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Abstract 

 When a pre-trained generative model is given, 

the process of finding the latent vector that 

produces the data closest to the input data is 

called the latent vector recover. The latent 

vector recover receives the difference between 

the generated data and the input data 

generated through the latent vector as 

reconstruction loss and performs gradient 

descent repeatedly on the latent vector to find 

the optimal latent vector. 

 In this paper, I propose a method to find a 

better latent vector by adding a latent 

restriction loss in addition to reconstruction loss 

during latent vector recovery. The latent 

restriction loss is a loss that makes the latent 

vector follow the distribution of the latent 

vector used when training the generative model 

during latent vector recovery. The distance 

between the "distribution of latent vector used 

in training the generative model" and "latent 

vector during latent vector recovery" becomes 

the latent restriction loss. 

 

 

1. Latent vector recover 

When a pre-trained generative model is given, 

the process of finding the latent vector that 

produces the data closest to the input data is 

called the latent vector recover. In general, the 

latent vector recover is performed through the 

process of repeatedly performing gradient 

descent on the latent vector by taking the 

difference between the input data and the 

generated data as a loss. 

 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑙𝑎𝑡𝑒𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑟𝑒𝑐𝑜𝑣𝑒𝑟:  

 𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 𝑛:  

  𝑟𝑐𝑛 𝑙𝑜𝑠𝑠 ← 𝑑𝑖𝑓𝑓(𝐺(𝑙𝑡𝑛), 𝑥)  

  𝑙𝑡𝑛 ← 𝑜𝑝𝑡(𝑟𝑐𝑛 𝑙𝑜𝑠𝑠, 𝑙𝑡𝑛)  

 𝑟𝑒𝑡𝑢𝑟𝑛 𝑙𝑡𝑛  

 

 𝑙𝑡𝑛 is a latent vector. 𝐺 is a generative model. 

𝐺(𝑙𝑡𝑛) is data generated by 𝐺  receiving 𝑙𝑡𝑛 . 

𝑑𝑖𝑓𝑓 is a function that outputs the difference 

between the two data. 𝑜𝑝𝑡 is a function that 

receives loss and variable and outputs the 

updated variable in the direction of minimizing 

loss. 
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Through the above process, the latent vector 

can be recovered. 

 

2. Latent restriction loss 

 In this paper, I propose a method to find a 

better latent vector by adding a latent 

restriction loss to the loss during the latent 

vector recover process. The generative model is 

trained to receive the latent vector of a specific 

distribution and output the distribution of train 

data during training. However, in the process of 

latent vector recovery, when updating the latent 

vector through gradient descent, the latent 

vector may become very far from the 

distribution of the latent vector received during 

training. This means that even if 𝑑𝑖𝑓(𝐺(𝑙𝑡𝑛), 𝑥) 

is small, the latent vector 𝑙𝑡𝑛 may not properly 

represent the input data 𝑥.  

 To prevent this, if the distance between the 

distribution of latent vectors used in training 

the generative model and the latent vectors in 

gradient descent during latent vector recovery 

is added to the loss, 𝑙𝑡𝑛 that better represents 

the input data 𝑥 can be found. 

 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑙𝑎𝑡𝑒𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑟𝑒𝑐𝑜𝑣𝑒𝑟:  

 𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 𝑛:  

  𝑟𝑐𝑛 𝑙𝑜𝑠𝑠 ← 𝑑𝑖𝑓𝑓(𝐺(𝑙𝑡𝑛), 𝑥) 

  𝑙𝑟 𝑙𝑜𝑠𝑠 ← 𝑑𝑖𝑠𝑡(𝑙𝑡𝑛, 𝑡𝑟𝑎𝑖𝑛 𝑙𝑡𝑛) 

  𝑙𝑜𝑠𝑠 ← 𝑟𝑐𝑛 𝑙𝑜𝑠𝑠 + 𝛼𝑙𝑟𝑙𝑟 𝑙𝑜𝑠𝑠  

  𝑙𝑡𝑛 ← 𝑜𝑝𝑡(𝑙𝑜𝑠𝑠, 𝑙𝑡𝑛) 

 𝑟𝑒𝑡𝑢𝑟𝑛 𝑙𝑡𝑛  

 

𝑡𝑟𝑎𝑖𝑛 𝑙𝑡𝑛  is the distribution of latent vectors 

used in G training. 𝑑𝑖𝑠𝑡 is a function indicating 

the distance between two distributions. Each 

element of the vector input to 𝑑𝑖𝑠𝑡 is treated 

as a sample. For example, the distance between 

a vector [1.5, 2.0, -0.5] and a vector [2.0, -0.5, 

1.5] is 0. 𝑙𝑟 𝑙𝑜𝑠𝑠 is latent restriction loss. 𝛼𝑙𝑟 is 

the weight of 𝑙𝑟 𝑙𝑜𝑠𝑠. 

 

3. Experiment 

 I tested the performance difference with latent 

restriction loss in Defense-GAN using Latent 

recovery. In the experiment, an MNIST 

handwriting dataset in which each pixel value 

was normalized from -1 to 1 was used. Classifier 

has an accuracy of 99.38%. GAN follows the 

structure of DC-GAN and receives a 256-

dimensional latent vector following a gaussian 

distribution, and outputs MNIST handwriting 

data. 

𝑛 = 200, 𝑑𝑖𝑓𝑓 = 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟, 𝑑𝑖𝑠𝑡 =

𝑤𝑎𝑠𝑠𝑒𝑟𝑠𝑡𝑒𝑖𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑜𝑝𝑡 =

𝐴𝑑𝑎𝑚(𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.001, 𝑏𝑒𝑡𝑎1 =

0.9, 𝑏𝑒𝑡𝑎2 = 0.999) was used for latent vector 

recovery, and 10 randomly initialized latent 

vectors per data were used. FGSM was used as 

an adversarial attack, and the noise magnitude 

was 0.7. 

𝑛𝑜𝑖𝑠𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 = 𝑐𝑙𝑖𝑝(𝑖𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔

+ 𝑛𝑜𝑖𝑠𝑒 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒

× 𝐹𝐺𝑆𝑀 𝑛𝑜𝑖𝑠𝑒, −1 𝑡𝑜 1) 

Because the latent vector recovery took a long 

time, 1000 randomly selected data among 

10000 MNIST test data were used for evaluation. 

 As a result of the experiment, the accuracy of 



the classifier was 1.4% when the Defense GAN 

was not used, 55.3% for the Defense GAN 

without a Latent restriction loss, and 64.1% for 

the Defense GAN with a Latent restriction loss 

weight of 1. This shows that latent restriction 

loss helps to find latent vectors that better 

represent the input data. 
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