MAJORIZATION IN THE FRAMEWORK OF 2-CONVEX SYSTEMS

George Precupescu

Abstract

We define a 2 -convex system by the restrictions $x_{1}+x_{2}+\ldots+x_{n}=n s, e\left(x_{1}\right)+e\left(x_{2}\right)+$ $\ldots+e\left(x_{n}\right)=n k, x_{1} \geq x_{2} \geq \ldots \geq x_{n}$ where $e: I \rightarrow \mathbb{R}$ is a strictly convex function. We study the variation intervals for x_{k} and give a more general version of the Boyd-Hawkins inequalities. Next we define a majorization relation on A_{S} by $x \preccurlyeq p y \Leftrightarrow T_{k}(x) \leq T_{k}(y) \quad \forall 1 \leq k \leq p-1$ and $B_{k}(x) \leq B_{k}(y) \quad \forall p+2 \leq k \leq n$ (for fixed $1 \leq p \leq n-1$) where $T_{k}(x)=x_{1}+\ldots+x_{k}$, $B_{k}(x)=x_{k}+\ldots+x_{n}$. The following Karamata type theorem is given: if $x, y \in A_{S}$ and $x \npreccurlyeq_{p} y$ then $f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n}\right) \leq f\left(y_{1}\right)+f\left(y_{2}\right)+\ldots+f\left(y_{n}\right) \forall f: I \rightarrow \mathbb{R}$ 3-convex with respect to e. As a consequence, we get an extended version of the equal variable method of V. Cîrtoaje

1. Introduction. The main results, definitions and notations

DEfinition 1. Let $I \subset \mathbb{R}$ an interval. A continuous, strictly convex function $e: I \rightarrow \mathbb{R}$ is called acceptable if it cannot be further extended by continuity on \bar{I}.

Let $m=\inf (I) \in \overline{\mathbb{R}}, M=\sup (I) \in \overline{\mathbb{R}}$. If $m \notin I$ we infer from the above definition that either $m=-\infty$, or m is finite but $\lim _{x \rightarrow m} e(x)=+\infty$ (and similarly for M).

We will study systems of the form $(S):\left\{\begin{array}{l}x_{1}+x_{2}+\ldots+x_{n}=n s \\ e\left(x_{1}\right)+e\left(x_{2}\right)+\ldots+e\left(x_{n}\right)=n k \quad \text { where } \\ x_{1} \geq x_{2} \geq \ldots \geq x_{n}\end{array}\right.$ $n \geq 3, e: I \rightarrow \mathbb{R}$ is a continuous, strictly convex, acceptable function and s, k are real constants with $s \in I . I$. We call such a system 2 -convex or (S)-sistem and use the notation $S(e, s, k, n)$. We denote the solutions set by A_{S}. A necessary condition for A_{S} to be nonempty is that $e(s) \leq k$ (by the convexity of e). A nonempty (S)-system it's called trivial if A_{S} has only one element. Because e is strictly convex we see that $e(s)=k$ $\Leftrightarrow A_{S}=\{(s, s \ldots, s)\}$, so (S) it's trivial in this case. We will prove in the next sections that A_{S} is a compact and connected set.

REMARK 1. We can also consider 2-concave systems $S(e, s, k, n)$ (for which the function e is strictly concave) and their theory is completely similar. In practice, we can associate to each concave system $S(e, s, k, n)$ the convex system $S^{\prime}(-e, s,-k, n)$ for which $A_{S}^{\prime}=A_{S}$ etc.

An important role in the study of the (S)-systems will be played by the so-called p-invariants.

DEFinition 2. Let $S(e, s, k, n)$ be an (S)-system and $1 \leq p \leq n-1$. We say that (S) admits invariants of order p if the following system

$$
\left\{\begin{array}{l}
p a+(n-p) b=n s \\
p e(a)+(n-p) e(b)=n k \\
a \geq b
\end{array}\right.
$$

is nonempty.
As we shall see, any such solution $\left(a_{p}, b_{p}\right)$ is unique and we denote by $\left(a_{p} \mid b_{p}\right)_{S}$ the n-tuple $\left(a_{p}, \ldots a_{p}, b_{p}, \ldots b_{p}\right) \in A_{S}$. If (S) admits p-invariants $\forall 1 \leq p \leq n-1$ we say that (S) is complete and in this case we consider the intervals

$$
I_{p}:= \begin{cases}{\left[a_{n-1}, a_{1}\right]} & \text { if } p=1 \\ {\left[b_{p-1}, a_{p}\right]} & \text { if } 1<p<n, \\ {\left[b_{n-1}, b_{1}\right]} & \text { if } p=n\end{cases}
$$

We will show that every system $S(e, s, k, n)$ for which I_{S} is an open interval is complete and I_{p} is precisely the set of all possible values of component $x_{p}\left(x \in A_{S}\right)$. This extends the known inequalities of Boyd-Hawkins (see [4], pg. 155).

It is particularly important to consider the "poles" of the (S). It is shown that there is a single n -tuple ω (the lower pole) for which the minimum of x_{1} is achieved, respectively a single n -tuple Ω (the upper pole) for which the maximum of x_{n} is achieved. Specifically, $\Omega=\left(a_{1} \mid b_{1}\right)_{S}$ (if S has 1-invariants) respectively $\omega=\left(a_{n-1} \mid b_{n-1}\right)_{S}$ if S has $(n-1)$-invariants but, in general, ω and Ω have the form:

$$
\left\{\begin{array}{c}
r \geq 0 \\
\Omega=(\underset{M, \ldots M}{ }, a, b \ldots b) \\
\omega=(a, \ldots a, b, \underbrace{m \ldots m}_{r \geq 0})
\end{array}\right.
$$

where $m=\inf \left(I_{S}\right), M=\sup \left(I_{S}\right)$ with the observation that if $m \notin I_{S}$ (or $M \notin I_{S}$) then $r=0$.

For $x \in \mathbb{R}^{n}$ and $1 \leq k \leq n$ we consider the "top" sums $T_{k}(x)=x_{1}+\ldots+x_{k}$ and also the "bottom" sums $B_{k}(x)=x_{k}+\ldots+x_{n}$ (by convention $T_{0}(x)=0, B_{n+1}(x)=0$).

Given $x, y \in \mathbb{R}^{n}$ such that $x_{1} \geq x_{2} \geq \ldots \geq x_{n}$ and $y_{1} \geq y_{2} \geq \ldots \geq y_{n}$ then $x \preccurlyeq y$ (in the classical sense of the majorization theory) if:

$$
\left\{\begin{array}{l}
x_{1} \leq y_{1} \\
x_{1}+x_{2} \leq y_{1}+y_{2} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
x_{1}+\ldots+x_{n-1} \leq y_{1}+\ldots+y_{n-1} \\
x_{1}+x_{2}+\ldots+x_{n}=y_{1}+y_{2}+\ldots+y_{n}
\end{array}\right.
$$

that is, more concisely, if $T_{n}(x)=T_{n}(y)$ and $T_{k}(x) \leq T_{k}(y) \forall 1 \leq k \leq n-1$.
We state here the classical result of Hardy-Littlewood-Polya (also known as Karamata's theorem):

Theorem 1. Let $I \subset \mathbb{R}, f: I \rightarrow \mathbb{R}$ strictly convex and $x, y \in I^{n}$. If $x \preccurlyeq y$ then

$$
f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n}\right) \leq f\left(y_{1}\right)+f\left(y_{2}\right)+\ldots+f\left(y_{n}\right)
$$

Moreover, equality occurs if and only if $x=y$.

REMARK 2. The above condition $T_{k}(x) \leq T_{k}(y) \forall 1 \leq k \leq n-1$ can be replaced with:

$$
\exists 1 \leq p \leq n \text { such that } \begin{cases}T_{k}(x) \leq T_{k}(y) & \forall 1 \leq k \leq p-1 \\ B_{k}(x) \geq B_{k}(y) & \forall p+1 \leq k \leq n\end{cases}
$$

because $B_{k}(x) \geq B_{k}(y) \Leftrightarrow T_{n}(x)-T_{k-1}(x) \geq T_{n}(y)-T_{k-1}(y) \Leftrightarrow T_{k-1}(x) \leq T_{k-1}(y)$ $\forall p+1 \leq k \leq n$ so $T_{k}(x) \leq T_{k}(y) \forall p \leq k \leq n-1$ and these inequalities, together with $T_{k}(x) \leq T_{k}(y) \forall 1 \leq k \leq p-1$ give us $T_{k}(x) \leq T_{k}(y) \forall 1 \leq k \leq n-1$.

Starting from this reformulation we will define in a very similar manner a majorization relation on A_{S} :

DEFinition 3. Let $x, y \in A_{S}$ and $1 \leq p \leq n-1$ a fixed index. We say that $x \preccurlyeq p y$ if

$$
\begin{cases}T_{k}(x) \leq T_{k}(y) & \forall 1 \leq k \leq p-1 \\ B_{k}(x) \leq B_{k}(y) & \forall p+2 \leq k \leq n\end{cases}
$$

In order to state the main result of the article we need the following definition:
DEFinition 4. Let $f, e: I \subset \mathbb{R} \rightarrow \mathbb{R}$ continuous on I, differentiable on I. We say that f is (strictly) 3-convex with respect to e if $\exists g: J \rightarrow \mathbb{R}$ (strictly) convex with $e^{\prime}(I) \subset J$ and such that $f^{\prime}=g \circ e^{\prime}$.

REMARK 3. In the particular case $e(x)=x^{2}$ this is equivalent with the standard definition of 3-convex functions (see for example [3]).

Now the main result:
Theorem 2. (Karamata for 2-convex systems) Let $S(e, s, k, n)$ a 2-convex (or 2concave) system with e differentiable on $\grave{I}_{S}, f: I_{S} \rightarrow \mathbb{R}$ strictly 3-convex with respect to e. Then $\forall x, y \in A_{S}$ with $x \preccurlyeq_{p} y$ we have:

$$
f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n}\right) \leq f\left(y_{1}\right)+f\left(y_{2}\right)+\ldots+f\left(y_{n}\right)
$$

Moreover, equality occurs if and only if $x=y$.
We will show that for any $x \in A_{S} \exists p, q$ so that $\omega \preccurlyeq_{p} x \preccurlyeq_{q} \Omega$ and this allows us to obtain the following corollary (a generalization for the equal variable theorem of Vasile Cîrtoaje, see [1] and [2].

Corollary 1. (extension of the equal variable theorem) Let $S(e, s, k, n)$ a 2convex (or 2-concave) system with e differentiable on $I_{S}, f: I_{S} \rightarrow \mathbb{R}$ strictly 3-convex with respect to e. Then $\forall x \in A_{S}$ we have

$$
E_{f}(\omega) \leq E_{f}(x) \leq E_{f}(\Omega)
$$

where $E_{f}(x)=f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n}\right)$ and ω, Ω are the poles of the (S). Moreover, equality occurs if and only if $x=\omega$ or $x=\Omega$.

2. The study of the invariants of an $S(e, s, k, n)$ system

We start here the study of the invariants of an $S(e, s, k, n)$ system (Definition 2).
Lemma 1. If $S(e, s, k, n)$ admits a pair $\left(a_{p}, b_{p}\right)$ of invariants of order p for a certain $1 \leq p \leq n-1$ then this pair is unique.

Proof. Suppose that (S) has a second pair of p-invariants $\left(a_{p}^{\prime}, b_{p}^{\prime}\right) \neq\left(a_{p}, b_{p}\right)$. We have, for example, $a_{p}<a_{p}^{\prime}$ and then, using the relation $p a_{p}+(n-p) b_{p}=p a_{p}^{\prime}+(n-$ p) $b_{p}^{\prime}=n s$ we infer $b_{p}>b_{p}^{\prime}$.

Thus $\left(a_{p}^{\prime}, \ldots a_{p}^{\prime}, b_{p}^{\prime}, \ldots b_{p}^{\prime}\right) \succ\left(a_{p}, \ldots a_{p}, b_{p}, \ldots b_{p}\right)$ (strictly) and applying Karamata to the strictly convex function e we obtain $k n>k n$, a contradiction.

Lemma 2. If $S(e, s, k, n)$ has $e(s)<k$ and $\exists\left(a_{p} \mid b_{p}\right)_{S}$ then $a_{p}>s>b_{p}$.
Proof. From the definition of invariants, $p a_{p}+(n-p) b_{p}=n s$ and $a_{p} \geq b_{p}$.
Thus $p\left(a_{p}-s\right)+(n-p)\left(b_{p}-s\right)=0 \quad(*)$ and we have the following cases :
Case 1. $a_{p}>s$ Then from (*) it follows that $b_{p}<s$ and we get $a_{p}>s>b_{p}$
Case 2. $a_{p}=s$ Then from $(*)$ it follows that $b_{p}=s$. On the other hand $p e\left(a_{p}\right)+$ $(n-p) e\left(b_{p}\right)=n k \Rightarrow e(s)=k$, contradiction.

Case 3. $a_{p}<s$ Then from $(*)$ it follows that $b_{p}>s$ which contradicts the fact that $a_{p} \geq b_{p}$.

2.1. The extremal properties of invariants

Theorem 3. Let $S(e, s, k, n)$ be a nonempty system and $x \in A_{S}$.
(a) Let $1 \leq p \leq n-1$. If $\exists\left(a_{p} \mid b_{p}\right)_{S}$ then $x_{p} \leq a_{p}$ with equality if and only if $x=$ $\left(a_{p} \mid b_{p}\right)_{s}$.
(b) Let $2 \leq p \leq n-1$. If $\exists\left(a_{p-1} \mid b_{p-1}\right)_{s}$ then $x_{p} \geq b_{p-1}$ with equality if and only if $x=\left(a_{p-1} \mid b_{p-1}\right)_{s}$.
(c) If $\exists\left(a_{1} \mid b_{1}\right)_{S}$ then $x_{n} \leq b_{1}$ with equality if and only if $x=\left(a_{1} \mid b_{1}\right)_{s}$.
(d) If $\exists\left(a_{n-1} \mid b_{n-1}\right)_{S}$ then $x_{1} \geq a_{n-1}$ with equality if and only if $x=\left(a_{n-1} \mid b_{n-1}\right)_{S}$.

Proof. (a) Suppose that $x_{p}>a_{p}$. We will show that $\left(x_{1}, \ldots x_{n}\right) \succ(\underbrace{a_{p}, \ldots a_{p}}_{p}, \underbrace{b_{p}, \ldots b_{p}}_{n-p})$.
Because $x_{1} \geq \ldots \geq x_{p}>a_{p}$ we get

$$
\begin{equation*}
x_{1}>a_{p}, x_{1}+x_{2}>2 a_{p}, \ldots, x_{1}+\ldots+x_{p}>p a_{p} \tag{*}
\end{equation*}
$$

On the other hand, $\left(x_{1}+\ldots+x_{p}\right)+\left(x_{p+1}+\ldots+x_{n}\right)=p a_{p}+(n-p) b_{p}=n s$, but $x_{1}+\ldots+x_{p}>p a_{p}$ and thus $x_{p+1}+\ldots+x_{n}<(n-p) b_{p}$, so $\frac{x_{p+1}+\ldots+x_{n}}{n-p}<b_{p}$.
But $x_{p+1} \geq x_{p+2} \geq \ldots \geq x_{n} \Rightarrow x_{n} \leq \frac{x_{n}+x_{n-1}}{2} \leq \frac{x_{n}+x_{n-1}+x_{n-2}}{3} \leq \ldots \leq \frac{x_{n}+\ldots+x_{p+1}}{n-p}<b_{p}$ and so we get $x_{n}<b_{p}, x_{n}+x_{n-1}<2 b_{p}, \ldots,\left(x_{n}+\ldots+x_{p}\right)<(n-p) b_{p}(* *)$

From $(*)$ and $(* *)$ it follows that $x \succ\left(a_{p} \mid b_{p}\right)_{S}$ and applying Karamata to the strictly convex function e we get the contradiction $k n>k n$.

Therefore $x_{p} \leq a_{p}$. If equality $x_{p}=a_{p}$ holds, then $x_{p} \geq a_{p}$ and, following exactly the above steps (from the $x_{p}>a_{p}$ case), we get the (not necessarily strictly) majorization $x \succcurlyeq\left(a_{p} \mid b_{p}\right)_{S}$. In fact, we must have $x=\left(a_{p} \mid b_{p}\right)_{S}$ otherwise $x \succ\left(a_{p} \mid b_{p}\right)_{S}$ and applying Karamata to e we get again $k n>k n$, contradiction. Thus $x_{p}=a_{p}$ imply $x=\left(a_{p} \mid b_{p}\right)_{s}$.
(b) Suppose that $x_{p}<b_{p-1}$. We will show that $x \succ\left(a_{p-1} \mid b_{p-1}\right)_{S}$.

Using $b_{p-1}>x_{p} \geq x_{p+1} \geq \ldots \geq x_{n}$ we get

$$
x_{n}<b_{p-1},\left(x_{n}+x_{n-1}\right)<2 b_{p-1}, \ldots,\left(x_{n}+\ldots+x_{p}\right)<(n-p+1) b_{p-1}(*)
$$

On the other hand, $\left(x_{1}+\ldots+x_{p-1}\right)+\left(x_{p}+\ldots+x_{n}\right)=(p-1) a_{p-1}+(n-p+1) b_{p}=$ $n s$, but $\left(x_{p}+\ldots+x_{n}\right)<(n-p+1) b_{p-1}$ and thus $x_{1}+\ldots+x_{p-1}>(p-1) a_{p-1}$, so $\frac{x_{1}+\ldots+x_{p-1}}{p-1}>a_{p-1}$.
But $x_{1} \geq x_{2} \geq \ldots \geq x_{p-1} \Rightarrow x_{1} \geq \frac{x_{1}+x_{2}}{2} \geq \frac{x_{1}+x_{2}+x_{3}}{3} \geq \ldots \geq \frac{x_{1}+\ldots+x_{p-1}}{p-1}>a_{p-1}$ and so we get $x_{1}>a_{p-1}, x_{1}+x_{2}>2 a_{p-1}, \ldots,\left(x_{1}+\ldots+x_{p-1}\right)>(p-1) a_{p-1}(* *)$

From (*) and ($* *)$ it follows that $x \succ\left(a_{p} \mid b_{p}\right)_{S}$ and applying Karamata to the strictly convex function e we get $k n>k n$, contradiction.

Therefore $x_{p} \geq b_{p-1}$. If equality $x_{p}=b_{p-1}$ holds then $x_{p} \leq b_{p-1}$ and, following exactly the above steps (from the $x_{p}<b_{p-1}$ case) we get the (not necessarily strictly) majorization $x \succcurlyeq\left(a_{p-1} \mid b_{p-1}\right)_{S}$. We must have $x=\left(a_{p-1} \mid b_{p-1}\right)_{S}$ otherwise $x \succ\left(a_{p-1} \mid b_{p-1}\right)_{S}$ and applying Karamata to e we get again $k n>k n$, contradiction. Thus $x_{p}=b_{p-1}$ imply $x=\left(a_{p-1} \mid b_{p-1}\right)_{s}$.

For (c), (d) the proofs use similar arguments.
Corollary 2. If (S) has $e(s)<k$ and admits $\left(a_{p} \mid b_{p}\right)_{s},\left(a_{q} \mid b_{q}\right)_{S}(p<q)$ then $a_{p}>a_{q}$ and $b_{p}>b_{q}$.

Proof. Let $u=\left(a_{p} \mid b_{p}\right)_{S}$ and $v=\left(a_{q} \mid b_{q}\right)_{S}$. Notice that $v_{p}=a_{q}$ (because $p<q$) and applying theorem 3a we infer that $v_{p} \leq a_{p}$ that is, $a_{p} \geq a_{q}$. But the equality case $a_{p}=a_{q}$ is not possible because, by the same theorem 3a, this would imply that $u=v$ and, using lemma 2 we get $s>b_{p}=u_{p+1}=v_{p+1}=a_{q+1}>s$, contradiction.

Thus $a_{p}>a_{q}$ and by theorem 3 b we get similarly that $b_{p}>b_{q}$.
Example 1. Let $S(e, s, k, n)$ a 2-convex system where $k, s \in \mathbb{R}, k \geq s^{2}$ and e : $\mathbb{R} \rightarrow \mathbb{R}$ is given by $e(x)=x^{2}$. A straightforward computation shows that $\forall 1 \leq p \leq$ $n-1$ the system 2 has the solution $\left(a_{p}, b_{p}\right)=\left(s+\sqrt{\frac{n-p}{p} \Delta}, s-\sqrt{\frac{p}{n-p} \Delta}\right)$ where $\Delta=$ $k-s^{2} \geq 0$. Thus S is a complete system and $\forall x=\left(x_{1}, x_{2} \ldots x_{n}\right) \in A_{S}$ we have $x_{p} \in I_{p}$ where

$$
I_{p}= \begin{cases}{\left[s+\sqrt{\frac{\Delta}{n-1}}, s+\sqrt{(n-1) \Delta}\right]} & \text { if } p=1 \\ {\left[s-\sqrt{\frac{p-1}{n-p+1} \Delta}, s+\sqrt{\frac{n-p}{p} \Delta}\right]} & \text { if } 1<p<n, \\ {\left[s-\sqrt{(n-1) \Delta}, s-\sqrt{\frac{\Delta}{n-1}}\right]} & \text { if } p=n\end{cases}
$$

We obtain in this way the well-known Boyd-Hawkins's inequalities (see [4], pg. 155). and we can get many examples of this type by simply choosing another complete (S)-system, for example $S(e, s, k, n)$ with $s, k>0, k s \geq 1$ and $e:(0, \infty) \rightarrow \mathbb{R}$ given by $e(x)=\frac{1}{x}$ etc.

2.2. Existence conditions for invariants

Let $S(e, s, k, n)$ be un (S)-system and $1 \leq p \leq n-1, I=I_{S}, m=\inf (I) \in \overline{\mathbb{R}}$, $M=\sup (I) \in \overline{\mathbb{R}}$.

Let $g_{p}: J_{p} \rightarrow \mathbb{R}, \quad g_{p}(x)=p e(x)+(n-p) e\left(\frac{n s-p x}{n-p}\right)-k n$ where $J_{p} \subset I \cap[s, \infty)$ is the largest interval with the property that $\frac{n s-p x}{n-p} \in I \cap(-\infty, s]$.

REMARK 4. $\quad J_{p}$ can be specified more precisely as follows: we consider the linear decreasing function $u:[s, \infty) \rightarrow(-\infty, s]$ given by $u(x)=\frac{n s-p x}{n-p}$ and we see that $J_{p}=J \cap I$ where $J=u^{-1}(I \cap(-\infty, s])=\left\{\begin{array}{ll}{\left[s, u^{-1}(m)\right]} & \text { if } m \in I \\ {\left[s, u^{-1}(m)\right)} & \text { if } m \notin I\end{array}= \begin{cases}{\left[s, \gamma_{p}\right]} & \text { if } m \in I \\ {\left[s, \gamma_{p}\right)} & \text { if } m \notin I\end{cases}\right.$ and $\gamma_{p} \stackrel{\text { def }}{=} \frac{n s-(n-p) m}{p} \in[s, \infty]$ and finally we get for J_{p} the expression

$$
\left\{\begin{array}{l}
\text { If } M<\gamma_{p} \text { then } J_{p}= \begin{cases}{[s, M]} & \text { if } M \in I \\
{[s, M)} & \text { if } M \notin I\end{cases} \\
\text { If } M>\gamma_{p} \text { then } J_{p}= \begin{cases}{\left[s, \gamma_{p}\right]} & \text { if } m \in I \\
{\left[s, \gamma_{p}\right)} & \text { if } m \notin I\end{cases} \\
\text { If } M=\gamma_{p} \text { then } J_{p}= \begin{cases}{[s, M]} & \text { if } m \in I \text { and } M \in I \\
{[s, M)} & \text { if } m \notin I \text { or } M \notin I\end{cases}
\end{array}\right.
$$

Lemma 3. g_{p} is strictly increasing on J_{p}
Proof. Let $c, d \in J_{p}$ with $c<d$. Then

$$
g_{p}(c)-g_{p}(d)=p[e(c)-e(d)]+(n-p)\left[e\left(\frac{n s-p c}{n-p}\right)-e\left(\frac{n s-p d}{n-p}\right)\right]
$$

which can be written as

$$
\begin{equation*}
\frac{g_{p}(c)-g_{p}(d)}{c-d}=p\left[\frac{e(c)-e(d)}{c-d}-\frac{e\left(\frac{n s-p c}{n-p}\right)-e\left(\frac{n s-p d}{n-p}\right)}{\frac{n s-p c}{n-p}-\frac{n s-p d}{n-p}}\right] \tag{1}
\end{equation*}
$$

We observe that $d>\frac{n s-p d}{n-p} \Leftrightarrow d>s$ (true) and using the convexity of e we infer that

$$
\begin{equation*}
\frac{e(c)-e(d)}{c-d}>\frac{e(c)-e\left(\frac{n s-p d}{n-p}\right)}{c-\frac{n s-p d}{n-p}} \tag{2}
\end{equation*}
$$

Similarly, $c>\frac{n s-p c}{n-p} \Leftrightarrow c>s$ (true) and from here we also get

$$
\begin{equation*}
\frac{e\left(\frac{n s-p d}{n-p}\right)-e(c)}{\frac{n s-p d}{n-p}-c}>\frac{e\left(\frac{n s-p d}{n-p}\right)-e\left(\frac{n s-p c}{n-p}\right)}{\frac{n s-p d}{n-p}-\frac{n s-p c}{n-p}} \tag{3}
\end{equation*}
$$

From (2) and (3) we deduce that the right side of the relation (1) is positive \Rightarrow $\frac{g_{p}(c)-g_{p}(d)}{c-d}>0 \Rightarrow g_{p}(c)-g_{p}(d)<0$, ie g_{p} is strictly increasing on \circ_{p}, so also on J_{p} because g_{p} is continuous.

From this lemma we infer the existence of the limit

$$
L_{p} \stackrel{\text { def }}{=} \lim _{x \rightarrow \sup J_{p}} g_{p}(x) \in \overline{\mathbb{R}}
$$

Theorem 4. Let $S(e, s, k, n)$ be an $(S)-$ system with $f(s)<k, 1 \leq p \leq n-1$ and L_{p} the limit defined above. Then (S) has invariants of order p if and only if

$$
\begin{cases}L_{p} \geq 0 & \text { if } J_{p} \text { is compact } \\ L_{p}>0 & \text { if } J_{p} \text { is not compact }\end{cases}
$$

Proof. We see that $g_{p}(s)=n(e(s)-k)<0$ and the theorem follows considering that g_{p} is strictly increasing (according to the previous lemma).

Corollary 3. Let $S_{1}\left(e, s, k_{1}, n\right)$ and $S_{2}\left(e, s, k_{2}, n\right)$ be two non-empty (S)-systems with $k_{1} \leq k_{2}$. If S_{2} has p-invariants for a certain $1 \leq p \leq n-1$ then S_{1} has also p-invariants.

Proof. Let $g_{p}^{1}, g_{p}^{2}: J_{p} \rightarrow \mathbb{R}, g_{p}^{1}(t)=p e(t)+(n-p) e\left(\frac{n s-p t}{n-p}\right)-k_{1} n$ and $g_{p}^{2}(t)=$ $p e(t)+(n-p) e\left(\frac{n s-p t}{n-p}\right)-k_{2} n$ defined as above. Notice that $g_{p}^{1}(t)+k_{1} n=g_{p}^{2}(t)+k_{2} n$ $\forall t \in J_{p}$ and so

$$
\lim _{t \rightarrow \sup J_{p}} g_{p}^{1}(t)=\lim _{t \rightarrow \sup J_{p}} g_{p}^{2}(t)+\left(k_{2}-k_{1}\right) n \geq 0
$$

THEOREM 5. If $S(e, s, k, n)$ has $e(s) \leq k$ and I_{S} is an open interval then (S) is non-empty and complete.

Proof. If $e(s)=k$ then $A_{S}=\{(s, s \ldots s)\}$ and the theorem is trivially true. We can therefore assume from now on that $e(s)<k$.

Let $1 \leq p \leq n-1$ and $g_{p}: J_{p} \rightarrow \mathbb{R}, g_{p}(x)=p e(x)+(n-p) e\left(\frac{n s-p x}{n-p}\right)-k n$. According to remark 4 we have $J_{p}=\left\{\begin{array}{ll}{[s, M)} & \text { if } M \leq \gamma_{p} \\ {\left[s, \gamma_{p}\right)} & \text { if } M>\gamma_{p}\end{array}\right.$ and noting $\lambda=\sup J_{p}$ we have to show that $L_{p}=\lim _{x \rightarrow \lambda} g_{p}(x)>0$.

Case 1. $M=\gamma_{p}=+\infty \Rightarrow J_{p}=[s,+\infty)$
Observe that for $x \in J_{p}, x>s$ we can write

$$
\begin{equation*}
g_{p}(x)=p(x-s)\left[\frac{e(x)-e(s)}{x-s}-\frac{e\left(\frac{n s-p x}{n-p}\right)-e(s)}{\frac{n s-p x}{n-p}-s}\right]+n(e(s)-k) \tag{4}
\end{equation*}
$$

Let $r_{1}<r_{2}$ arbitrarily fixed in (s, ∞). For any $x>r_{2} \Rightarrow \frac{n s-p x}{n-p}<s<r_{1}<r_{2}<x$ and using the strict convexity of e we infer:

$$
\underbrace{\frac{e\left(\frac{n s-p x}{n-p}\right)-e(s)}{\frac{n s-p x}{n-p}-s}}_{E_{1}}<\underbrace{\frac{e\left(r_{1}\right)-e(s)}{r_{1}-s}}_{E_{2}}<\underbrace{\frac{e\left(r_{2}\right)-e(s)}{r_{2}-s}}_{E_{3}}<\underbrace{\frac{e(x)-e(s)}{x-s}}_{E_{4}}
$$

We see that $E_{4}-E_{1}>E_{3}-E_{2} \stackrel{\text { def }}{=} \lambda_{0}>0$ and thus for any $x>r_{2}$ we have

$$
g_{p}(x)=p(x-s)\left(E_{4}-E_{1}\right)+n(e(s)-k)>p \lambda_{0}(x-s)+n(e(s)-k)
$$

therefore $L_{p}=\lim _{x \rightarrow \infty} g_{p}(x)=+\infty($ so $>0)$.
Case 2. $M<\gamma_{p} \Rightarrow J_{p}=[s, M), \lambda=M$.
Now M is finite $\Rightarrow \lim _{x \rightarrow M} e(x)=+\infty$ (because e is an acceptable function). On the other hand, $M<\gamma_{p}=\frac{n s-(n-p) m}{p} \Rightarrow m<\frac{n s-p M}{n-p}<s$ and so $\frac{n s-p M}{n-p} \in I_{S}$. Therefore

$$
\lim _{x \rightarrow \lambda} g_{p}(x)=\lim _{x \rightarrow M}\left[p e(x)+(n-p) e\left(\frac{n s-p x}{n-p}\right)-k n\right]=+\infty
$$

Case 3. $M>\gamma_{p} \Rightarrow J_{p}=\left[s, \gamma_{p}\right), \lambda=\gamma_{p}$.
Now γ_{p} is finite so m is also finite and $\lim _{x \rightarrow m} e(x)=+\infty$. Notice that $\frac{n s-p \gamma_{p}}{n-p}=m$ and so $\lim _{x \rightarrow \gamma_{p}} e\left(\frac{n s-p x}{n-p}\right)=+\infty$. Therefore

$$
\lim _{x \rightarrow \lambda} g_{p}(x)=\lim _{x \rightarrow \gamma_{p}}\left[p e(x)+(n-p) e\left(\frac{n s-p x}{n-p}\right)-k n\right]=+\infty
$$

Case 4. $M=\gamma_{p}<+\infty \Rightarrow J_{p}=[s, M), \lambda=M$.
M and m are both finite so $\lim _{x \rightarrow m} e(x)=+\infty, \lim _{x \rightarrow M} e(x)=+\infty$. Notice that $\frac{n s-p M}{n-p}=\frac{n s-p \gamma_{p}}{n-p}=m$ so $\lim _{x \rightarrow M} e\left(\frac{n s-p x}{n-p}\right)=+\infty$. Therefore

$$
\lim _{x \rightarrow \lambda} g_{p}(x)=\lim _{x \rightarrow M}\left[p e(x)+(n-p) e\left(\frac{n s-p x}{n-p}\right)-k n\right]=+\infty
$$

Theorem 6. Let $S(e, s, k, n)$ with $A_{S} \neq \emptyset$ and $m=\inf \left(I_{S}\right), M=\sup \left(I_{S}\right)$. Then
(a) If $M \notin I_{S}$ then (S) has the invariants of order 1
(b) If $m \notin I_{S}$ then (S) has the invariants of order $(n-1)$

Proof. Notice that $e(s) \geq k$ (because $\left.A_{S} \neq \emptyset\right)$ and let $c=\left(c_{1} \ldots c_{n}\right) \in A_{S}$.
(a) If we also have $m \notin I_{S}$ then I_{S} is an open interval and the conclusion follows from the theorem 5 and so we can further assume that $I_{S}=[m, M), M$ finite or not.

Let $g_{1}: J_{1} \rightarrow \mathbb{R}, \quad g_{1}(t)=e(t)+(n-1) e\left(\frac{n s-t}{n-1}\right)-k n$
According to remark 4, $J_{1}=\left\{\begin{array}{ll}{[s, M)} & \text { if } M \leq \gamma_{1} \\ {\left[s, \gamma_{1}\right]} & \text { if } M>\gamma_{1}\end{array}\right.$ where $\gamma_{1}=n s-(n-1) m$
Case 1. $M>\gamma_{1}$ then $J_{1}=\left[s, \gamma_{1}\right]$ and we have to show that $g_{1}\left(\gamma_{1}\right) \geq 0$.
Notice that $m=\frac{n s-\gamma_{1}}{n-1}$ so $g_{1}\left(\gamma_{1}\right) \geq 0 \Leftrightarrow e\left(\gamma_{1}\right)+(n-1) e(m) \geq k n \Leftrightarrow$

$$
e\left(\gamma_{1}\right)+(n-1) e(m) \geq k n=e\left(c_{1}\right)+\ldots e\left(c_{n}\right)
$$

and this follows from Karamata because, obviously, $\left(\gamma_{1}, m, \ldots, m\right) \succcurlyeq\left(c_{1}, c_{2}, \ldots c_{n}\right)$.
Case 2. $M<\gamma_{1}$ (this case is only possible if M is finite)
Now $J_{1}=[s, M)$ and we have to show that $\lim _{t \rightarrow M} g_{1}(t)>0$.
But $M<\gamma_{1}$, thus $s \leq \frac{n s-M}{n-1}<m$ and so $\frac{n s-M}{n-1} \in I_{S}$ and using also the fact that $\lim _{r \rightarrow M} e(r)=+\infty(e$ being an acceptable function) we infer that

$$
\lim _{t \rightarrow M} g_{1}(t)=\lim _{t \rightarrow M}\left[e(t)+(n-1) e\left(\frac{n s-t}{n-1}\right)-k n\right]=+\infty
$$

Case 3. $M=\gamma_{1}$ (this case is only possible if M is finite)
In this case we also have $J_{1}=[s, M)$ and we have to show that $\lim _{t \rightarrow M} g_{1}(t)>0$.
Notice that $M=\gamma_{1} \Rightarrow \frac{n s-M}{n-1}=m$ and we see that $\lim _{r \rightarrow M} e(r)=\lim _{r \rightarrow m} e(r)=+\infty$ (because M, m are finite and e is an acceptable function). Therefore

$$
\lim _{t \rightarrow M} g_{1}(t)=\lim _{t \rightarrow M}\left[e(t)+(n-1) e\left(\frac{n s-t}{n-1}\right)-k n\right]=+\infty
$$

(b) can be proved in a similar manner.

Lemma 4. Let $I=[m, M]$ a compact interval, $s \in I$ and $C=\left\{x \in I^{n} \mid x_{1}+x_{2}+\right.$ $\left.\ldots x_{n}=n s\right\}$. Then $\exists!u \in C$ of the form $u=(\underbrace{M, \ldots M}_{l_{0}}, \theta, \underbrace{m, \ldots m}_{n-l_{0}-1})$ where $0 \leq l_{0} \leq n-1$ and $\theta \in[m, M)$.

Proof. Let $\lambda=\frac{s-m}{M-m} \in(0,1)$ and $l_{0}=[n \lambda] \in\{0, \ldots n-1\}$
Next we define $\theta=n s-l_{0} M-\left(n-l_{0}-1\right) m$ and a straightforward calculation give us $\theta=m+\{n \lambda\}(M-m) \in[m, M)$ and $u \stackrel{\text { def }}{=}(\underbrace{M, \ldots M}_{l_{0}}, \theta, \underbrace{m, \ldots m}_{n-l_{0}-1}) \in C$

For uniqueness, we notice that if $u^{\prime}=(\underbrace{M, \ldots M}_{l_{0}^{\prime}}, \theta^{\prime}, \underbrace{m, \ldots m}_{n-l_{0}^{\prime}-1}) \in C$ with $0 \leq l_{0}^{\prime} \leq$ $n-1$ and $\theta^{\prime} \in[m, M)$ then $\theta^{\prime}=n s-l_{0}^{\prime} M-\left(n-l_{0}^{\prime}-1\right) m$ and from here we immediately get that $n \lambda-l_{0}^{\prime}=\frac{\theta^{\prime}-m}{M-m} \in[0,1)$ so $l_{0}^{\prime}=[n \lambda]=l_{0}$ etc.

THEOREM 7. Let $S(e, s, k, n)$ with $A_{S} \neq \emptyset$ and $m=\inf I_{S}, M=\sup I_{S}$. Then:
(a) If $M \in I_{S}$ and (S) has no invariants of order 1 then there are solutions $x \in A_{S}$ of the form $x=\left(M, x_{2} \ldots x_{n}\right)$
(b) If $m \in I_{S}$ and (S) has no invariants of order $n-1$ then there are solutions $x \in A_{S}$ of the form $x=\left(x_{1} \ldots x_{n-1}, m\right)$

Proof. (a) Let $\omega \in A_{S}$. We consider two cases.
Case $1 I_{S}$ is compact, so $I_{S}=[m, M]$.
According to lemma 4, $n s$ has an unique representation of the form $n s=l_{0} M+$ $\theta+\left(n-l_{0}-1\right) m$ with $\theta \in[m, M)$ and $0 \leq l_{0} \leq n-1$. First we shall show that $l_{0} \geq 1$. If $l_{0}=0$ then we consider $\tilde{u} \stackrel{\text { def }}{=}(\theta, m \ldots m), \tilde{k} \stackrel{\text { def }}{=} \frac{e(\theta)+(n-1) e(m)}{n}$ and, after noticing that $\left(\omega_{1}, \omega_{2} \ldots \omega_{n}\right) \preccurlyeq(\theta, m \ldots m)$, we infer from Karamata that $k \leq \tilde{k}$. But, obviously, $\tilde{S}(e, s, \tilde{k}, n)$ has invariants of order 1 (because $\tilde{u} \in A_{\tilde{S}}$) and using the corollary 3 we conclude that (S) also has invariants of order 1 , contradiction. Therefore $l_{0} \geq 1$.

Next, we prove that $M \leq \gamma_{1} \stackrel{\text { def }}{=} n s-(n-1) m$. If not, $M>\gamma_{1}$ and from $\gamma_{1} \geq m$ we get $\gamma_{1} \in[m, M)$, so $n s=\gamma_{1}+(n-1) m \Rightarrow l_{0}=0$, contradiction. Therefore $M \leq \gamma_{1}$ and from here we also infer that $\delta \stackrel{\text { def }}{=} \frac{n s-M}{n-1} \in[m, M]$.

Let $g_{1}: J_{1} \rightarrow \mathbb{R}, g_{1}(t)=e(t)+(n-1) e\left(\frac{n s-t}{n-1}\right)-k n$ where $J_{1}= \begin{cases}{[s, M]} & \text { if } M<\gamma_{1}, \\ {\left[s, \gamma_{1}\right]} & \text { if } M \geq \gamma_{1},\end{cases}$ but, according to the above observation, $M \leq \gamma_{1}$ so $J_{1}=[s, M]$.

But (S) has no invariants of order 1 and by theorem 4, we infer that $g_{1}(M)<0$ so $e(M)+(n-1) e(\delta)<k n$.

Next we define $C=\left\{\left(x_{2}, \ldots x_{n}\right) \in I^{n-1} \mid M \geq x_{2} \geq \ldots \geq x_{n}, M+x_{2}+\ldots+x_{n}=n s\right\}$ and we see that C is a convex set (so it is also connected). Let $u \stackrel{\text { def }}{=}(\underbrace{M, \ldots M}_{l_{0} \geq 1}, \theta, \underbrace{m, \ldots m}_{n-l_{0}-1})$ respectively $v \stackrel{\text { def }}{=}(M, \delta \ldots \delta)$ and it's clear that $u, v \in C$.

Let $E: C \rightarrow \mathbb{R}, E\left(x_{2}, \ldots x_{n}\right)=e\left(x_{2}\right)+\ldots e\left(x_{n}\right)$. We see that $E(v)<k n$, because $g_{1}(M)<0$. On the other hand, we notice that $\omega \preccurlyeq u$ and using Karamata we get $E(\omega) \leq E(u)$, therefore $E(u) \geq k n$. But E is a continuous function and C is a connected set and therefore we deduce that $\exists x \in C$ with $E(x)=k n$ which means that (S) has the solution $\left(M, x_{2}, \ldots x_{n}\right)$.

Case 2. I is a non compact interval. This case can be reduced to the previous (compact) case. Indeed, we will first choose an $m<m_{1}<M$ such that $m_{1}<\omega_{n}$ and let $I_{1}=\left[m_{1}, M\right], e_{1}=e \mid I_{1}$. It's clear that $S_{1}\left(e_{1}, s, k, n\right)$ is non-empty and has no invariants of order 1 (because they would be valid for (S) as well) and so, according to the
compact case, we will find a solution $\left(M, x_{2} \ldots x_{n}\right) \in A_{S_{1}}$ but, obviously, this is also a solution for S.

2.3. A_{S} is a compact set

Theorem 8. For any $S(e, s, k, n)$ the set A_{S} is compact.
Proof. We can assume that $A_{S} \neq \emptyset$. Let $m=\inf (I) \in \overline{\mathbb{R}}, M=\sup (I) \in \overline{\mathbb{R}}$. We will first show that there is a compact interval $J \subset I_{S}$ with $A_{S} \subset J^{n}$.

Let x be an arbitrary point in A_{S}. According to theorem 6 , if $M \notin I_{S}$ then $\exists\left(a_{1} \mid b_{1}\right)_{S}$ and, using theorem 3, we infer that $x_{1} \leq a_{1}$. Similarly, if $m \notin I_{S}$ then $\exists\left(a_{n-1} \mid b_{n-1}\right)_{S}$ and $x_{n} \geq b_{n-1}$. Thus, if we define
$m_{0}=\left\{\begin{array}{ll}m & \text { if } m \in I_{S} \\ b_{n-1} & \text { if } m \notin I_{S}\end{array}, M_{0}=\left\{\begin{array}{ll}M & \text { if } M \in I_{S} \\ a_{1} & \text { if } M \notin I_{S}\end{array}\right.\right.$ and $J=\left[m_{0}, M_{0}\right]$ it follows that $x \in J^{n}$ and therefore $A_{S} \subset J^{n}$.

Next, we see that we can write $A_{S}=A_{1} \cap A_{2} \cap E_{1} \ldots \cap E_{n-1}$ where

$$
\begin{gathered}
E_{p}=\left\{x \in \mathbb{R}^{n} \mid x_{p+1}-x_{p} \leq 0\right\} \quad \forall 1 \leq p \leq n-1 \\
A_{1}=\left\{x \in \mathbb{R}^{n} \mid x_{1}+x_{2}+\ldots x_{n}=n s\right\} \\
A_{2}=\left\{x \in J^{n} \mid e\left(x_{1}\right)+e\left(x_{2}\right)+\ldots e\left(x_{n}\right)=n k\right\}
\end{gathered}
$$

and, because these sets are all closed sets we conclude that A_{S} is a compact set.

3. Functional dependence. The T_{ε} transforms

3.1. The $n=3$ case

Lemma 5. Let $S(e, s, k, 3)$ be an (S)-system and let $x, y \in A_{S}, x=\left(x_{1}, x_{2}, x_{3}\right)$, $y=\left(y_{1}, y_{2}, y_{3}\right)$ with $x_{1} \leq y_{1}$. Then $y_{1} \geq x_{1} \geq x_{2} \geq y_{2} \geq y_{3} \geq x_{3}$

Proof. We have to show that $x_{2} \geq y_{2}$ and also that $y_{3} \geq x_{3}$, the other inequalities being obvious. If $x_{3}>y_{3}$ then, using the fact that $x_{1} \leq y_{1}$, we deduce that $x \prec y$ (strictly majorization) and from Karamata we get $e\left(x_{1}\right)+e\left(x_{2}\right)+e\left(x_{3}\right)<e\left(y_{1}\right)+e\left(y_{2}\right)+e\left(y_{3}\right)$ so $3 k<3 k$, a contradiction. Thus $x_{3} \leq y_{3}$. Next, if $x_{2}<y_{2}$ then using $x_{1} \leq y_{1}$ we infer that $x_{1}+x_{2}<y_{1}+y_{2}$ so $x_{3}>y_{3}$ and further we get a contradiction exactly as above. So we also have $x_{2} \geq y_{2}$.

Lemma 6. Let $S(e, s, k, 3)$ be an (S)-system and let $x, y \in A_{S}, x=\left(x_{1}, x_{2}, x_{3}\right)$, $y=\left(y_{1}, y_{2}, y_{3}\right)$. If $x_{1}=y_{1}$ (respectively $x_{2}=y_{2}$ or $x_{3}=y_{3}$) then $x=y$.

Proof. Let $x_{1}=y_{1}$. Suppose that $x_{3} \neq y_{3}$. Then, for example, $x_{3}>y_{3}$ and from this we get immediately that $x \prec y$ (strict) and applying Karamata to the function e we get $3 k<3 k$, a contradiction. So $x_{3}=y_{3}$ and from here we also get $x_{2}=3 s-\left(x_{1}+x_{3}\right)=$ $3 s-\left(y_{1}+y_{3}\right)=y_{2}$, therefore $x=y$.

Because A_{S} is a compact set we infer that $P_{k} \stackrel{\text { def }}{=} \operatorname{Pr}_{k}\left(A_{S}\right)(k=1,2,3)$ are also compact sets and let $m_{k}=\min \left(P_{k}\right), M_{k}=\max \left(P_{k}\right)(k=1,2,3)$. Thus $P_{k} \subseteq I_{k} \stackrel{\text { def }}{=}$ $\left[m_{k}, M_{k}\right](k=1,2,3)$. From now on, we denote by ω the point (unique, according to the lemma 6) for which $\omega_{1}=m_{1}$, respectively by Ω the unique point for which $\Omega_{3}=M_{3}$.

Lemma 7. Let $I_{k}=\left[m_{k}, M_{k}\right]$ and ω, Ω as above. Then:
(a) $\omega=\left(m_{1}, M_{2}, m_{3}\right)$ and $\Omega=\left(M_{1}, m_{2}, M_{3}\right)$
(b) $M_{1} \geq m_{1} \geq M_{2} \geq m_{2} \geq M_{3} \geq m_{3}$

Proof. 1) Let $\omega=\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ so $\omega_{1}=m_{1}$ and let $x=\left(x_{1}, x_{2}, x_{3}\right) \in A_{S}$ be an arbitrary point. Then $x_{3} \geq \omega_{3}$ because otherwise, using the fact that $x_{1} \geq m_{1}=\omega_{1}$, we infer that $\omega \prec x$ (strictly) and applying Karamata to the function e we arrive at the contradiction $3 k<3 k$. Because $x \in A_{S}$ is arbitrary we deduce that $\omega_{3}=m_{3}$. At the same time $x_{2}=3 s-\left(x_{1}+x_{3}\right) \leq 3 s-\left(\omega_{1}+\omega_{3}\right)=\omega_{2}$ but x is an arbitrary point so $\omega_{2}=M_{2}$. Therefore $\omega=\left(m_{1}, M_{2}, m_{3}\right)$ and we get similarly that $\Omega=\left(M_{1}, m_{2}, M_{3}\right)$.
2) According to (a), $\left(m_{1}, M_{2}, m_{3}\right) \in A_{S},\left(M_{1}, m_{2}, M_{3}\right) \in A_{S}$ but, obviously, $m_{1} \leq M_{1}$ so, using lemma 5, we get $M_{1} \geq m_{1} \geq M_{2} \geq m_{2} \geq M_{3} \geq m_{3}$.

Lemma 8. Let $I_{S}=[m, M]$ and ω, Ω as above. Then:
(a) Ω is of the form $\begin{cases}\left(a_{1}, b_{1}, b_{1}\right)=\left(a_{1} \mid b_{1}\right)_{S} & \text { if } S \text { has 1-invariants } \\ (M, a, b) & \text { if } S \text { doesn't have 1-invariants }\end{cases}$
(b) ω is of the form $\begin{cases}\left(a_{2}, a_{2}, b_{2}\right)=\left(a_{2} \mid b_{2}\right)_{S} & \text { if } S \text { has 2-invariants } \\ (a, b, m) & \text { if } S \text { doesn't have 2-invariants }\end{cases}$

Proof. (a) If $\exists\left(a_{1} \mid b_{1}\right)_{S}$ then, using the extremal properties of invariants, we deduce that $\forall x \in A_{S} x_{3} \leq b_{1}$ and so we must have $b_{1}=M_{3}=\Omega_{3} \Rightarrow\left(a_{1} \mid b_{1}\right)_{S}=\Omega$.

If $\nexists\left(a_{1} \mid b_{1}\right)_{S}$ then, according to theorem 7 we deduce (S) has solutions of the form (M, a, b). This means that $M_{1}=M$ but, according to the lemma 7, $\Omega=\left(M_{1}, m_{2}, M_{3}\right)=$ (M, m_{2}, M_{3}) and we infer (using lemma 6) that $\Omega=(M, a, b)$.
(b) can be proved in a similar manner.

Lemma 9. A non-empty system $S(e, s, k, 3)$ is trivial if and only if $\omega=\Omega$.
Proof. If (S) is trivial it's clear that $\omega=\Omega$.
If $\omega=\Omega \Rightarrow\left(m_{1}, M_{2}, m_{3}\right)=\left(M_{1}, m_{2}, M_{3}\right)$ so $m_{k}=M_{k}(k=1,2,3)$ and clearly $\left|A_{S}\right|=1$ so (S) is trivial.

Remark 5. Thus, if $S(e, s, k, 3)$ is non-trivial, then $\omega \neq \Omega$ and it's clear that $m_{k} \neq M_{k}$, so $I_{k} \neq \emptyset \quad(k=1,2,3)$. We also infer that $\forall x \in A_{S}$ with $x_{1} \in I_{1}$ we have $x_{2} \in I_{2}$ and $x_{3} \in I_{3}$ (because if, for example, $x_{2}=m_{2}$ then $x=\Omega$ etc.) and also that $\forall x \in A_{S}$ with $x_{1} \in I_{1} \Rightarrow x_{1}>x_{2}>x_{3}$.

Lemma 10. Let $S(e, s, k, 3)$ be a non-empty (S)-system and $I_{k}=\left[m_{k}, M_{k}\right]$ as above. Then:
(a) For any $x_{1} \in I_{1} \exists!\left(x_{2}, x_{3}\right) \in I_{2} \times I_{3}$ with $\left(x_{1}, x_{2}, x_{3}\right) \in A_{S}$
(b) For any $x_{3} \in I_{3} \exists!\left(x_{1}, x_{2}\right) \in I_{1} \times I_{2}$ with $\left(x_{1}, x_{2}, x_{3}\right) \in A_{S}$

Proof. (a) Fix $x_{1}^{0} \in I_{1}$. If $x_{1}^{0}=m_{1}$ or $x_{1}^{0}=M_{1}$ then the conclusion follows (because $\omega, \Omega \in A_{S}$) so we can assume $x_{1}^{0} \in\left(m_{1}, M_{1}\right)$. Let $f_{0}=f \mid\left[m, x_{1}^{0}\right]$.
Because $\omega=\left(m_{1}, M_{2}, m_{3}\right) \in A_{S}$ and $x_{1}^{0}>m_{1} \geq M_{2} \geq m_{3} \geq m$ it follows that $s \in\left(m, x_{1}^{0}\right)$ so we have a well-defined (S)-system $S\left(f_{0}, s, k, 3\right)$ for which $\omega \in A_{S_{0}}$ and so $A_{S_{0}} \neq \emptyset$.

Observe that $A_{S_{0}} \subset A_{S}$ and also that, if S_{0} has the 1 -invariants $\left(a_{1}^{0}, b_{1}^{0}\right)$ then they are valid for S as well.

We now show that S_{0} doesn't have 1 -invariants.
Case 1. (S) doesn't have 1 -invariants. According to the previous observation, neither (S_{0}) doesn't have 1 -invariants.
Case 2. (S) has 1 -invariants $\left(a_{1}, b_{1}\right)$ so $M_{1}=a_{1}$. Suppose $\left(S_{0}\right)$ has also $1-$ invariants $\left(a_{1}^{0}, b_{1}^{0}\right)$ and then, according to the previous observation, $\left(a_{1}^{0}, b_{1}^{0}\right)$ are valid $1-$ invariants for (S) as well and so $\left(a_{1}, b_{1}\right)=\left(a_{1}^{0}, b_{1}^{0}\right) \Rightarrow a_{1}^{0}=a_{1}=M_{1}$. But $M_{1}>x_{1}^{0} \geq a_{1}^{0}$ and so we get a contradiction.

Therefore $\left(S_{0}\right)$ is non-empty and without 1 -invariants. According to Theorem 7a, (S_{0}) has a solution of the form $\left(x_{1}^{0}, x_{2}^{0}, x_{3}^{0}\right) \in A_{S_{0}} \subset A_{S}$ and this is unique (according to Lemma 6).
(b) Fix $x_{3}^{0} \in I_{3}$. If $x_{3}^{0}=m_{3}$ or $x_{3}^{0}=M_{3}$ then the conclusion follows (because $\omega, \Omega \in A_{S}$) so we can assume $x_{3}^{0} \in\left(m_{3}, M_{3}\right)$. Let $f_{0}=f \mid\left[x_{3}^{0}, M\right]$.
Because $\Omega=\left(M_{1}, m_{2}, M_{3}\right) \in A_{S}$ and $M \geq M_{1} \geq m_{2} \geq M_{3}>x_{3}^{0}$ it follows that $s \in$ $\left(x_{3}^{0}, M\right)$ so we have a well-defined (S)-system $S\left(f_{0}, s, k, 3\right)$ for which $\Omega \in A_{S_{0}}$ and so $A_{S_{0}} \neq \emptyset$.

Observe that $A_{S_{0}} \subset A_{S}$ and also that, if S_{0} has the 2-invariants $\left(a_{2}^{0}, b_{2}^{0}\right)$ then they are valid for S as well.

We now show that S_{0} doesn't have $2-$ invariants.
Case 1. (S) doesn't have $2-$ invariants. According to the previous observation, neither (S_{0}) doesn't have 2 -invariants.
Case 2. (S) has 2 - invariants $\left(a_{2}, b_{2}\right)$ so $m_{3}=b_{2}$. Suppose $\left(S_{0}\right)$ has also $2-$ invariants $\left(a_{2}^{0}, b_{2}^{0}\right)$ and then, according to the previous observation, $\left(a_{2}^{0}, b_{2}^{0}\right)$ would be valid $2-$ invariants for (S) as well and so $\left(a_{2}, b_{2}\right)=\left(a_{2}^{0}, b_{2}^{0}\right) \Rightarrow b_{2}^{0}=b_{2}=m_{3}$. But $m_{3}<x_{3}^{0} \leq b_{2}^{0}$ and so we get a contradiction.

Therefore $\left(S_{0}\right)$ is non-empty and without 2 -invariants. According to Theorem 7b
$\left(S_{0}\right)$ has a solution of the form $\left(x_{1}^{0}, x_{2}^{0}, x_{3}^{0}\right) \in A_{S_{0}} \subset A_{S}$ and this is unique (according to Lemma 6).

THEOREM 9. (the functional dependence) Let $S(e, s, k, 3)$ be a non-empty system and $I_{k}=\left[m_{k}, M_{k}\right]$ as above. Then $\exists!u: I_{1} \rightarrow I_{2}, v: I_{1} \rightarrow I_{3}$ bijective, continuous, monotonic functions (u decreasing, v increasing) such that $A_{S}=\left\{(t, u(t), v(t)) \mid t \in I_{1}\right\}$.

Proof. According to Lemma 10a, $\forall x_{1} \in I_{1} \exists!\left(x_{2}, x_{3}\right) \in I_{2} \times I_{3}$ with $\left(x_{1}, x_{2}, x_{3}\right) \in A_{S}$ therefore \exists ! the functions $u: I_{1} \rightarrow I_{2}, v: I_{1} \rightarrow I_{3}$ with $A_{S}=\left\{(t, u(t), v(t)) \mid t \in I_{1}\right\}$. It remains to show that they are continuous, bijective and strictly monotone.

But Lemma 10b also give us the unique functions $\tilde{u}: I_{1} \rightarrow I_{2}, \tilde{v}: I_{1} \rightarrow I_{3}$ with the property $A_{S}=\left\{(\tilde{v}(t), \tilde{u}(t), t) \mid t \in I_{3}\right\}$ and so, for any fixed $\left(x_{1}^{0}, x_{2}^{0}, x_{3}^{0}\right) \Rightarrow\left\{\begin{array}{l}x_{1}^{0}=\tilde{v}\left(x_{3}^{0}\right)=\tilde{v}\left(v\left(x_{1}^{0}\right)\right) \\ x_{3}^{0}=v\left(x_{1}^{0}\right)=v\left(\tilde{v}\left(x_{3}^{0}\right)\right)\end{array}\right.$ and this means that v, \tilde{v} are inverse of each other, so they are bijective functions. Now we show that v is an increasing function on I_{1}. If not, it follows that $\exists x_{1}<x_{1}^{\prime} \in I_{1}$ with $v\left(x_{1}\right)>v\left(x_{1}^{\prime}\right)$. This imply that $\left(x_{1}^{\prime}, u\left(x_{1}^{\prime}\right), v\left(x_{1}^{\prime}\right)\right) \succ\left(x_{1}, u\left(x_{1}\right), v\left(x_{1}\right)\right)$ (strictly) and, applying Karamata to the function e we get the contradiction $3 k<3 k$. Therefore v is increasing, in fact strictly increasing (because of bijectivity) and from here we also infer the continuity, because, in general, a bijective and monotone function $f: I \rightarrow J$ (where I, J are intervals) is continuous.

In the $u: I_{1} \rightarrow I_{2}$ case, we use the relation $u\left(x_{1}\right)=3 s-x_{1}-v\left(x_{1}\right)$ and we immediately infer the continuity of u and also that u is strictly decreasing, hence also injective. It remains to show that u is surjective. But $\Omega=\left(M_{1}, m_{2}, M_{3}\right) \in A_{S} \Rightarrow m_{2}=$ $u\left(M_{1}\right) \Rightarrow m_{2} \in \operatorname{Im}(u)$ and, similarly, $M_{2} \in \operatorname{Im}(u)$ and from continuity of u we deduce that $\operatorname{Im}(u)=\left[m_{2}, M_{2}\right]$ so u is also surjective.

THEOREM 10. Let $S(e, s, k, 3)$ be a nontrivial system and $u: I_{1} \rightarrow I_{2}, v: I_{1} \rightarrow I_{3}$ as above. If, in addition, e is differentiable on $\stackrel{\circ}{S}_{S}$ then $e \in C^{1}\left(\stackrel{I}{I}_{S}\right)$ and $u, v \in C^{1}\left(\dot{I}_{1}\right)$.

Proof. Because e is strictly convex $\Rightarrow e^{\prime}$ is strictly increasing on I_{S} and, using also the intermediate value property of e^{\prime}, we infer that e^{\prime} is continuous, hence $e \in C^{1}\left(I_{S}\right)$.

Because (S) is nontrivial it follows (according to Remark 5) that $I_{k} \neq \emptyset \quad(k=$ $1,2,3)$. Next let $F: \check{I}_{1} \times \circ_{2} \times \circ_{3} \rightarrow \mathbb{R}^{2}, \quad F\left(x_{1}, x_{2}, x_{3}\right)=\left(F_{1}\left(x_{1}, x_{2}, x_{3}\right), F_{2}\left(x_{1}, x_{2}, x_{3}\right)\right)$ where

$$
\left\{\begin{array}{l}
F_{1}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2}+x_{3}-3 s \\
F_{2}\left(x_{1}, x_{2}, x_{3}\right)=e\left(x_{1}\right)+e\left(x_{2}\right)+e\left(x_{3}\right)-3 k
\end{array}\right.
$$

Fix $c_{1} \in \circ_{1}$ and let $c_{2}=u\left(c_{1}\right) \in \circ_{2}, c_{3}=v\left(c_{1}\right) \in \dot{I}_{3}$. Observe that $c_{1}>c_{2}>c_{3}$ (see Remark 5) and also that $F\left(c_{1}, c_{2}, c_{3}\right)=0$. The determinant of the Jacobian matrix

$$
\left(\begin{array}{ll}
\frac{\partial F_{1}}{\partial x_{2}}(c) & \frac{\partial F_{1}}{\partial x_{3}}(c) \\
\frac{\partial F_{2}}{\partial x_{2}}(c) & \frac{\partial F_{2}}{\partial x_{3}}(c)
\end{array}\right)
$$

is $e^{\prime}\left(c_{2}\right)-e^{\prime}\left(c_{3}\right) \neq 0$ (because e^{\prime} is strictly monotone and $\left.c_{2}>c_{3}\right)$. Therefore, by implicit function theorem applied to the C^{1} class function $F \Rightarrow \exists I_{c_{1}} \subset \circ_{1}, \quad I_{c_{2}} \subset$ $\stackrel{\circ}{I}_{2}, \quad I_{c_{3}} \subset \grave{I}_{3}$ open intervals centered in c_{1}, c_{2} respectively c_{3} and the C^{1} class function $g: I_{c_{1}} \rightarrow I_{c_{2}} \times I_{c_{3}}, g\left(x_{1}\right)=\left(g_{1}\left(x_{1}\right), g_{2}\left(x_{1}\right)\right)$ such that $\forall\left(x_{1}, x_{2}, x_{3}\right) \in I_{c_{1}} \times I_{c_{2}} \times I_{c_{3}}$ we have the equivalence:

$$
F\left(x_{1}, x_{2}, x_{3}\right)=0 \Leftrightarrow\left(x_{2}, x_{3}\right)=\left(g_{1}\left(x_{1}\right), g_{2}\left(x_{1}\right)\right)
$$

But $\forall\left(x_{1}, x_{2}, x_{3}\right) \in I_{c_{1}} \times I_{c_{2}} \times I_{c_{3}} \Rightarrow x_{1}>x_{2}>x_{3}$ so $F\left(x_{1}, x_{2}, x_{3}\right)=0 \Leftrightarrow\left(x_{1}, x_{2}, x_{3}\right) \in A_{S}$. On the other hand, we know that $A_{S}=\left\{(t, u(t), v(t)) \mid t \in I_{1}\right\}$ so $g_{1} \equiv u\left|I_{c_{1}}, g_{2} \equiv v\right| I_{c_{2}}$. We conclude that $u, v \in C^{1}\left(I_{1}\right)$.

3.2. The T_{ε} transforms. Preliminaries

Let $S(e, s, k, n)$ be an (S)-system given by $\left\{\begin{array}{l}x_{1}+x_{2}+\ldots+x_{n}=n s \\ e\left(x_{1}\right)+e\left(x_{2}\right)+\ldots+e\left(x_{n}\right)=n k \\ x_{1} \geq x_{2} \geq \ldots \geq x_{n}\end{array}\right.$
Fix $c=\left(c_{1}, \ldots c_{n}\right) \in A_{S}, 1 \leq i<j<k \leq n$ and let $S^{\prime}\left(e, s^{\prime}, k^{\prime}, 3\right)$ be the (S)-system given by

$$
\left\{\begin{array}{l}
x_{1}^{\prime}+x_{2}^{\prime}+x_{3}^{\prime}=c_{i}+c_{j}+c_{k}=3 s^{\prime} \\
e\left(x_{1}^{\prime}\right)+e\left(x_{2}^{\prime}\right)+e\left(x_{3}^{\prime}\right)=e\left(c_{i}\right)+e\left(c_{j}\right)+e\left(c_{k}\right)=3 k^{\prime} \\
x_{1}^{\prime} \geq x_{2}^{\prime} \geq x_{3}^{\prime}
\end{array}\right.
$$

Obviously, $A_{S^{\prime}} \neq \emptyset$. As in the previous section, we consider the intervals $x_{k}^{\prime} \in I_{k}^{\prime}=$ $\left[m_{k}^{\prime}, M_{k}^{\prime}\right](k=1,2,3)$ and, according to Theorem $9, \exists$! the functions $u: I_{1}^{\prime} \rightarrow I_{2}^{\prime}, v:$ $I_{1}^{\prime} \rightarrow I_{3}^{\prime}$ continuous, bijective, strictly monotonic (u decreasing, v increasing) such that $A_{S^{\prime}}=\left\{(t, u(t), v(t)) \mid t \in I_{1}^{\prime}\right\}$.

For any $t \in I_{1}^{\prime}=\left[m_{1}^{\prime}, M_{1}^{\prime}\right]$ we consider the n-tuple $D(t)$ constructed from c by replacing $\left(c_{i}, c_{j}, c_{k}\right)$ with $(t, u(t), v(t))$, thus defining a continuous function $D=D\left[c_{i}, c_{j}, c_{k}\right]$: $I_{1}^{\prime} \rightarrow \mathbb{R}^{n}$. Notice that for any $t \in I_{1}^{\prime}$, the n-tuple $D(t)$ satisfies the equalities (1) and (2) of the initial (S)-system, but not necessarily the ordering condition (3).

DEFINITION 5. Let $1 \leq i<j<k \leq n$.
(a) We say that $x \in I_{S}^{n}$ satisfies the "ascending" condition $\left(A_{i, j, k}^{+}\right)$if

$$
\left\{\begin{array}{l}
x_{i}< \begin{cases}M & \text { if } i=1 \\
x_{i-1} & \text { if } i>1\end{cases} \\
x_{j}>x_{j+1} \\
x_{k}<x_{k-1}
\end{array}\right.
$$

(b) We say that $x \in I_{S}^{n}$ satisfies the "descending" condition $\left(A_{i, j, k}^{-}\right)$if

$$
\left\{\begin{array}{l}
x_{i}>x_{i+1} \\
x_{j}<x_{j-1} \\
x_{k}> \begin{cases}m & \text { if } k=n \\
x_{k+1} & \text { if } k<n\end{cases}
\end{array}\right.
$$

Lemma 11. Let $S(e, r, k, n)$ be a non-empty (S)-system, $c \in A_{S}, 1 \leq i<j<$ $k \leq n$ and $D=D\left[c_{i}, c_{j}, c_{k}\right]: I_{1}^{\prime}=\left[m_{1}^{\prime}, M_{1}^{\prime}\right] \rightarrow \mathbb{R}^{n}$ as above.
(a) If c satisfies the $\left(A_{i, j, k}^{+}\right)$condition, then $c_{i}<M_{1}^{\prime}$ and there is a largest interval $J^{+}=\left[c_{i}, c_{i}+\varepsilon_{T}^{*}\right] \subset I_{1}^{\prime} \quad\left(\varepsilon_{T}^{*}>0\right)$ with the property that $D\left(J^{+}\right) \subset A_{S}$ and $D(t)$ satisfies $\left(A_{i, j, k}^{+}\right) \forall t \in\left[c_{i}, c_{i}+\varepsilon_{T}^{*}\right)$.
(b) If c satisfies the $\left(A_{i, j, k}^{-}\right)$condition, then $c_{i}>m_{1}^{\prime}$ and there is a largest interval $J^{-}=\left[c_{i}-\varepsilon_{B}^{*}, c_{i}\right] \subset I_{1}^{\prime} \quad\left(\varepsilon_{B}^{*}>0\right)$ with the property that $D\left(J^{-}\right) \subset A_{S}$ and $D(t)$ satisfies $\left(A_{i, j, k}^{-}\right) \forall t \in\left(c_{i}-\varepsilon_{B}^{*}, c_{i}\right]$.

Proof. (a) According to Lemma $8, \Omega^{\prime}= \begin{cases}\left(a_{1}^{\prime}, b_{1}^{\prime}, b_{1}^{\prime}\right) & \text { if } S^{\prime} \text { has 1-invariants } \\ \left(M, a^{\prime}, b^{\prime}\right) & \text { if } S^{\prime} \text { doesn't have 1-invariants }\end{cases}$ and from this it follows that $\left(c_{i}, c_{j}, c_{k}\right) \neq \Omega^{\prime}$ (otherwise we have either $c_{j}=c_{k}$, either $c_{i}=M$, impossible). On the other hand, according to Lemma 7, we know that $\Omega^{\prime}=\left(M_{1}^{\prime}, m_{2}^{\prime}, M_{3}^{\prime}\right)$ and because $\left(c_{i}, c_{j}, c_{k}\right) \neq \Omega^{\prime}$ it follows that $c_{i}<M_{1}^{\prime}$.

The point $D\left(c_{i}\right)=c$ satisfies the strict inequalities in $\left(A_{i, j, k}^{+}\right)$and using the continuity of D we deduce that $\exists \varepsilon>0$ such that $\forall t \in\left[c_{i}, c_{i}-\varepsilon\right)$, the point $D(t)$ also satisfies the strict inequalities in $\left(A_{i, j, k}^{+}\right)$.

It's clear that $D(t)$ also satisfies the ordering condition (3) hence $D(t) \in A_{S} \forall t \in$ $\left[c_{i}, c_{i}+\varepsilon\right)$. Next we define

$$
\varepsilon_{T}^{*}=\sup \left\{\varepsilon>0 \mid D(t) \text { satisfies }\left(A_{i, j, k}^{+}\right) \quad \forall t \in\left[c_{i}, c_{i}+\varepsilon\right)\right\}
$$

and let $J^{+}=\left[c_{i}, c_{i}+\varepsilon_{T}^{*}\right]$. It's clear that $D(t) \in A_{S} \forall t \in\left[c_{i}, c_{i}+\varepsilon_{T}^{*}\right)$ and, at the same time $D\left(c_{i}+\varepsilon_{T}^{*}\right) \in A_{S}$ because we can choose a sequence $\left(t_{m}\right)_{m \geq 1} \subset\left[c_{i}, c_{i}+\varepsilon_{T}^{*}\right)$ with $t_{m} \rightarrow c_{i}+\varepsilon_{T}^{*}$ and from continuity of D we infer that $D\left(t_{m}\right) \rightarrow D\left(c_{i}+\varepsilon_{T}^{*}\right)$, but $D\left(t_{m}\right) \in$ A_{S} and A_{S} is a compact set, hence $D\left(c_{i}+\varepsilon_{T}^{*}\right) \in A_{S}$.

REMARK 6. Let $d^{*}=D\left(c_{i}+\varepsilon_{T}^{*}\right) \in A_{S}$. Because $d_{l}^{*}=c_{l} \quad \forall l \neq i, j, k$ we have

$$
M \geq \ldots \geq c_{i-1} \geq d_{i}^{*} \geq \ldots \geq d_{j}^{*} \geq c_{j+1} \geq \ldots \geq c_{k-1} \geq \ldots \geq d_{k}^{*}
$$

On the other hand, it's clear that d^{*} cannot satisfies the strict conditions in $A_{i, j, k}^{+}$(otherwise, following exactly the above steps, we could extend the interval J^{+}but this
contradict the maximality of J^{+}) and from this we infer that d^{*} must satisfy at least one of the following equalities

$$
\left\{\begin{array}{l}
d_{i}^{*}= \begin{cases}M & \text { if } i=1 \\
c_{i-1} & \text { if } i>1\end{cases} \\
d_{j}^{*}=d_{k}^{*} \\
\text { if } j+1=k
\end{array}, \begin{array}{ll}
d_{j}^{*}=c_{j+1} & \text { if } j+1<k \\
d_{k}^{*}=c_{k-1} & \text { if } j+1<k
\end{array}\right.
$$

Lemma 12. Let $c \in A_{S}$ satisfying the $A_{i, j, k}^{+}$condition and let J^{+}be the interval given by Lemma 11. Then $\forall t \in J^{+}$the points c and $D(t)$ belong to the same connected component of A_{S}.

Proof. Let $C_{1} \subset A_{S}$ the connected component that contains c. Using the continuity of D it follows that $C_{2} \stackrel{\text { def }}{=} D\left(J^{+}\right)$is a connected set and $c \in C_{2} \subset A_{S}$. Thus $C_{1} \cup C_{2}$ is a connected subset of A_{S} and, from the maximality of C_{1}, we infer that $C_{2} \subset C_{1}$ etc.

3.3. The T_{ε} transforms

Let $S(e, s, k, n)$ be an (S)-system, $1 \leq i<j<k \leq n, c \in A_{S}$ and $D=D\left[c_{i}, c_{j}, c_{k}\right]$: $I_{1}^{\prime} \rightarrow \mathbb{R}^{n}$ defined as in previous section.

We have seen that if c satisfies the $A_{i, j, k}^{+}$condition then exists a largest interval $J^{+}=\left[c_{i}, c_{i}+\varepsilon_{T}^{*}\right]\left(\varepsilon_{T}^{*}>0\right)$ with the property that $D\left(J^{+}\right) \subset A_{S}$.

Similarly, if c satisfies the $A_{i, j, k}^{-}$condition then exists a largest interval $J^{-}=$ $\left[c_{i}-\varepsilon_{B}^{*}, c_{i}\right]\left(\varepsilon_{B}^{*}>0\right)$ with the property that $D\left(J^{-}\right) \subset A_{S}$.

DEFinition 6. Let c satisfying the $A_{i, j, k}^{+}$condition and $\varepsilon \in\left[0, \varepsilon_{T}^{*}\right]$. We say that the n-tuple $c^{\prime} \in A_{S}$ is a $T_{\varepsilon}^{+}(i, j, k)[c]$ transform of c and we write $c^{\prime}=T_{\varepsilon}^{+}(i, j, k)[c]$ if $c^{\prime}=D\left(c_{i}+\varepsilon\right)$.

The $T_{\varepsilon}^{-}(i, j, k)[c]$ transforms are similarly defined.
We notice that when we apply to c a $T_{\varepsilon}^{+}(i, j, k)[c]$ transform (for example) then c_{i} and c_{k} "increase" and c_{j} "decreases" (the precise meaning is that $c_{i}^{\prime}>c_{i}, c_{k}^{\prime}>c_{k}$ and $c_{j}^{\prime}<c_{j}$). This follows, of course, from the monotony of the u and v functions (u is strictly decreasing and v strictly increasing). We can also observe that $c_{i}^{\prime}+c_{j}^{\prime}=$ $3 s-c_{k}^{\prime}<3 s-c_{k}=c_{i}+c_{j}$ so, by applying a T_{ε}^{+}transform, the sum $c_{i}+c_{j}$ (or $c_{j}+c_{k}$) "decreases".

A $T_{\varepsilon}^{+} \mid T_{\varepsilon}^{-}$transform is called strict if $\varepsilon \in\left(0, \varepsilon_{T}^{*}\right)$, respectively $\varepsilon \in\left(0, \varepsilon_{B}^{*}\right)$. We notice that if $c^{\prime}=T_{\varepsilon}^{+}(i, j, k)[c]$ is a strict transform then c^{\prime} still satisfies the $A_{i, j, k}^{+}$condition (respectively $A_{i, j, k}^{-}$in the T_{ε}^{-}case).

Lemma 13. (a) If $x \in A_{S}$ satisfies the $A_{i, j, k}^{+}$condition then there is a chain of strict transforms of type T_{ε}^{+}that map x to an $y \in A_{S}$ with $y_{n}>x_{n}$.
(b) If $x \in A_{S}$ satisfies the $A_{i, j, k}^{-}$condition then there is a chain of strict transforms of type T_{ε}^{-}that map x to an $y \in A_{S}$ with $y_{1}<x_{1}$.

Proof. (a) Case $1 k=n$. We can apply to x a strict transform $y=T_{\varepsilon}^{+}(i, j, n)[x]$ and, obviously, $y_{n}>x_{n}$.

Case $2 k<n$. We start by applying to x a strict transform $x^{\prime}=T_{\varepsilon}^{+}(i, j, k)[x]$ for which, obviously, $x_{k}^{\prime}>x_{k}$ and so we are sure that we also have $x_{k}^{\prime}>x_{k+1}^{\prime}=x_{k+1}$. If $k+1=n$ we continue exactly as in the case 1 . If not, we apply to x^{\prime} a strict transform $x^{\prime \prime}=T_{\varepsilon}^{+}(i, j, k+1)\left[x^{\prime}\right]$ for which $x_{k+1}^{\prime \prime}>x_{k+2}^{\prime \prime}=x_{k+2}$ and so on.

For (b) the proof is similar to the above.

3.4. The poles ω, Ω

Let $S(e, s, k, n)$ be an (S)-system. Because A_{S} is a compact set it follows that $P_{k} \stackrel{\text { def }}{=} \operatorname{Pr}_{k}\left(A_{S}\right)(k=1,2 \ldots n)$ are also compact sets and let $m_{k}=\min \left(P_{k}\right), M_{k}=\max \left(P_{k}\right)$ $(k=1,2 \ldots n)$, hence $P_{k} \subseteq I_{k} \stackrel{\text { def }}{=}\left[m_{k}, M_{k}\right](k=1,2 \ldots n)$

In particular, we deduce that there exists points $\omega \in A_{S}$ for which $\omega_{1}=m_{1}$ (or points $\Omega \in A_{S}$ for which $\Omega_{n}=M_{n}$).

Lemma 14. Let $\Omega \in A_{S}$ for which $\Omega_{n}=M_{n}$. Then Ω is of the form

$$
\Omega=(\underbrace{M, \ldots M}_{r \geq 0}, a, b \ldots b)
$$

where $r \geq 0$ and $a, b \in I_{S}$ with $a \geq b=M_{n}$
Proof. We can start, obviously, by writing Ω in the form $\Omega=(\underbrace{M, \ldots M}_{r \geq 0}, \Omega_{r+1}, \ldots \Omega_{n})$.
If $r \geq n-2$ our problem is solved, so we can assume $r \leq n-3$ with $\Omega_{r+1} \neq M$. If there exists $r+1<i<n$ with $\Omega_{i}>\Omega_{i+1}$ then, considering that $\Omega_{r+1}<M$, we infer that Ω satisfies the $A_{r+1, i, i+1}^{+}$condition hence, according to Lemma 13 , there is a chain of strict transforms of type T_{ε}^{+}that map Ω to an $\Omega^{\prime} \in A_{S}$ with $\Omega_{n}^{\prime}>\Omega_{n}=M_{n}$, a contradiction. Therefore $\Omega_{r+2}=\ldots=\Omega_{n}$ etc.

LEMMA 15. If $\Omega, \Omega^{\prime} \in A_{S}$ are of the form $\left\{\begin{array}{l}\Omega=(\underbrace{M, \ldots M, a, b \ldots b)}_{r \geq 0} \\ \Omega^{\prime}=(\underbrace{M, \ldots M,}_{r^{\prime} \geq 0} a^{\prime}, b^{\prime} \ldots b^{\prime})\end{array}\right.$ where $a \geq b, a^{\prime} \geq b^{\prime}$ then $\Omega=\Omega^{\prime}$.

Proof. Without loss of generality we may assume that $b \geq b^{\prime}$ and from this we infer

$$
\left\{\begin{array}{l}
T_{k}(\Omega) \leq T_{k}\left(\Omega^{\prime}\right) \forall k=1 \ldots r \\
B_{k}(\Omega) \geq B_{k}\left(\Omega^{\prime}\right) \forall k=r+2 \ldots n
\end{array}\right.
$$

and this means $\Omega \preccurlyeq \Omega^{\prime}$ (according to Remark 2). Suppose $\Omega \neq \Omega^{\prime}$. Then $\Omega^{\prime} \prec \Omega$ (strictly) and applying Karamata to the strictly convex function e we get $k n<k n$, a contradiction.

Theorem 11. Let $S(e, s, k, n)$ an (S)-system and $m=\inf \left(I_{S}\right), M=\sup \left(I_{S}\right)$. Then:
(a) There exists a unique point $\Omega \in A_{S}$ for which $\Omega_{n}=M_{n}$. Moreover, it is of the form

$$
\Omega=(\underbrace{M, \ldots M}_{r \geq 0}, a, b, \ldots b)
$$

Conversely, $\forall \Omega^{\prime} \in A_{S}$ of the form $\Omega^{\prime}=(\underbrace{M, \ldots M}_{r^{\prime} \geq 0}, a^{\prime}, b^{\prime}, \ldots b^{\prime}) \Rightarrow \Omega^{\prime}=\Omega$.
(b) There exists a unique point $\omega \in A_{S}$ for which $\omega_{1}=m_{1}$. Moreover, it is of the form

$$
\omega=(a, \ldots a, b, \underbrace{m, \ldots m}_{r \geq 0})
$$

Conversely, $\forall \omega^{\prime} \in A_{S}$ of the form $\omega^{\prime}=(a^{\prime}, \ldots a^{\prime}, b^{\prime}, \underbrace{m, \ldots m}_{r^{\prime} \geq 0}) \Rightarrow \omega^{\prime}=\omega$.
Proof. (a) Let $\Omega, \Omega^{\prime} \in A_{S}$ two points for which $\Omega_{n}=\Omega_{n}^{\prime}=M_{n}$. Then, according to Lemma $14, \Omega$ and Ω^{\prime} are of the form $\left\{\begin{array}{l}\Omega=(\underbrace{M, \ldots M, a, b \ldots b)}_{r \geq 0} \\ \Omega^{\prime}=(\underbrace{M, \ldots M,}_{r^{\prime} \geq 0} a^{\prime}, b^{\prime} \ldots b^{\prime})\end{array}\right.$ and applying
Lemma 15 we infer $\Omega=\Omega^{\prime}$. The converse follows, obviously, from Lemma 15.
(b) The lemmas 14 and 15 has similar versions for the ω case and after that the proof is similar to the above.

REMARK 7. We call these two points Ω, ω the poles of the system (upper and lower) and we can show that $\left[m_{1}, M_{1}\right]=\left[\omega_{1}, \Omega_{1}\right]$ and $\left[m_{n}, M_{n}\right]=\left[\omega_{n}, \Omega_{n}\right]$. For the first equality, for example, we observe that, by definition, $\omega_{1}=m_{1}$. On the other hand, Ω is of the form $(\underbrace{M, \ldots M}_{r \geq 0}, a, b, \ldots b)$. If $r>0$ then, $\Omega_{1}=M=M_{1}$ and if $r=0$ then $\Omega=\left(a_{1} \mid b_{1}\right)_{S}$ but, in this case, $a_{1}=M_{1}$ (according to Theorem 3a) and so again $\Omega_{1}=M_{1}$.

REmARK 8. If $x \neq \Omega$ we can prove that there exist $1 \leq i<j<n$ such that x satisfies the $\left(A_{i, j, j+1}^{+}\right)$condition. According to Theorem 11, x is not of the form $(\underbrace{M, \ldots M}_{r \geq 0}, a, b, \ldots b)^{(*)}$. It's clear then that $\exists i \leq n-2$ with $x_{i}<M$ and, supposing i minimal with this property, we also find $i<j<j+1 \leq n$ with $x_{j}>x_{j+1}$, otherwise x would be of the form (*).

Similarly, if $x \neq \omega$ we deduce that there exist $1 \leq i<i+1<j \leq n$ such that x satisfies the $\left(A_{i, i+1, j}^{-}\right)$condition.

Theorem 12. Let $S(e, s, k, n)$ be a non-empty (S)-system. The following assertions are equivalent:
(a) $\left|A_{S}\right|=1$ (that is, S is trivial)
(b) $\omega=\Omega$
(c) $\exists x \in A_{S}$ of the form $x=(\theta, \theta, \ldots, \theta)$ or $x=(\underbrace{M, \ldots M}_{r \geq 0}, \theta, \underbrace{m, \ldots m}_{t \geq 0})$

Proof. $(a) \Rightarrow(b)$ it's obvious.
$(b) \Rightarrow(a)$ If $\omega=\Omega$ then, according to remark 7, we infer that $m_{1}=M_{1}$ and so, for an arbitrary $x \in A_{S}$ we deduce that $x_{1}=m_{1}$. But this means, according to Theorem 11, that $x=\omega$. Hence $A_{S}=\{\omega\}$ etc.
$(c) \Rightarrow(b)$ From Theorem 11 we know that for any point $\Omega^{\prime} \in A_{S}$ of the form $\Omega^{\prime}=(\underbrace{M, \ldots M}_{r^{\prime} \geq 0}, a^{\prime}, b^{\prime}, \ldots b^{\prime}) \Rightarrow \Omega^{\prime}=\Omega$. But x, in either of the two variants, is also of that form and so $x=\Omega$. In a similar manner we deduce that $x=\omega$ hence $\Omega=\omega$.
$(b) \Rightarrow(c)$ Let $\Omega=(\underbrace{M, \ldots M}_{r \geq 0}, a, b, \ldots b), \omega=(a^{\prime}, \ldots a^{\prime}, b^{\prime}, \underbrace{m, \ldots m}_{r^{\prime} \geq 0})$.
Case $1 r>0$. We know that $\omega=\Omega$ hence $a^{\prime}=M$ and $\omega=(M, \ldots M, b^{\prime}, \underbrace{m, \ldots m}_{r^{\prime} \geq 0})$
Case $2 r^{\prime}>0$. Using $\omega=\Omega$ it follows that $b=m$ hence $\Omega=(\underbrace{M, \ldots M}_{r \geq 0}, a, m, \ldots m)$
Case 3. $r=0, r^{\prime}=0$. Then $\omega=\Omega \Leftrightarrow(a, b \ldots b)=\left(a^{\prime}, \ldots a^{\prime}, b^{\prime}\right)$ hence $a=a^{\prime}=$ $b=b^{\prime}=\theta$ and $\omega=(\theta, \theta, \ldots, \theta)$.

3.5. A_{S} is a connected set

Theorem 13. Let $S(e, s, k, n)$ be an (S)-system. Then A_{S} is a connected set.
Proof. Suppose that A_{S} is not connected, hence there exist at least two connected components that are also compact sets, because A_{S} is compact. Let C_{1} be the connected component that contains the point Ω and let $C_{2} \neq C_{1}$ be another one. Using the compactness of C_{2}, we can choose a point $x=\left(x_{1}, x_{2}, \ldots x_{n}\right) \in C_{2}$ with maximal x_{n}.

According to Remark $8 \Rightarrow$ there exist indices $i<j<k$ such that x satisfies the "ascending" condition $A_{i, j, k}^{+}$and applying Lemma 13a, we get a chain of strict T_{ε}^{+} transforms that map x to an y with $y_{n}>x_{n}$.

On the other hand, according to Lemma 12 , for any $w^{\prime}=T_{\varepsilon}^{+}(i, j, k)[w]$ transform, the point w^{\prime} belongs to the same connected component as w, hence x and y are both contained in C_{2}. But $y_{n}>x_{n}$ and this contradicts the maximality of x_{n}.

Corollary 4. Let $S(e, k, s, n)$ be an (S)-system and $I_{r}=\left[m_{r}, M_{r}\right], 1 \leq r \leq n$. If $P_{r}=\operatorname{Pr}_{r}\left(A_{S}\right)$ then $P_{r}=I_{r}$, hence I_{r} is exactly the set of all possible values of the x_{r} component ($x \in A_{S}$).

4. Extension of the Karamata's inequality and related results

4.1. The \preccurlyeq_{p} and \unlhd relations

Fix $1 \leq p \leq n-1$ and let $x, y \in A_{S}$.

$$
\begin{aligned}
& y=\left(\begin{array}{c}
T \text { zone } \\
y_{1}, \quad y_{2}, \quad \ldots y_{p-1}
\end{array}, \quad y_{p}, \quad y_{p+1}, \stackrel{y_{p+2}, \ldots y_{n-1}, y_{n}}{ }\right) \\
& x=\left(\underset{T \text { zone }}{\left(x_{1}, x_{2}, \ldots x_{p-1},\right.} x_{p}, y_{p+1}, \frac{\left.y_{p+2}, \ldots x_{n-1}, x_{n}\right)}{B \text { zone }}\right.
\end{aligned}
$$

By definition,

$$
x \preccurlyeq_{p} y \Leftrightarrow \begin{cases}T_{k}(x) \leq T_{k}(y) & \forall 1 \leq k \leq p-1 \tag{5}\\ B_{k}(x) \leq B_{k}(y) & \forall p+2 \leq k \leq n\end{cases}
$$

where $T_{k}(x)=x_{1}+\ldots+x_{k}$ (top sums) and $B_{k}(x)=x_{k}+\ldots+x_{n}$ (bottom sums).
Note that for $p=1$ the definition is equivalent to $B_{k}(x) \leq B_{k}(y) \quad \forall 3 \leq k \leq n$ (that is, the T zone is empty) and for $p=n-1$ the definition is equivalent to $T_{k}(x) \leq$ $T_{k}(y) \forall 1 \leq k \leq n-2$ (so B zone is empty).

We also consider the strict version of this relation, that is, we say that $x \prec_{p} y$ if $x \preccurlyeq p y$ and at least one of the inequalities (5) is strict.

Lemma 16. Let $x, y \in A_{S}$. If $x \preccurlyeq_{p} y$ then $x_{1} \leq y_{1}$ and $x_{n} \leq y_{n}$.
Proof. If $p \geq 2$ the definition (5) implies in particular that $T_{1}(x) \leq T_{1}(y)$ so $x_{1} \leq y_{1}$. If $p=1$ then (5) $\Leftrightarrow B_{k}(x) \leq B_{k}(y) \forall 3 \leq k \leq n$ and if $x_{1}>y_{1}$ we infer $x \succ y$ but, applying Karamata to e, we arrive to the contradiction $k n>k n$. Hence $x_{1} \leq y_{1}$ and we can prove similarly that $x_{n} \leq y_{n}$.

DEFINITION 7. Let $x \in A_{S}$ and $1 \leq i_{1}<i_{2}<\ldots<i_{r} \leq n$ (fixed indices).
(a) We define $x \backslash\left(x_{i_{1}}, \ldots x_{i_{r}}\right)$ as being that $(n-r)$ tuple constructed from x by removing the components $x_{i_{1}}, \ldots x_{i_{r}}$.
(b) We define a "reduced" system $S^{\prime}\left(e, k^{\prime}, s^{\prime}, n^{\prime}\right)$ (where $\left.n^{\prime}=n-r\right)$ by:

$$
\left\{\begin{array}{l}
t_{1}^{\prime}+\ldots+t_{n^{\prime}}^{\prime}=n s-\left(x_{i_{1}}+\ldots+x_{i_{r}}\right)=n^{\prime} s^{\prime} \\
e\left(t_{1}^{\prime}\right)+\ldots+e\left(t_{n^{\prime}}^{\prime}\right)=n k-\left(e\left(x_{i_{1}}\right)+\ldots+e\left(x_{i_{r}}\right)\right)=n^{\prime} k^{\prime} \\
t_{1}^{\prime} \geq t_{2}^{\prime} \geq \ldots \geq t_{n^{\prime}}^{\prime}
\end{array}\right.
$$

denoted also by $\hat{S}\left[x_{i_{1}}, x_{i_{2}} \ldots x_{i_{r}}\right]$.
Notice that $x \backslash\left(x_{i_{1}}, \ldots x_{i_{r}}\right) \in \hat{S}\left[x_{i_{1}}, x_{i_{2}} \ldots x_{i_{r}}\right]$
Lemma 17. Let $x, y \in A_{S}$ with $x \preccurlyeq_{p} y$ and suppose $\exists r$ with $x_{r}=y_{r}$. If $x^{\prime}=$ $x \backslash\left(x_{r}\right)$ and $y^{\prime}=y \backslash\left(y_{r}\right)$ then $\exists 1 \leq p^{\prime} \leq n^{\prime}-1$ such that $x^{\prime} \preccurlyeq p^{\prime} y^{\prime}$ (where $n^{\prime}=n-1$).

Proof. It' clear that $x, y \in \hat{S}\left[x_{r}\right]$ and we can choose $p^{\prime}=p-1$ (if $p \geq 2$) or $p^{\prime}=1$ (if $p=1$) so, in general, we can choose $p^{\prime} \in\{p-1, p\}$.

LEMMA 18. Let $x, y \in A_{S}$ and $1 \leq p, q \leq n-1$. If $x \preccurlyeq_{p} y$ and $y \preccurlyeq_{q} x$ then $x=y$.
Proof. The proof is by induction on n. Using Lemma 16, we first observe that $x \preccurlyeq_{p} y \Rightarrow x_{1} \leq y_{1}$ and $y \preccurlyeq_{q} x \Rightarrow y_{1} \leq x_{1}$, hence $x_{1}=y_{1}$.

For $n=3$ the conclusion follows directly from Lemma 6 .
If $n>3$ we consider the points $x^{\prime}=x \backslash\left(x_{1}\right)$ and $y^{\prime}=y \backslash\left(y_{1}\right)$ so, according to Lemma 17, $\exists 1 \leq p^{\prime}, q^{\prime} \leq n^{\prime}-1$ with $x^{\prime} \preccurlyeq p^{\prime} y^{\prime}$ and $y^{\prime} \preccurlyeq q^{\prime} x^{\prime}$ (where $n^{\prime}=n-1$). But $x^{\prime}, y^{\prime} \in A_{S^{\prime}}$ where $S^{\prime}\left(e, s^{\prime}, k^{\prime}, n^{\prime}\right)$ is the reduced system $\hat{S}\left[x_{1}\right]$ and so, by the induction hypothesis, it follows that $x^{\prime}=y^{\prime}$, hence $x=y$.

THEOREM 14. \preccurlyeq_{p} is an order relation on A_{S}
Proof. The reflexivity and transitivity are evident and antisymmetry follows from Lemma 18.

Corollary 5. Let $x, y \in A_{S}$ with $x \preccurlyeq p y$. Then $x \prec_{p} y \Leftrightarrow x \neq y$
Proof. If $x \prec_{p} y$ then it's clear that $x \neq y$.
If $x \neq y$ then at least one of the inequalities (5) is strict. Otherwise, we would have at the same time $x \preccurlyeq p y$ and $y \preccurlyeq p x$, hence $x=y$.

Lemma 19. Let $x, y \in A_{S}$ with $x \prec_{p} y$. Then $\exists r \leq p<p+1 \leq t$ such that $x_{r}<y_{r}, x_{t}<y_{t}$.

Proof. We will show that $\exists r \leq p$ such that $x_{r}<y_{r}$. Otherwise, $x_{i}>y_{i} \forall 1 \leq i \leq p$ hence $T_{i}(x)>T_{i}(y) \forall 1 \leq i \leq p$ but this, together with the $B_{i}(x) \leq B_{i}(y)(i=p+2 \ldots n)$ inequalities, implies that $x \succ y$ (strictly) and, applying Karamata to the strictly convex function e, we get $n k>n k$, a contradiction.

ThEOREM 15. Let ω, Ω be the poles of the $S(e, s, k, n)$ and let $x \in A_{S}$ be an arbitrary point. Then there exists $1 \leq p, q \leq n-1$ such that $\Omega \succcurlyeq_{p} x \succcurlyeq_{q} \omega$.

Proof. We will show that $\exists 1 \leq p \leq n-1$ such that $\Omega \succcurlyeq_{p} x$. We know that Ω is of the form $\Omega=\begin{array}{ccccccccl}1 & \ldots & r-1 & r & r+1 & r+2 & \ldots & n \\ (M, & \ldots & M, & a, & b, & b, & \ldots & b)\end{array}$ for some $r \geq 1$ and, by the definition of Ω, we know that $x_{n} \leq b$.

It's clear that $T_{k}(\Omega) \geq T_{k}(x) \forall 1 \leq k \leq r-1$ and, if it happens that $B_{k}(\Omega) \geq B_{k}(x)$ $\forall r+2 \leq k \leq n$, then it follows trivially that $\Omega \succcurlyeq_{r} x$. If not, there exists an index $r+2 \leq k \leq n$ such that $B_{k}(\Omega)<B_{k}(x)$ and we suppose k largest with this property. Because $\Omega_{n}=b \geq x_{n}$ we see that $k<n$.

So we have, for now, $B_{i}(\Omega) \geq B_{i}(x) \forall k+1 \leq i \leq n$ and $B_{k}(\Omega)<B_{k}(x)$. We will prove that $\Omega \succcurlyeq_{k-1} x$ and for this we need that $T_{j}(\Omega) \geq T_{j}(x) \forall 1 \leq j \leq k-2$. We already know that $T_{j}(\Omega) \geq T_{j}(x) \forall 1 \leq j \leq r-1$, so we can assume $r \leq j \leq k-2$. If, by reductio ad absurdum, there exists $r \leq j \leq k-2$ such that $T_{j}(\Omega)<T_{j}(x)$ then

$$
\begin{equation*}
M(r-1)+a+(j-r) b<x_{1}+\ldots+x_{j} \tag{6}
\end{equation*}
$$

But $B_{k}(\Omega)<B_{k}(x) \Rightarrow$

$$
\begin{equation*}
(n-k+1) b<x_{k}+\ldots+x_{n} \tag{7}
\end{equation*}
$$

and from (6) and (7) we infer

$$
\begin{gathered}
M(r-1)+a+[n-r-(k-j-1)] b<\left(x_{1}+\ldots+x_{j}\right)+\left(x_{k}+\ldots+x_{n}\right) \\
\Rightarrow n s-(k-j-1) b<n s-\left(x_{j+1}+\ldots+x_{k-1}\right) \\
\quad \Rightarrow(k-j-1) b>x_{j+1}+\ldots+x_{k-1}
\end{gathered}
$$

Hence $b>x_{k-1}$ but from (7) it also follows that $b<x_{k} \leq x_{k-1}$, a contradiction. The proof for $x \succcurlyeq_{q} \omega$ is similar to the above.

DEFINITION 8. If $x, y \in A_{S}$ we say that $x \unlhd y$ if $\exists 1 \leq p \leq n-1$ with $x \preccurlyeq p y$
REMARK 9. The \unlhd relation is, obviously, reflexive and antisymmetric (according to Lemma 18) but, unfortunately, it's not also transitive so, in general, \unlhd is not an order relation.

The fact that it is not transitive follows from a counterexample. We consider the system $S\left(e, \frac{2}{5}, \frac{44}{5}, 5\right)$ where $e: \mathbb{R} \rightarrow \mathbb{R}, \quad e(x)=x^{2}$ and we will arrive at a counterexample by a convenient deformation of the following points in A_{S} :

$$
\begin{aligned}
& z=\left(3+\frac{\sqrt{35}}{2}, 3-\frac{\sqrt{35}}{2}, 0,-\frac{3}{2},-\frac{5}{2}\right) \\
& y=(3+2 \sqrt{2}, 3-2 \sqrt{2}, 0,-1,-3) \\
& x=\left(3+\frac{3 \sqrt{3}}{2}, 3-\frac{3 \sqrt{3}}{2}, 0,-\frac{1}{2},-\frac{7}{2}\right)
\end{aligned}
$$

First, observe that $\left\{\begin{array}{l}x_{1}<y_{1}<z_{1}, \quad x_{5}<y_{5}<z_{5} \\ x_{1}+x_{2}=y_{1}+y_{2}=z_{1}+z_{2}=6 \\ x_{4}+x_{5}=y_{4}+y_{5}=z_{4}+z_{5}=-4\end{array}\right.$.
Next, we see that $x_{1}>x_{2}>x_{3}$ so there exist strict transforms $x^{\prime}=T_{\varepsilon}^{-}(1,2,3)[x]$. We have $x_{1}^{\prime}<x_{1}$ and $x_{1}^{\prime}+x_{2}^{\prime}>x_{1}+x_{2}=6$.

Similarly, we can apply to z a transform $z^{\prime}=T_{\varepsilon}^{+}(3,4,5)[z]$, we have $z_{5}^{\prime}>z_{5}$ and also $z_{4}^{\prime}+z_{5}^{\prime}<z_{4}+z_{5}=-4$.

Finally, we see that $x^{\prime} \preccurlyeq 2 y, y \preccurlyeq_{3} z^{\prime}$ but it's not possible to choose an index $1 \leq$ $p \leq 4$ with $x^{\prime} \preccurlyeq_{p} z^{\prime}$ because $x_{1}^{\prime}+x_{2}^{\prime}>6=z_{1}^{\prime}+z_{2}^{\prime}$ and $x_{4}^{\prime}+x_{5}^{\prime}=-4>z_{4}^{\prime}+z_{5}^{\prime}$.

4.2. The perturbation lemmas

Definition 9. Fix $1 \leq p \leq n-1$ and let $x, y \in A_{S}$ with $x \preccurlyeq p y$. We say that:
(a) there exist equal sums in (T) if $\exists 1 \leq k \leq p-1$ with $T_{k}(x)=T_{k}(y)$.
(b) all (T)-sums are distinct if $T_{k}(x) \neq T_{k}(y) \forall 1 \leq k \leq p-1$.
(and similarly for B-zone)

$$
\begin{aligned}
& y=\left(\begin{array}{c}
T \text { zone } \\
y_{1}, y_{2}, \ldots y_{p-1}
\end{array}, y_{p}, y_{p+1}, \frac{B \text { zone }}{y_{p+2}, \ldots y_{n-1}, y_{n}}\right) \\
& x=\left(\begin{array}{llll}
x_{1}, & x_{2}, \ldots & x_{p-1} \\
T \text { zone }
\end{array}, x_{p}, y_{p+1}, \frac{y_{p+2}, \ldots x_{n-1}, x_{n}}{B}\right)
\end{aligned}
$$

If there exist equal sums in (T), we also consider the extreme indices $a \leq b$ such that $\begin{cases}T_{a}(x)=T_{a}(y), & T_{b}(x)=T_{b}(y) \\ T_{k}(x)<T_{k}(y), & \forall k \in\{1 \ldots a-1\} \cup\{b+1 \ldots p-1\}\end{cases}$

Similarly, if there exist equal sums in (B), we consider the extreme indices $c \leq d$ such that $\begin{cases}B_{c}(x)=B_{c}(y), & B_{d}(x)=B_{d}(y) \\ B_{k}(x)<B_{k}(y), & \forall k \in\{p+2 \ldots c-1\} \cup\{d+1 \ldots n\}\end{cases}$

Lemma 20. Fix $1 \leq p \leq n-1$ and let $x, y \in A_{S}$ with $x \preccurlyeq p y$.
A) 1) If $x_{1}<y_{1}$ then $\exists 2 \leq i \leq n-1$ with $x_{i}>x_{i+1}$
2) If $x_{n}<y_{n}$ then $\exists 1 \leq i \leq n-2$ with $y_{i}>y_{i+1}$
B) 1) If $x_{1}<y_{1}$ and there exist equal sums in (T) then $\exists 1 \leq i \leq a-1$ with $y_{i}>y_{i+1}$
2) If $x_{n}<y_{n}$ and there exist equal sums in (B) then $\exists d \leq i \leq n-1$ with $x_{i}>x_{i+1}$

Proof. (A) If (1) is not true, then $x_{i}=x_{i+1} \forall 2 \leq i \leq n-1 \Rightarrow x_{2}=x_{3}=\ldots=x_{n}$ and so $x=\left(a_{1} \mid b_{1}\right)_{S} \Rightarrow x_{1}=a_{1}$. But, from the extremal properties of invariants we know that $y_{1} \leq a_{1}$ hence $y_{1} \leq x_{1}$, a contradiction. For (2) the proof is similar.
B) If (1) is not true, then $y_{i}=y_{i+1} \forall 1 \leq i \leq a-1 \Rightarrow y_{1}=\ldots=y_{a}$ and so $y_{1}=\frac{T_{a}(y)}{a}$. On the other hand, $T_{a}(x)=T_{a}(y)$ and, obviously, $x_{1} \geq \frac{T_{a}(x)}{a}=\frac{T_{a}(y)}{a}$ hence $x_{1} \geq y_{1}$, a contradiction. The proof of (2) is similar.

Lemma 21. Fix $1 \leq p \leq n-1$ and let $x, y \in A_{S}$ with $x \preccurlyeq p y$ and $x_{1}<y_{1}$
A) If all (T)-sums are distinct and, also, all (B)-sums are distinct then there exist strict transforms $z=T_{\varepsilon}^{+}(1, i, i+1)[x]$ with $2 \leq i \leq n-1$ such that $z \preccurlyeq p y$
$B)$ If all (T)-sums are distinct but there exists equal sums in (B) then there exist strict transforms $z=T_{\varepsilon}^{+}(1, i, i+1)[x]$ with $d \leq i \leq n-1$ such that $z \preccurlyeq p y$
C) Suppose there exists equal sums in (T)
(a) If $T_{a+1}(x) \leq T_{a+1}(y)$ then there exist strict transforms $z=T_{\varepsilon}^{+}(1, a, a+1)[y]$ such that $z \preccurlyeq p y$
(b) If $T_{a+1}(x)>T_{a+1}(y)$ then $p \geq 2$ and there exist strict transforms $z=$ $T_{\varepsilon}^{+}(1, i, i+1)[y]$ such that $z \preccurlyeq_{p-1} y$.

Proof. A) By hypothesis, we have $\left\{\begin{array}{ll}T_{k}(x)<T_{k}(y) & \forall 1 \leq k \leq p-1 \\ B_{k}(x)<B_{k}(y) & \forall p+2 \leq k \leq n\end{array}\right.$ and, according to Lemma 20 (A1) we know that $\exists 2 \leq i \leq n-1$ with $x_{i}>x_{i+1}$. Because the above inequalities are strict, there exists an $\varepsilon>0$ such that the transform $z=T_{\varepsilon}^{+}(1, i, i+1)[x]$ still verify the strict inequalities $\left\{\begin{array}{ll}T_{k}(z)<T_{k}(y) & \forall 1 \leq k \leq p-1 \\ B_{k}(z)<B_{k}(y) & \forall p+2 \leq k \leq n\end{array}\right.$ hence $z \preccurlyeq p y$.
B) According to Lemma 20 (B2) we know that $\exists d \leq i \leq n-1$ such that $x_{i}>x_{i+1}$. Because $i+1>d$ we have $B_{i+1}(x)<B_{i+1}(y)[*]$ and, by hypothesis, we also have $T_{k}(x)<T_{k}(y) \quad \forall 1 \leq k \leq p-1[* *]$

Because the inequalities [$*$] and $[* *]$ are strict there exists an $\varepsilon>0$ such that the transform $z=T_{\varepsilon}^{+}(1, i, i+1)[x]$ still verify the strict inequalities

$$
\left\{\begin{array}{l}
T_{k}(z)<T_{k}(y) \\
B_{i+1}(z)<B_{i+1}(y)
\end{array} \quad \forall 1 \leq k \leq p-1\right.
$$

and so it only remains to show that $B_{k}(z)<B_{k}(y) \forall p+2 \leq k \leq n, k \neq i+1$
We notice that for $k \neq i+1$ a $B_{k}(x)$ sum can contains either the both terms x_{i} and x_{i+1}, either none of them. In the first case it's clear that by the $z=T_{\varepsilon}^{+}(1, i, i+1)[x]$ transform the sum $x_{i}+x_{i+1}$ can only decrease to $z_{i}+z_{i+1}$ and definitely $B_{k}(z)<B_{k}(y)$. In the second case, the sum $B_{k}(x)$ obviously remains unaffected by the $z=T_{\varepsilon}^{+}(1, i, i+$ 1) $[x]$ transform, hence $B_{k}(z)=B_{k}(x) \leq B_{k}(y)$.

C1) We first show that $x_{a}>x_{a+1}$. Because $T_{1}(x)<T_{1}(y)$ it's clear that $a \geq 2$. We have $T_{a-1}(x)<T_{a-1}(y)$ and $T_{a}(x)=T_{a}(y)$, therefore $x_{a}>y_{a}$. On the other hand, $T_{a+1}(x) \leq T_{a+1}(y)$ and using again $T_{a}(x)=T_{a}(y)$ we have $x_{a+1} \leq y_{a+1}$. Hence $x_{a}>$ $y_{a} \geq y_{a+1} \geq x_{a+1} \Rightarrow x_{a}>x_{a+1}$ (so there exists transforms of type $T_{\varepsilon}^{+}(1, a, a+1)[z]$).

Furthermore, we know that $T_{k}(x)<T_{k}(y) \forall 1 \leq k \leq a-1$ and because all these inequalities are strict it is clear that we can find an $\varepsilon>0$ small enough so that the $z=$ $T_{\varepsilon}^{+}(1, a, a+1)[y]$ transform still verify the inequalities $T_{k}(z)<T_{k}(y) \forall 1 \leq k \leq a-1$.

The remaining $T_{k}(x)$ sums can either contain the terms x_{1}, x_{a} (if $k=a$), either all x_{1}, x_{a}, x_{a+1} terms. In the first case the sum $x_{1}+x_{a}$ can only decrease to $z_{1}+z_{a}$ so definitely $T_{k}(z)<T_{k}(y)$ and in the latter the sum $T_{k}(x)$ obviously remains unchanged, so $T_{k}(z)=T_{k}(x) \leq T_{k}(y)$.

Regarding the sums B_{k} with $p+2 \leq k \leq n$ it is obvious that they are unaffected by the $z=T_{\varepsilon}^{+}(1, a, a+1)[x]$ transform, hence $B_{k}(z)=B_{k}(x) \leq B_{k}(y) \forall p+2 \leq k \leq n$.

C2) In this case it's clear that $a=p-1$ (if $a<p-1 \Rightarrow a+1<p \Rightarrow T_{a+1}(x)<T_{a+1}(y)$, impossible) and so $T_{p}(x)>T_{p}(y)$ (because $\left.p=a+1\right) \Rightarrow n s-T_{p}(x)<n s-T_{p}(y) \Rightarrow$ $B_{p+1}(x)<B_{p+1}(y)$, hence

$$
\left\{\begin{array}{l}
T_{k}(x)<T_{k}(y) \quad \forall 1 \leq k \leq p-2 \\
B_{k}(x) \leq B_{k}(y) \quad \forall p+1 \leq k \leq n
\end{array} \quad \Rightarrow \quad x \prec_{p-1} y\right.
$$

Because all T_{k} sums $(1 \leq k \leq p-2)$ are distinct we can apply Lemma 21 A 1$)$ or $B 1)$ to find a strict transform $z=T_{\varepsilon}^{+}(1, i, i+1)[x]$ such that $z \preccurlyeq_{p-1} y$.

Theorem 16. Let $x, y \in A_{S}$ with $x \unlhd y$ and $x_{1}<y_{1}$. Then there exists a strict transform $z=T_{\varepsilon}^{+}(1, i, i+1)[x]$ with $z \unlhd y$.

Proof. The conclusion follows from Lemma 21.

4.3. The Karamata's inequality for (S)-systems

Theorem 17. Let $S(e, s, k, 3)$ be a non-empty 2-convex (or 2-concave) system with e differentiable on $\stackrel{\circ}{S}_{S}$ and $f: I_{S} \rightarrow \mathbb{R}$ strictly 3-convex with respect to e. Then

$$
\forall x, y \in A_{S}, \quad x_{1}<y_{1} \Rightarrow f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)<f\left(y_{1}\right)+f\left(y_{2}\right)+f\left(y_{3}\right)
$$

Proof. Because f is strictly 3-convex with respect to $e \Rightarrow \exists g: J \rightarrow \mathbb{R}$ strictly convex with $e^{\prime}\left(\AA_{S}\right) \subset J$ such that $f^{\prime}=g \circ e^{\prime}$.

Case 1. (S) is a 2-convex system. We will prove this case using a proof scheme similar to the one in [1] or [2], adapted to our more general framework.

According to Theorem 9 and 10 we know that $\exists!u: I_{1} \rightarrow I_{2}, v: I_{1} \rightarrow I_{3}$ continuous on I_{S}, differentiable in \grave{I}_{S}, bijective, strictly monotonic (u decreasing, v increasing) and such that $A_{S}=\left\{(t, u(t), v(t)) \mid t \in I_{1}\right\}$. We can, certainly, assume that (S) is nontrivial, hence (see Remark 5) $\dot{I}_{k} \neq \emptyset(k=1,2,3)$ and $\forall x \in A_{S}$ with $x_{1} \in \dot{I}_{1} \Rightarrow x_{2}=u\left(x_{1}\right) \in \dot{I}_{2}$, $x_{3}=v\left(x_{1}\right) \in \grave{I}_{3}$ and $x_{1}>x_{2}>x_{3}$. For such a $x_{1} \in \grave{I}_{1}$ we can write:
$\left\{\begin{array}{l}x_{1}+u\left(x_{1}\right)+v\left(x_{1}\right)=3 s \\ e\left(x_{1}\right)+e\left(u\left(x_{1}\right)\right)+e\left(v\left(x_{1}\right)\right)=3 k\end{array} \Rightarrow\left\{\begin{array}{l}u^{\prime}\left(x_{1}\right)+v^{\prime}\left(x_{1}\right)=0 \\ e^{\prime}\left(x_{1}\right)+e^{\prime}\left(u\left(x_{1}\right)\right) u^{\prime}\left(x_{1}\right)+e^{\prime}\left(v\left(x_{1}\right)\right) v^{\prime}\left(x_{1}\right)=0\end{array}\right.\right.$
and infer immediately that

$$
\begin{equation*}
u^{\prime}\left(x_{1}\right)=\frac{e^{\prime}\left(x_{1}\right)-e^{\prime}\left(x_{3}\right)}{e^{\prime}\left(x_{3}\right)-e^{\prime}\left(x_{2}\right)}, \quad v^{\prime}\left(x_{1}\right)=\frac{e^{\prime}\left(x_{1}\right)-e^{\prime}\left(x_{2}\right)}{e^{\prime}\left(x_{2}\right)-e^{\prime}\left(x_{3}\right)} \tag{8}
\end{equation*}
$$

Let $S: \stackrel{\circ}{1}_{1} \rightarrow \mathbb{R} \Rightarrow S\left(x_{1}\right)=e\left(x_{1}\right)+e\left(u\left(x_{1}\right)\right)+e\left(v\left(x_{1}\right)\right)$. By differentiating we get

$$
\begin{gather*}
\forall x_{1} \in \circ_{1}, S^{\prime}\left(x_{1}\right)=f^{\prime}\left(x_{1}\right)+f^{\prime}\left(u\left(x_{1}\right)\right) u^{\prime}\left(x_{1}\right)+f^{\prime}\left(v\left(x_{1}\right)\right) v^{\prime}\left(x_{1}\right) \\
S^{\prime}\left(x_{1}\right)=f^{\prime}\left(x_{1}\right)+f^{\prime}\left(x_{2} \frac{e^{\prime}\left(x_{1}\right)-e^{\prime}\left(x_{3}\right)}{e^{\prime}\left(x_{3}\right)-e^{\prime}\left(x_{2}\right)}\right)+f^{\prime}\left(x_{3}\right) \frac{e^{\prime}\left(x_{1}\right)-e^{\prime}\left(x_{2}\right)}{e^{\prime}\left(x_{2}\right)-e^{\prime}\left(x_{3}\right)} \tag{9}
\end{gather*}
$$

(noticing that $x_{1}>x_{2}>x_{3} \Rightarrow e^{\prime}\left(x_{1}\right)>e^{\prime}\left(x_{2}\right)>e^{\prime}\left(x_{3}\right)$ because e^{\prime} is strictly increasing)

We have $f^{\prime}\left(x_{k}\right)=g\left(e^{\prime}\left(x_{k}\right)\right)(k=1,2,3)$ and, using the notation $e^{\prime}\left(x_{k}\right)=y_{k}$, we can write (9) as

$$
\frac{S^{\prime}\left(x_{1}\right)}{\left(y_{1}-y_{3}\right)\left(y_{1}-y_{2}\right)}=\frac{g\left(y_{1}\right)}{\left(y_{1}-y_{3}\right)\left(y_{1}-y_{2}\right)}+\frac{g\left(y_{2}\right)}{\left(y_{2}-y_{1}\right)\left(y_{2}-y_{3}\right)}+\frac{g\left(y_{3}\right)}{\left(y_{3}-y_{1}\right)\left(y_{3}-y_{2}\right)}
$$

By the strictly convexity of g we deduce that the right side of the above relation is strictly positive and because $\left(y_{1}-y_{3}\right)\left(y_{1}-y_{2}\right)>0$ we infer that $S^{\prime}\left(x_{1}\right)>0 \forall x_{1} \in I_{1}$ so S is strictly increasing on I_{1}, in fact on I_{S} (because S is continuous on I_{S}) and we conclude that $\forall x, y \in A_{S}, \quad x_{1}<y_{1} \Rightarrow S\left(x_{1}\right)<S\left(x_{2}\right) \Rightarrow f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)<$ $f\left(y_{1}\right)+f\left(y_{2}\right)+f\left(y_{3}\right)$.

Case 2. (S) is a 2 -concave system, so now e is a strictly concave function on I_{S}. We consider the dual system $S^{\prime}\left(h, s, k^{\prime}, 3\right)$ where $k^{\prime}=-k$ and $h: I_{S} \rightarrow \mathbb{R}, h=-e$ is strictly convex and clearly $A_{S}=A_{S^{\prime}}$.

By hypothesis, we know that $\exists g: J \rightarrow \mathbb{R}$ strictly convex with $e^{\prime}\left(I_{S}\right) \subset J$ such that $f^{\prime}=g \circ e^{\prime}$. Let $g_{1}:-J \rightarrow \mathbb{R}, g_{1}(y)=g(-y)$ and it's clear that g_{1} is also strictly convex and $f^{\prime}(x)=g\left(e^{\prime}(x)\right)=g_{1}\left(-e^{\prime}(x)\right)=g_{1}\left(h^{\prime}(x)\right)$, hence $f^{\prime}=g_{1} \circ h^{\prime}$.

In this way, we can apply the Case 1 to the system $\left(S^{\prime}\right)$ and we conclude again that $\forall x, y \in A_{S}=A_{S^{\prime}}, \quad x_{1}<y_{1} \Rightarrow f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)<f\left(y_{1}\right)+f\left(y_{2}\right)+f\left(y_{3}\right)$.

REMARK 10. If I_{S} is an open interval, we can give a more direct proof (not based on the functional dependence), using an interesting technique from [5] and [6].

Let $x, y \in A_{S}$ with $x_{1}<y_{1}$. According to Lemma 5 we have $y_{1} \geq x_{1} \geq x_{2} \geq y_{2} \geq$ $y_{3} \geq x_{3}$ and let $A_{1}=\left[x_{1}, y_{1}\right], A_{2}=\left[y_{2}, x_{2}\right], A_{3}=\left[x_{3}, y_{3}\right]$ and $B_{k}=e^{\prime}\left(A_{k}\right)(k=1,2,3)$. We observe that the intervals A_{k} have mutual disjoint interiors and so the intervals B_{k} also have mutual disjoint interiors (because e^{\prime} is a strictly increasing function).

Next, we consider the linear function $L: \mathbb{R} \rightarrow \mathbb{R}, L(r)=\alpha+\beta r$ that agree with g at the endpoints of B_{2} and because g is convex we have $\left\{\begin{array}{l}g(r) \leq L(r) \forall r \in B_{2} \\ g(r) \geq L(r) \forall r \in B_{1} \cup B_{3}\end{array}\right.$ and so $E_{1} \stackrel{\text { def }}{=} \int_{A_{1}} g\left(e^{\prime}(t)\right) d t+\int_{A_{3}} g\left(e^{\prime}(t)\right) d t \geq \int_{A_{1}} L\left(e^{\prime}(t)\right) d t+\int_{A_{3}} L\left(e^{\prime}(t)\right) d t=\alpha\left(l\left(A_{1}\right)+\right.$ $\left.l\left(A_{3}\right)\right)+\beta\left[\int_{A_{1}} e^{\prime}(t) d t+\int_{A_{3}} e^{\prime}(t) d t\right]$ and we observe that $l\left(A_{1}\right)+l\left(A_{3}\right)=l\left(A_{2}\right)$ because $x_{1}+x_{2}+x_{3}=y_{1}+y_{2}+y_{3}$ and $\int_{A_{1}} e^{\prime}(t) d t+\int_{A_{3}} e^{\prime}(t) d t=\int_{A_{2}} e^{\prime}(t) d t$ because $e\left(x_{1}\right)+e\left(x_{2}\right)+e\left(x_{3}\right)=e\left(y_{1}\right)+e\left(y_{2}\right)+e\left(y_{3}\right)$. Hence

$$
E_{1} \geq \alpha l\left(A_{2}\right)+\beta \int_{A_{2}} e^{\prime}(t) d t=\int_{A_{2}} L\left(e^{\prime}(t)\right) d t \geq \int_{A_{2}} g\left(e^{\prime}(t)\right) d t \stackrel{\text { def }}{=} E_{2}
$$

But $g\left(e^{\prime}(t)\right)=f^{\prime}(t) \forall t \in I_{S}$ so $E_{1}=\int_{A_{1}} f^{\prime}(t) d t+\int_{A_{3}} f^{\prime}(t) d t=f\left(y_{1}\right)-f\left(x_{1}\right)+f\left(y_{3}\right)-$ $f\left(x_{3}\right)$ and $E_{2}=\int_{A_{2}} f^{\prime}(t) d t=f\left(x_{2}\right)-f\left(y_{2}\right)$ etc.

ThEOREM 18. Let $S(e, s, k, n)$ be a non-empty 2-convex (or 2-concave) system with e differentiable on $\stackrel{\circ}{S}_{S}$ and $f: I_{S} \rightarrow \mathbb{R}$ strictly 3-convex with respect to e. Then

$$
\begin{equation*}
\forall x, y \in A_{S}, \quad x \unlhd y \Rightarrow E_{f}(x) \leq E_{f}(y) \tag{10}
\end{equation*}
$$

where $E_{f}(x)=f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n}\right)$. The equality holds if and only if $x=y$.

Proof. First we will prove the inequality (10) by induction on n and next we will discuss the equality case.

If $n=3$ then $x \preccurlyeq_{p} y \Rightarrow x_{1} \leq y_{1}$ (according to Lemma 16) and the inequality (10) follows directly from Theorem 17. Suppose now that $n>3$.

Case 1) $x_{1}=y_{1}$. Let $x^{\prime}=\left(x_{2}, \ldots, x_{n}\right), y^{\prime}=\left(y_{2}, \ldots, y_{n}\right)$. It's clear (according to Lemma 17) that $x^{\prime} \unlhd y^{\prime}$ and that $x^{\prime}, y^{\prime} \in A_{S^{\prime}}$ where $S^{\prime}\left(e, s^{\prime}, k^{\prime}, n-1\right)$ is the reduced system $\hat{S}\left[x_{1}\right]$ (see Definition 7). By induction hypothesis, $E_{f}\left(x^{\prime}\right) \leq E_{f}\left(y^{\prime}\right)$ hence $E_{f}(x)=f\left(x_{1}\right)+E_{f}\left(x^{\prime}\right) \leq f\left(y_{1}\right)+E_{f}\left(y^{\prime}\right)=E_{f}(y)$.

Case 2) $x_{1} \neq y_{1}$, that is, according to Lemma 16, $x_{1}<y_{1}$.
Let $M_{x}=\left\{z \in A_{S} \mid z \unlhd y\right.$ and $\left.E_{f}(z) \geq E_{f}(x)\right\}, \lambda=\sup \left\{z_{1} \mid z \in M_{x}\right\}$ and $\left(z^{m}\right)_{m \geq 1} \subset M_{x}$ with $z_{1}^{m} \rightarrow \lambda$. Because A_{S} is a compact set it follows that $\left(z^{m}\right)_{m \geq 1}$ has convergent subsequences and so we can assume $\left(z^{m}\right)_{m \geq 1}$ is convergent (if not, we replace it with a convergent subsequence). Let $z^{m} \longrightarrow \tilde{z} \in A_{S}$. Notice that $\tilde{z}_{1}=\lambda \leq y_{1}$ (because $z^{m} \unlhd y \forall m$ and so, according to Lemma $\left.16, z_{1}^{m} \leq y_{1}\right)$.

We will prove that $\tilde{z} \in M_{x}$. Knowing that $E_{f}\left(z^{m}\right) \geq E_{f}(x) \forall m \geq 1$ and using the continuity of f we infer that $E_{f}(\tilde{z}) \geq E_{f}(x)$. It remains to show that $\tilde{z} \unlhd y$. But $z^{m} \unlhd y \Rightarrow \exists 1 \leq p_{m} \leq n-1$ with $z^{m} \preccurlyeq p_{m} y$ and clearly we can find an index p that appears an infinite number of times, so we can consider a subsequence $\left(m_{l}\right)_{l \geq 1}$ such that $z^{m_{l}} \preccurlyeq_{p} y$ for any $l \geq 1$. But

$$
z^{m_{l}} \preccurlyeq p y \Leftrightarrow \begin{cases}T_{k}(x) \leq T_{k}\left(z^{m_{l}}\right) & \forall 1 \leq k \leq p-1 \\ B_{k}(x) \leq B_{k}\left(z^{m_{l}}\right) & \forall p+2 \leq k \leq n\end{cases}
$$

By passing to the limit as $l \rightarrow \infty$ it follows that $\tilde{z} \preccurlyeq p y$, hence $\tilde{z} \unlhd y$ and so $\tilde{z} \in M_{x}$.
Next we will prove that $\tilde{z}_{1}=y_{1}$. Suppose that $\tilde{z}_{1}<y_{1}$. Then, using the fact that $\tilde{z} \unlhd y$ we can apply Theorem 16 to get a strict transform $w=T_{\varepsilon}^{+}(1, i, i+1)[\tilde{z}]$ with $w \unlhd y$. Observe that $E_{f}(w)>E_{f}(\tilde{z}) \Leftrightarrow f\left(w_{1}\right)+f\left(w_{i}\right)+f\left(w_{i+1}\right)>f\left(\tilde{z}_{1}\right)+f\left(\tilde{z}_{i}\right)+f\left(\tilde{z}_{i+1}\right)$ and this is true according to Theorem 17 because $w_{1}>\tilde{z}_{1}$. Thus $E_{f}(w)>E_{f}(\tilde{z}) \geq E_{f}(x)$ and it follows that $w \in M_{x}$. But $w_{1}>\tilde{z}_{1}=\lambda$ and this contradicts the maximality of λ.

Hence $\tilde{z}_{1}=y_{1}$. But $\tilde{z} \unlhd y$ and applying the induction hypothesis exactly as in Case 1 we deduce that $E_{f}(y) \geq E_{f}(\tilde{z})$. But $E_{f}(\tilde{z}) \geq E_{f}(x)$ and our inequality (10) is proved.

We discuss now the equality case. We will show that if $x \prec_{p} y$ (strictly) then $E_{f}(x)<E_{f}(y)$. Let r be the first index $1 \leq r \leq p$ with the property that $x_{r}<y_{r}$ (see Lemma 19), hence $x_{i}=y_{i} \forall 1 \leq i \leq r-1$. Let $x^{\prime}=\left(x_{r}, \ldots x_{n}\right), y^{\prime}=\left(y_{r}, \ldots y_{n}\right)$ and clearly $x^{\prime}, y^{\prime} \in A_{S^{\prime}}$ where $S^{\prime}\left(e, s^{\prime}, k^{\prime}, n^{\prime}\right)$ is the reduced system $\hat{S}\left[x_{1}, \ldots x_{r-1}\right]$ (see Definition 7), $n^{\prime}=n-r+1$.

Using Lemma 17 it follows that $x^{\prime} \unlhd y^{\prime}$. We observe that $E_{f}(y)-E_{f}(x)=E_{f}\left(y^{\prime}\right)-$ $E_{f}\left(x^{\prime}\right)$, so it's enough to prove that $E_{f}\left(y^{\prime}\right)-E_{f}\left(x^{\prime}\right)>0$. Because $x_{1}^{\prime}=x_{r}<y_{r}=y_{1}^{\prime}$ we find, according to Theorem 16 applied to $\left(S^{\prime}\right)$, a strict transform $z^{\prime}=T_{\varepsilon}^{+}(1, i, i+1)\left[x^{\prime}\right]$ with $z^{\prime} \unlhd y^{\prime}$. But, according to Theorem 17,

$$
E_{f}\left(z^{\prime}\right)-E_{f}\left(x^{\prime}\right)=f\left(z_{1}^{\prime}\right)+f\left(z_{i}^{\prime}\right)+f\left(z_{i+1}^{\prime}\right)-\left(f\left(x_{1}^{\prime}\right)+f\left(x_{i}^{\prime}\right)+f\left(x_{i+1}^{\prime}\right)\right)>0
$$

because $z_{1}^{\prime}>x_{1}^{\prime}$ and so $E_{f}\left(z^{\prime}\right)>E_{f}\left(x^{\prime}\right)$. But, according to inequality (10) previously proved, we also have $E_{f}\left(y^{\prime}\right) \geq E_{f}\left(z^{\prime}\right)$, therefore $E_{f}\left(y^{\prime}\right)-E_{f}\left(x^{\prime}\right)>0$.

REMARK 11. Our Karamata type theorem doesn't have a converse (in contrast to the classical Karamata's theorem) because \unlhd is not an order relation. To remedy this situation, we can try to define a relation $x \preccurlyeq \preccurlyeq y \Leftrightarrow \exists z_{0}, \ldots z_{r} \in A_{S}$ with $x=z_{0} \unlhd$ $z_{1} \ldots \unlhd z_{r-1} \unlhd z_{r}=y$ and it's easy to prove that this is actually an order relation and, obviously, Theorem 18 remains true if we use $\preccurlyeq \preccurlyeq$ instead \unlhd. Moreover, it's plausible to think that this version of Theorem 18 has a corresponding converse, but this is only our conjecture.

THEOREM 19. (extended version of the V. Cîrtoaje equal variable theorem) Let $S(e, s, k, n)$ be a non-empty 2-convex (or 2-concave) system with e differentiable on \AA_{S} and $f: I_{S} \rightarrow \mathbb{R}$ strictly 3-convex with respect to e. Then $\forall x \in A_{S}$ the following inequality holds

$$
E_{f}(\omega) \leq E_{f}(x) \leq E_{f}(\Omega)
$$

where $E_{f}(x)=f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n}\right)$ and ω, Ω are the poles of the (S). The equality occurs if and only if $x=\omega$ or $x=\Omega$.

Proof. Follows immediately by Theorem 15 and 18.
REMARK 12. V. Cîrtoaje's original theorems correspond to the particular case of an $S(e, s, k, n)$ system where e is of the form $e(x)=x^{r}$ (see [1] and [2]).

REMARK 13. Let $S(e, s, k, n)$ be a 2-convex (or 2-concave) system with e differentiable on \check{I}_{S}. We can further extend the previous theorems by replacing E_{f} by more general classes of functions. More precisely, we will say that $E: I_{S}^{n} \rightarrow \mathbb{R}$ satisfies the Schur-Ostrowski (SO) condition with respect to $S(e, s, k, n)$ if E is continuous on I_{S}^{n}, differentiable on $\stackrel{\circ}{S}_{S}^{n}$ and verifies the condition:

$$
\begin{equation*}
\left[\frac{\partial_{i} E(x)-\partial_{j} E(x)}{e^{\prime}\left(x_{i}\right)-e^{\prime}\left(x_{j}\right)}-\frac{\partial_{k} E(x)-\partial_{j} E(x)}{e^{\prime}\left(x_{k}\right)-e^{\prime}\left(x_{j}\right)}\right]\left(e^{\prime}\left(x_{i}\right)-e^{\prime}\left(x_{k}\right)\right)>0 \forall x \in \stackrel{\circ}{I}_{S}^{n}, x_{i} \neq x_{j} \neq x_{k} \tag{11}
\end{equation*}
$$

If $S(e, s, k, n)$ is a 2-convex (or 2-concave) system with e differentiable on $\stackrel{\circ}{I}_{S}$ and $f: I_{S} \rightarrow \mathbb{R}$ is strictly 3-convex with respect to e, we can show that E_{f} actually satisfies (SO) with respect to (S). We know that $f^{\prime}=g \circ e^{\prime}$ (g strictly convex) and we see that $\partial_{l} E_{f}(x)=f^{\prime}\left(x_{l}\right)=g\left(e^{\prime}\left(x_{l}\right)\right), l=1,2,3$ hence, using the notation $y_{l}=e^{\prime}\left(x_{l}\right)$ we can write the condition (11) as

$$
\left[\frac{g\left(y_{i}\right)-g\left(y_{j}\right)}{y_{i}-y_{j}}-\frac{g\left(y_{k}\right)-g\left(y_{j}\right)}{y_{k}-y_{j}}\right]\left(y_{i}-y_{k}\right)>0
$$

and this is true because g is a strictly convex function and so the first factor of the above expression has the sign of $\left(y_{i}-y_{k}\right)$.

If $S(e, s, k, n)$ is a 2-convex (or 2-concave) system with e differentiable on I_{S} and $E: I_{S}^{3} \rightarrow \mathbb{R}$ satisfies (SO) with respect to (S) we can also get a more general version of Theorem 17. The proof is largely the same. We similarly define $S: I_{1} \rightarrow \mathbb{R}$ given by $S\left(x_{1}\right)=E\left(x_{1}, u\left(x_{1}\right), v\left(x_{1}\right)\right) \Rightarrow S^{\prime}\left(x_{1}\right)=\partial_{1} E(x)+\partial_{2} E(x) u^{\prime}\left(x_{1}\right)+\partial_{3} E(x) v^{\prime}\left(x_{1}\right)$ and using the equivalent expressions (8) for u^{\prime}, v^{\prime} we can further write:

$$
S\left(x_{1}\right) \frac{e^{\prime}\left(x_{1}\right)-e^{\prime}\left(x_{3}\right)}{e^{\prime}\left(x_{1}\right)-e^{\prime}\left(x_{2}\right)}=\left[\frac{\partial_{1} E(x)-\partial_{2} E(x)}{e^{\prime}\left(x_{1}\right)-e^{\prime}\left(x_{2}\right)}-\frac{\partial_{3} E(x)-\partial_{2} E(x)}{e^{\prime}\left(x_{3}\right)-e^{\prime}\left(x_{2}\right)}\right]\left(e^{\prime}\left(x_{1}\right)-e^{\prime}\left(x_{3}\right)\right)
$$

and so, using the condition (11), we infer that $S^{\prime}\left(x_{1}\right)>0$ etc.
The proof of the theorem 18 can also be adapted, leading to the following more general version:

Theorem A. Let $S(e, s, k, n)$ be a 2-convex (or 2-concave) system with e differentiable on \AA_{S} and $E: I_{S}^{n} \rightarrow \mathbb{R}$ that satisfies $(S O)$ with respect to (S). Then:

$$
\forall x, y \in A_{S}, \quad x \unlhd y \Rightarrow E(x) \leq E(y)
$$

Equality holds if and only if $x=y$
We have also the following version of Theorem 19:
Theorem B. Let $S(e, s, k, n)$ be a 2-convex (or 2-concave) system with e differentiable on Iْ İS and $E: I_{S}^{n} \rightarrow \mathbb{R}$ that satisfies (SO) with respect to (S). Then $\forall x \in A_{S}$

$$
E(\omega) \leq E(x) \leq E(\Omega)
$$

where ω, Ω are the poles of the (S). Equality holds if and only if $x=\omega$ or $x=\Omega$.
REmARK 14. The idea of a Schur criterion of type (11) can already be found in [7] where systems of type (S) are discussed under the particular hypothesis $e: \mathbb{R} \rightarrow$ $\mathbb{R}, e(x)=x^{2}$, but with a different definition of the majorization on (S), more precisely $a \succ_{3} b \Leftrightarrow \forall f: \mathbb{R} \rightarrow \mathbb{R}, f^{(3)} \geq 0 \Rightarrow \sum_{i=1}^{n} f\left(a_{i}\right) \geq \sum_{i=1}^{n} f\left(b_{i}\right)$.

References

[1] Cirtoaje, V. , The equal variable method, J. Ineq. Pure Appl. Math. 8 (2007) 15(21).
[2] Cirtoaje, V., On the equal variables method applied to real variables, Creative Mathematics and Informatics, 24, 2(2015)
[3] Bullen, P.S., A criterion for n-convexity, Pacific J. Math., 36:81-98, 1971
[4] Rassias, Themistocles, and Hari M. Srivastava, eds. Analytic and geometric inequalities and applications. Vol. 478. Springer Science \& Business Media, 2012.
[5] C. P. Niculescu, On result of G. Bennett, Bull. Math. Soc. Sci. Math. Roumanie Tome 54, (102) No.(2011) 261-267.
[6] G. Bennett, p-free l^{p} Inequalities, Amer. Math. Monthly 117 (2010), No. 4, 334-351.
[7] Brady, Z. Inequalities and higher order convexity, arXiv:1108.5249, 2011

