = 73^{2}$, but $48 - 55 \neq \pm 1$; $36^{2} + 77^{2} = 85^{2}$, but $36 - 77 \neq \pm 1$; $13^{2} + 84^{2} = 85^{2}$, but $13 - 84 \neq \pm 1$; $65^{2} + 72^{2} = 97^{2}$, but $65 - 72 \neq \pm 1$;

In the case of $3^2+4^2=5^2$, but 3-4= -1, but not +1.

Furthermore:

If a,b,c=1,2,3 and x,y,z= 3,3,2, then $\mathbf{a^x + b^y = c^z}$; If a,b,c=3,3,6 and x,y,z= 2,3,2, then $\mathbf{a^x + b^y = c^z}$; If a,b,c=2,3,5 and x,y,z= 4,2,2, then $\mathbf{a^x + b^y = c^z}$; If a,b,c=5,7,24 and x,y,z= 4,2,2, then $\mathbf{a^x + b^y = c^z}$; and also (a,b,c,x,y,z)=(7,24,25,2,2,2); If a,b,c=3,40,41 and x,y,z= 4,2,2, then $\mathbf{a^x + b^y = c^z}$; and also (a,b,c,x,y,z)=(9,40,41,2,2,2); If a,b,c=2,63,65 and x,y,z= 8,2,2, then $\mathbf{a^x + b^y = c^z}$; and also (a,b,c,x,y,z)=(8,63,65,2,2,2); If a,b,c=2,15,17 and x,y,z= 6,2,2, then $\mathbf{a^x + b^y = c^z}$; and also (a,b,c,x,y,z)=(8,15,17,2,2,2);

and also in all these foregoing mentioned equations, the condition $(a-b)=\pm 1$, doesn't hold. Thus, the *Miyazaki* (2013) *Conjecture* and *Jesmanowicz Conjecture* are wrong or don't apply to all pythagoreans.

The Miyazaki (2013) conjecture is based on the condition/equation $(a-b)=\pm 1$ which is henceforth collectively referred to as the (a-b) Conditions, which are: i) (a-b)=+1, the "First (a-b) Condition"; and ii) (a-b)=-1, the "Second (a-b) Condition".

2. The Theorems.

Theorem-1: Jeśmanowicz Conjectured That For Any Primitive Pythagorean Triple (a, b, c), The Equation $a^x + b^y = c^z$ Has The Unique Solution (x, y, z)=(2, 2, 2) In Positive Integers; But For All a, b, c, x, y And z In Positive Integers, The *First (a-b) Condition* Is Wrong And The *Miyazaki Conjecture* Is Wrong. *Proof:* To test the first (a-b) *Condition*, assume that (x,y,z) = (2,2,2); then substitute (a-b)=1, or a=(1+b) into $a^2+b^2=c^2$, and the result is: $(1+b)^2+b^2=c^2$, which is equivalent to: $(1+2b+b^2+b^2)=c^2$; which is equivalent to: $(1+2b+2b^2)=c^2$; which is equivalent to: $(1+2b+2b^2)=c^2$; which is equivalent to: $(1+2b+b^2)$. The following are "sub-theorems" each of which can be presented as a separate/independent Theorem.

Sub-Theorem-1:

In equation $a^2+b^2=c^2$, c>b>a, and $(c-b)\leq(b-a)$ and for small values of *a*, *b* and *c* (eg. integers that are singledigits), 2b can be equal to, or greater than b^2 (eg. $2*2=2^2$; and $2*1>1^2$); and thus in such instances, $[1+2b+2(c^2-a^2)] \neq c^2$ (that is, $[1+2b+2b^2] \neq c^2$), and the *First (a-b) Condition* [ie. (a–b)=1], is wrong.

Sub-Theorem-2:

In equation $a^2+b^2=c^2$, c>b>a, and $(c-b)\leq(b-a)$ and for large values of *a*, *b* and *c* (eg. integers that are greater than single-digits), $2b<b^2$; and as $(a,b,c) \rightarrow +\infty$, $2(c^2-a^2) \geq c^2$, and like above, $1+2b+2(c^2-a^2) \neq c^2$; and the *First* (*a-b*) *Condition* [ie. (a–b)=1], is wrong.

Sub-Theorem-3:

For most pythagoreans, c>b>a, and $(c-b)\leq(b-a)$. The *First (a-b) Condition* requires that $[1+2b+b^2+b^2]=c^2$ exist, but then $(1+2b+b^2) \neq a^2$, for most pythagoreans. Thus the *First (a-b) Condition* (ie. (a–b)=1), is wrong (in order for the equation $a^2+b^2=c^2$ to be valid, the condition $(1+2b+b^2)=a^2$ must exist).

Sub-Theorem-4:

For all or most pythagoreans, in equation $a^2+b^2=c^2$, c>b>a, and $(c-b)\leq(b-a)$ and hence, $(c^2-b^2) \leq (b^2-a^2)$; and from above, $a^2=[1+2b+b^2]$. If $[1+2b+2b^2]=c^2$, then the condition $(b^2-[1+2b+b^2]) \geq (c^2-b^2)$, should exist but it doesn't because that condition/inequality is equivalent to: $[b^2-1-2b-b^2] \geq (c^2-b^2)$, which is equivalent to: $[-1-2b] \geq (c^2-b^2)$, which is impossible because for most pythagoreans, the RHS of the inequality $[-1-2b] \geq (c^2-b^2)$, will always produce a positive integer, while the LHS of that inequality will always produce a negative integer. Therefore, the *First (a-b) Condition* [ie. (a–b)=1], is wrong.

Thus, the Miyazaki (2013) conjecture is wrong.

Theorem-2: Jeśmanowicz Conjectured That For Any Primitive Pythagorean Triple (a, b, c), The Equation $a^x + b^y = c^z$ Has The Unique Solution (x, y, z)=(2, 2, 2) In Positive Integers; But For All a, b, c, x, y And z In Positive Integers, The Second (a-b) Condition Is Wrong And The Miyazaki Conjecture Is Wrong. Proof: To test the Second (a-b) Condition (which is: (a-b)=-1), assume that (x,y,z) = (2,2,2); then substitute (a-b)=-1, or a=(b-1) into $a^2+b^2=c^2$, and the result is: $(b-1)^2+b^2=c^2$. Thus, $b^2-2b+1+b^2=c^2$; and $a^2=(1-2b+b^2)$; and $2b^2-2b+1=c^2$; and by substituting $b^2=c^2-a^2$ into the equation, that is equivalent to: $1-2b+2(c^2-a^2)=c^2$. The following are "sub-theorems" each of which can be presented as a separate/independent Theorem.

Sub-Theorem-1:

For most pythagoreans, c>b>a, and (c-b)≤(b-a). In equation $a^2+b^2=c^2$, for small values of a, b and c (eg. singledigit integers), 2b can be equal to, or greater than b^2 (eg. $1^2=1$, while 2*1=2>1; and 2*2=4, while $2^2=4$). In such instances, $[1-2b+2(c^2-a^2)] \neq c^2$ (that is, $[1-2b+2b^2] \neq c^2$) and the *Second (a-b) Condition* (ie. [a-b]=-1), is wrong.

Sub-Theorem-2:

For most pythagoreans, c>b>a, and (c-b)≤(b-a). In the equation $a^2+b^2=c^2$, and for large values of *a*,*b* and *c* (eg. integers that are greater than single-digits), 2b<b²; and as (a,b,c)→+∞, $2(c^2-a^2) \ge c^2$, for some large values of *a*, *b* and *c*; and thus like above, $[1-2b+2(c^2-a^2)] \ne c^2$ (that is, $[1-2b+2b^2] \ne c^2$). The equation $[1-2b+2(c^2-a^2)] = c^2$ erroneously implies that $[1-2b+c^2-2a^2]=0$, or that $[1-2b+b^2-a^2]=0$. Thus, the *Second (a-b) Condition* (ie. [a-b]=-1), is wrong.

Sub-Theorem-3:

For all or most pythagoreans, in equation $a^2+b^2=c^2$, c>b>a, and $(c-b)\leq(b-a)$. The *Second* (*a-b*) *Condition* requires that the condition $[1-2b+b^2+b^2]=c^2$ exist, but $(1-2b+b^2)\neq a^2$, and $(1-2b+2b^2)\neq c^2$, and like above, $[1-2b+2(c^2-a^2)]\neq c^2$. Therefore, the *Second* (*a-b*) *Condition* (ie. [a-b]=-1), is wrong.

Sub-Theorem-4:

For all pythagoreans, in equation $a^2+b^2=c^2$, c>b>a, and $(c-b)\leq(b-a)$ and hence, $(c^2-b^2)<(b^2-a^2)$; and from above, $a^2=[1-2b+b^2]$. If $[1-2b+2b^2]=c^2$ (as required by the *Second [a-b] Condition*), then the condition $(b^2-[1-2b+b^2]) \geq c^2$

 (c^2-b^2) should exist but it doesn't because the condition $(b^2-[1-2b+b^2]) \ge (c^2-b^2)$, is equivalent to $[b^2-1+2b-b^2] \ge (c^2-b^2)$, which is equivalent to $[-1+2b] \ge (c^2-b^2)$, which is impossible because for most pythagoreans:

i) $(b^2-a^2) \ge [-1+2b]$ and as stated above, $(b^2-a^2) \ge (c^2-b^2)$;

ii)
$$(c^2-b^2) \ge [-1+2b];$$

and therefore, the Second (a-b) Condition (ie. [a–b]= -1), is wrong.

Thus, the Miyazaki (2013) Conjecture is wrong.

3. Conclusion.

The *Miyazaki* (2013) *Conjecture* is wrong for all or most primitive pythagorean triples (and by extension, the *Jesmanowicz Conjecture* remains un-proven).

4. Bibliography.

Bennett, M. & Skinner, C. (2004). Ternary Diophantine equations via Galois representations and modular forms. *Canadian Journal Of Mathematics*, 56, 23–54.

Darmon, H. & Merel, L. (1997). Winding quotients and some variants of Fermat's last theorem. J. Reine Angew. Math., 490, 81–100.

Ding, J., Kudo, M., et. al. (2018). Cryptanalysis of a public key cryptosystem based on Diophantine equations via weighted LLL reduction. *Japan Journal of Industrial and Applied Mathematics*, 35, 1123–1152.

Guo, Y. & Le, M. (1995). A note on Jeśmanowicz' conjecture concerning Pythagorean numbers. *Comment. Mat., Univ. St. Pauli*, 44, 225–228.

Ibarra, O. & Dang, Z. (2006). On the solvability of a class of diophantine equations and applications. *Theoretical Computer Science*, 352(1–3), 342-346.

Jeśmanowicz, L. (1955/1956). Some remarks on Pythagorean numbers, *Wiadom. Mat.*, 1 (1955/1956), 196–202 (in Polish).

Jones, J. P., Sato, D., et. al. (1976). Diophantine Representation of the Set of Prime Numbers. *American Mathematical Monthly*, 83, 449-464.

Lolja, S. (2018). The Proof of the Fermat's Conjecture in the Correct Domain. Ratio Mathematica, 35, 53-74

Matijasevič, Y. (1981). Primes are nonnegative values of a polynomial in 10 variables. *Journal of Soviet Mathematics*, ______.

Miyazaki, T. (2011). Jeśmanowicz' conjecture on exponential Diophantine equations. *Functional Approximation, Comment. Math.*, 45, 207–229.

Miyazaki T. (2013). Generalizations of classical results on Jeśmanowicz' conjecture concerning primitive Pythagorean triples. *Journal Of Number Theory*, 133, 583–595.

Miyazaki, T., Yuan, P. & Wu, D. (2014). Generalizations of classical results on Jeśmanowicz's conjecture concerning Pythagorean triples II. *Journal of Number Theory*, 141, 184–201.

Miyazaki, T. & Terai, N. (2015). On Jeśmanowicz' conjecture concerning primitive Pythagorean triples, II. Acta Mathematica Hungarica, 147(2), 286–293.

Ogura, N. (2012). On Multivariate Public-key Cryptosystems. PhD thesis, Tokyo Metropolitan University, Japan.

Okumura, S. A (2015). Public key cryptosystem based on diophantine equations of degree increasing type. *Pacific Journal of Industrial Mathematics*, 7(4), 33–45.

Rahmawati, R., Sugandha, S., et. al. (2019). The Solution for the Nonlinear Diophantine Equation $(7k-1)^x + (7k)^y = z^2$ with k as the positive even whole number. *Journal of Physics: Conference Series*, Volume 1179. The 1st International Conference on Computer, Science, Engineering and Technology 27–28 November 2018, Tasikmalaya, Indonesia.

Takakuwa, K. (1996). A remark on Jeśmanowicz' conjecture. Proc. Japan Acad. Ser. A Math. Sci., 72, 109–110.

Terai, N. (2014). On Jeśmanowicz' conjecture concerning primitive Pythagorean triples. *Journal Of Number Theory*, 141, 316–323.

Wang, L. & Chin, C. (2012). Some property-preserving homomorphisms. *Journal of Discrete Mathematical Sciences and Cryptography*, 15(2-3).

Zadeh, S. (2019). Diophantine equations for analytic functions. *Online Journal of Analytic Combinatorics*, 14, 1-7.