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Abstract 

 Finding a latent vector that can generate 

specific data by inverting a generative model is 

called latent vector recovery (or latent vector 

projection). When performing gradient descent 

based latent recovery, the latent vector being 

recovered may deviate from the train latent 

distribution. To prevent this, latent regulation 

loss or element resampling has been used in 

some papers. 

 In this paper, we propose a statistical distance 

latent regulation loss, which is a latent 

regulation loss that can be used when the 

generative model is trained with IID 

(Independent and Identically Distributed) 

random variables. The statistical distance latent 

regulation loss is the distance between the 

distribution followed by train latent random 

variables and the discrete uniform distribution, 

assuming that each element of the latent vector 

has the same probability. Since the statistical 

distance latent regulation loss considers the 

correlation between each element of the latent 

vector, better latent vector recovery is possible. 

 In addition, in this paper, when evaluating the 

performance of latent vector recovery, we 

propose latent distribution goodness of fit test, 

an additional test that checks whether the 

distribution of all elements of all recovered 

latent vectors follows the distribution of the 

train latent random variable. Passing the latent 

distribution goodness of fit test does not mean 

that the latent vector recovery is properly 

performed, but when the latent recovery is 

properly performed, the latent distribution 

goodness of fit test must be passed. 

 In this paper, the performance of the statistical 

distance latent regulation loss was compared 

with other latent regulation losses and element 

resampling methods. 

 In conclusion, the performance of the 

statistical distance latent regulation loss using 

Wasserstein distance or Energy distance was 

the best. 

 

1. Introduction 

The generative model (generator) 𝐺 is trained 

to transform a multivariate random variable 𝑍 ∈

𝑅𝑑𝑧 of dimension 𝑑𝑧 with a certain distribution 

into a data multivariate random variable 𝑋 ∈

𝑅𝑑𝑥 of dimension 𝑑𝑥 . At this time, finding the 

ideal latent vector 𝑧∗ that can generate some 

data 𝑥 sampled from the data random variable 

𝑋 by inverting the pre-trained generator 𝐺 is 

called latent vector recovery (or latent vector 

projection). There are gradient descent-based 

methods [1, 2, 3, 4, 5] and encoder-based 
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methods [6, 7, 8, 9, 10] for latent vector 

recovery. The encoder-based methods require 

additional encoder training. In this paper, only 

gradient descent-based methods are covered. 

 Gradient descent-based latent vector recovery 

receives an error between the data 𝐺(𝑧𝑝) 

generated through the latent vector 𝑧𝑝 and the 

input data 𝑥  as a reconstruction loss and 

repeatedly performs gradient descent on the 

latent vector 𝑧𝑝. The following function shows 

the gradient descent-based latent vector 

recovery process. 

 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑙𝑎𝑡𝑒𝑛𝑡_𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦(𝑥, 𝐺, 𝑡, 𝑜𝑝𝑡):   

    𝑧𝑝 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒( ) 

    𝑟𝑒𝑝𝑒𝑎𝑡 𝑡 𝑡𝑖𝑚𝑒𝑠:  

        𝐿𝑟𝑒𝑐 ← 𝑑𝑖𝑓𝑓 (𝑥, 𝐺(𝑧𝑝)) 

 𝐿 ← 𝐿𝑟𝑒𝑐  

        𝑧𝑝 ← 𝑧𝑝 + 𝑜𝑝𝑡 (−
∆𝐿

∆𝑧𝑝
)  

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑧𝑝 

Fig.1 Latent recovery function 

 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 is a function that initializes the values 

of 𝑧𝑝 . 𝑡  is the number of times to perform 

gradient descent. 𝑜𝑝𝑡 is an optimizer. 𝑑𝑖𝑓𝑓 is a 

function that measures the difference between 

two data. In [5], the performance when using 

different 𝑑𝑖𝑓𝑓 functions was compared. 𝐿𝑟𝑒𝑐 is 

the reconstruction loss. 𝐿 is the total loss. 

 Through the function above, it can be found 

that the latent vector 𝑧𝑝  that minimizes the 

reconstruction loss 𝐿𝑟𝑒𝑐 . However, even except 

for the local optimum problem, the latent 

vector 𝑧𝑝 found is not always the ideal latent 

vector 𝑧∗. The reason is that the probability that 

the latent vector 𝑧𝑝 was sampled from the train 

latent random variable 𝑍 may be very low. To 

prevent this, an additional term that maximizes 

𝑃(𝑍 = 𝑧𝑝) is needed. 

 To maximize 𝑃(𝑍 = 𝑧𝑝), latent regulation loss 

was added to loss 𝐿  in [1, 2], and some 

elements of latent vector 𝑧𝑝  were resampled 

after gradient descent in [3, 4]. The following 

function shows latent vector recovery using 

latent regulation loss. 

 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑙𝑎𝑡𝑒𝑛𝑡_𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦(𝑥, 𝐺, 𝑡, 𝑜𝑝𝑡):   

    𝑧𝑝 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒( ) 

    𝑟𝑒𝑝𝑒𝑎𝑡 𝑡 𝑡𝑖𝑚𝑒𝑠:  

 𝐿𝑟𝑒𝑐 ← 𝑑𝑖𝑓𝑓 (𝑥, 𝐺(𝑧𝑝))  

        𝐿 ← 𝐿𝑟𝑒𝑐 + λ𝑙𝑟𝐿𝑙𝑟  

        𝑧𝑝 ← 𝑧𝑝 + 𝑜𝑝𝑡 (−
∆𝐿

∆𝑧𝑝
)  

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑧𝑝  

Fig.2 Latent recovery function with latent 

regulation loss 

𝐿𝑙𝑟 is the latent regulation loss, and λ𝑙𝑟 is the 

latent regulation loss weight, respectively. The 

following function is a function that performs 

latent vector recovery using element 

resampling. 

 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑙𝑎𝑡𝑒𝑛𝑡_𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦(𝑥, 𝐺, 𝑡, 𝑜𝑝𝑡):   

    𝑧𝑝 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒( ) 

    𝑟𝑒𝑝𝑒𝑎𝑡 𝑡 𝑡𝑖𝑚𝑒𝑠:  



        𝐿𝑟𝑒𝑐 ← 𝑑𝑖𝑓𝑓 (𝑥, 𝐺(𝑧𝑝)) 

 𝐿 ← 𝐿𝑟𝑒𝑐  

        𝑧𝑝 ← 𝑧𝑝 + 𝑜𝑝𝑡 (−
∆𝐿

∆𝑧𝑝
) 

 𝑧𝑝 ← 𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑧𝑝)  

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑧𝑝  

Fig.3 Latent recovery function with element 

resampling 

 

𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔  is a function that resampling 

specific elements of latent vector 𝑧𝑝 from train 

latent random variable 𝑍.  

 In this paper, to maximize 𝑃(𝑍 = 𝑧𝑝) , we 

propose a statistical distance latent regulation 

loss, which is a latent regulation loss that can 

be used assuming that the train latent random 

variable 𝑍  is an IID random variable that 

follows some distribution 𝐴𝑑𝑧 . The statistical 

distance latent regulation loss is the distance 

between the distribution 𝐴 followed by train 

latent random variables, and the discrete 

uniform distribution 𝑆 , assuming that each 

element of the latent vector has the same 

probability (probability mass function 𝑃𝑆(𝑥) =

{
1

𝑑𝑧
 𝑖𝑓 𝑥 ∈ 𝑧𝑝 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
). 

 Since the statistical distance latent regulation 

loss considers the correlation between each 

element of the latent vector, better latent vector 

recovery is possible. Also, since statistical 

distance latent regulation loss can be used if 

the train latent random variable 𝑍  is an IID 

random variable, it can be used when 

𝑍~𝑈(𝑎, 𝑏)𝑑𝑧 , 𝑍~𝑁(𝜇, 𝜎2)𝑑𝑧 , or any distribution 

𝑍~𝐴𝑑𝑧 , so it is more versatile. 

 In most previous works (e.g. [1,2,4]), the 

performance of latent vector recovery was 

evaluated only with the reconstruction loss 𝐿𝑟𝑒𝑐 

(or 𝑑𝑖𝑓𝑓 (𝑥, 𝐺(𝑧𝑝))  using different 𝑑𝑖𝑓𝑓 ). 

However, as explained previously, when the 

latent vector 𝑧𝑝  that minimizes the 

reconstruction loss 𝐿𝑟𝑒𝑐  is found, the 𝑧𝑝 

cannot always be the ideal latent vector 𝑧∗. 

 In [3], after generating data 𝐺(𝑧𝑘)  through 

some latent vector 𝑧𝑘 , latent vector 𝑧𝑝  is 

obtained by performing latent vector recovery 

on data 𝐺(𝑧𝑘) . After that, the latent vector 

recovery is evaluated with the error between 𝑧𝑘 

and 𝑧𝑝 . However, this evaluation method 

cannot be a proper evaluation method because 

it evaluates latent vector recovery only with 

data that generator 𝐺 can generate. 

 In this paper, we propose latent distribution 

goodness of fit test that tests whether the 

distribution of all elements of all recovered 

latent vector 𝑧𝑝 follows the train latent random 

variable 𝑍 to evaluate whether correct latent 

vector recovery has been performed. Passing 

the latent distribution goodness of fit test does 

not mean that the latent vector recovery is 

successful, but if the latent vector recovery is 

successful, it should pass the latent distribution 

goodness of fit test. 

 

2. Statistical distance latent regulation loss 

 When there is a latent vector 𝑧𝑝  that 

minimizes the reconstruction loss 𝐿𝑟𝑒𝑐 , the 

obtained latent vector 𝑧𝑝 cannot always be an 



ideal latent vector 𝑧∗. The reason is that the 

probability that the latent vector 𝑧𝑝  was 

sampled from the train latent random variable 

𝑍  may be very low. For example, in MNIST 

handwritten data, assume that 𝑥  is the 

handwritten data of the number one, currently 

𝐺(𝑧𝑝) generates number zero, and 𝑧𝑝[1] (the 

first element of 𝑧𝑝) represents the width of the 

letter. If the other elements of the latent vector 

𝑧𝑝  remain unchanged and 𝑧𝑝[1]  becomes 

extremely low, the width of the letter becomes 

very narrow and may look like the number one. 

At this time, when the reconstruction loss 𝐿𝑟𝑒𝑐 

of the latent vector 𝑧𝑝 is sufficiently low, the 

latent vector 𝑧𝑝 may be a local optimum or a 

global optimum for the reconstruction loss 𝐿𝑟𝑒𝑐 . 

However, 𝑃(𝑍 = 𝑧𝑝) at this time will be very 

low or zero. Also, since generator 𝐺  is not 

trained to generate out-of-distribution data, 

there is always a tendency to generate data 

distribution 𝑋 . For example, the following 

figure is an image generated by the GAN 

generator that trained MNIST handwriting data 

with the train latent vector 𝑍~𝑈(−1,1)𝑑𝑧 . 

 

Fig.4 Generated data by GAN trained with 

𝑍~𝑈(−1,1)𝑑𝑧 

The FID [11] of this GAN is 5.64053. When 

𝑍′~𝑈(−10,10)𝑑𝑧  is input to this pre-trained 

GAN, the following data is generated. 

 

Fig.5 Generated data by GAN with input 



𝑍′~𝑈(−10,10)𝑑𝑧 

 You can see that a lot of data looks like in-

distribution data. This model's FID, measured 

when the input is 𝑍′~𝑈(−10,10)𝑑𝑧 , is 40.521896.  

 On the other hand, if 𝑍~𝑈(−1,1)𝑑𝑧 is input to 

the untrained GAN, the following images are 

generated. 

 

Fig.6 Generated data by untrained GAN with 

input 𝑍~𝑈(−1,1)𝑑𝑧 

The FID of GAN at this time is 459.56543. That 

is, generator 𝐺  of trained GAN tends to 

generate in-distribution data even for latent 

vector 𝑘 with low 𝑃(𝑍 = 𝑘). Therefore, 𝑃(𝑍 =

𝑧𝑝) can be very low for a latent vector 𝑧𝑝 that 

is a local optimum or a global optimum that 

sufficiently minimizes the reconstruction loss 

𝐿𝑟𝑒𝑐 . These latent vectors 𝑧𝑝  cannot be 

considered as ideal latent vectors 𝑧∗ . This 

means that an additional term is needed to 

maximize 𝑃(𝑍 = 𝑧𝑝). 

 In papers [1, 2], latent regulation loss 𝐿𝑙𝑟 was 

added to loss 𝐿 , and in papers [3, 4], some 

elements of 𝑧𝑝 were resampled after gradient 

descent. However, these latent regulation loss 

or resampling methods have problems because 

they do not maximize 𝑃(𝑍 = 𝑧𝑝). 

 

2.1 Z score square 

 In [1], the following latent regulation loss 𝐿𝑙𝑟 

was used when the train latent random variable 

𝑍~𝑁(𝜇, 𝜎2)𝑑𝑧 . 

𝐿𝑙𝑟 = (
𝑧𝑝 − 𝜇

𝜎
)
2

 

 However, in the case of the z score square 

latent regulation loss, 𝑃(𝑍 = 𝑧𝑝)  is not 

maximized, but ∑ 𝑃(𝑍[𝑖] = 𝑧𝑝[𝑖])
𝑑𝑧
𝑖=1  is 

maximized. Therefore, correct latent vector 

recovery cannot be achieved with Z score 

square latent regulation loss. Also, the Z score 

square latent regulation loss cannot be used 

when the train latent random variable 𝑍 ≁

𝑁(𝜇, 𝜎2)𝑑𝑧 . 

 

2.2 Fool discriminator 

 In [2], the following latent regulation loss 𝐿𝑙𝑟 

was used. 

𝐿𝑙𝑟 = 𝐿𝑎𝑑𝑣
𝑔

 

𝐿𝑎𝑑𝑣
𝑔

 is the adversarial loss of generator 𝐺. For 

example, if GAN was trained with the 

adversarial loss of LSGAN, then 𝐿𝑙𝑟 =

(𝐷 (𝐺(𝑧𝑝)) − 1)
2

. 𝐷 is the discriminator. 



 However, the fool discriminator latent 

regulation loss does not maximize 𝑃(𝑍 = 𝑧𝑝), 

and there is no guarantee that that the 

adversarial loss 𝐿𝑎𝑑𝑣
𝑔

 of generator G is 

minimized when 𝑃(𝑍 = 𝑧𝑝) . Moreover, since 

discriminator 𝐷 is used to calculate the latent 

regulation loss 𝐿𝑙𝑟 , the operation is very slow. 

 

2.3 Boundary resampling 

 In [3], when the train latent random variable 

𝑍~𝑈(𝑎, 𝑏)𝑑𝑧 , all elements of the latent vector 𝑧𝑝 

out of the range [𝑎, 𝑏] were resampled from 

𝑈(𝑎, 𝑏) . Boundary resampling resample all 

elements of latent vector 𝑧𝑝 out of range [𝑎, 𝑏] 

from 𝑈(𝑎, 𝑏) , so ∑ 𝑃(𝑍[𝑖] = 𝑧𝑝[𝑖])
𝑑𝑧
𝑖=1  is 

maximized. However, it does not maximize 

𝑃(𝑍 = 𝑧𝑝). 

 

2.4 Stochastic resampling 

In [4], when the train latent random variable 

𝑍~𝑁(𝜇, 𝜎2)𝑑𝑧 , each element of the latent vector 

𝑧𝑝  is stochastically resampled from 𝑁(𝜇, 𝜎2) . 

The probability of each element is resampled 

according to the value of the element 𝑧𝑝[𝑖] of 

the latent vector 𝑧𝑝  according to the 

probability function proposed in the paper. The 

closer 𝑧𝑝[𝑖] to 𝜇, the lower the probability of 

resampling. The paper argued that the 

following two resampling probability functions 

have good performance. 

𝑓𝑙𝑐(𝑧𝑝) =
1

1 + 𝑒−𝑎(|𝑧𝑝|−𝑏)
 

𝑓𝑡𝑐(𝑧𝑝) =

{
 

 
 𝑖𝑓 |𝑧𝑝| < 𝑎: 

𝑒−
𝑎2

2

𝑒−
𝑧𝑝
2

2

𝑒𝑙𝑠𝑒: 1

 

In the above equation, for convenience, 

𝑍~𝑁(0, 12)𝑑𝑧  is assumed. If it is not 

𝑍~𝑁(0, 12)𝑑𝑧 , then scale and shift are needed 

to 𝑍~𝑁(0, 12)𝑑𝑧 . 𝑓𝑙𝑐 is a logistic cutoff function, 

and 𝑓𝑡𝑐 is a truncated normal cutoff function. 

The output of each function is the probability 

of resampling. 

 It is unlikely that stochastic resampling 

maximizes ∑ 𝑃(𝑍[𝑖] = 𝑧𝑝[𝑖])
𝑑𝑧
𝑖=1 , and does not 

maximize 𝑃(𝑍 = 𝑧𝑝). 

 

2.5 Statistical distance latent regulation loss 

 In this paper, to maximize 𝑃(𝑍 = 𝑧𝑝) , we 

propose a statistical distance latent regulation 

loss, which is a latent regulation loss that can 

be used assuming that the train latent random 

variable 𝑍  is an IID random variable that 

follows some distribution 𝐴𝑑𝑧 . The statistical 

distance latent regulation loss is the distance 

between the distribution 𝐴 followed by train 

latent random variables, and the discrete 

uniform distribution 𝑆 , assuming that each 

element of the latent vector has the same 

probability (probability mass function 𝑃𝑆(𝑥) =

{
1

𝑑𝑧
 𝑖𝑓 𝑥 ∈ 𝑧𝑝 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
). The statistical distance latent 

regulation loss is as follows. 

𝐿𝑙𝑟 = 𝐷𝑖𝑠𝑡(𝑃𝐴, 𝑃𝑆) 

𝐷𝑖𝑠𝑡 is a function that calculates the statistical 

distance between two distributions. 𝑃𝐴 is the 

probability density function of distribution 𝐴 . 



𝑃𝑆  is the probability mass function of the 

discrete uniform distribution created by the 

latent vector 𝑧𝑝 . Since the statistical distance 

latent regulation loss considers the correlation 

between each element of the latent vector, 

better latent vector recovery is possible. Also, 

since statistical distance latent regulation loss 

can be used if the train latent random variable 

𝑍 is an IID random variable, it can be used 

when 𝑍~𝑈(𝑎, 𝑏)𝑑𝑧 , 𝑍~𝑁(𝜇, 𝜎2)𝑑𝑧 , or any 

distribution 𝑍~𝐴𝑑𝑧 , so it is more versatile. 

 Among several statistical distances, in this 

paper, two statistical distances were used: 

Wasserstein distance and Energy distance. The 

following table summarizes the conditions 

required for each latent regulation loss or 

resampling method. 

 

Table.7 Requirements for each method 

 Z~ALL in the table above means that the train 

latent vector 𝑍 can be used regardless of the 

distribution, and Z~IID means that it can be 

used when 𝑍 is an IID random variable. 

 

3. Latent distribution goodness of fit test 

As explained previously, the latent vector 𝑧𝑝 

with low reconstruction loss 𝐿𝑟𝑒𝑐 is not always 

the ideal latent vector 𝑧∗. To check whether the 

latent vector z_p is sampled from the train 

latent random variable Z, this paper proposes a 

latent distribution goodness of fit test. In [12], 

the goodness of fit test was used to evaluate 

the performance of GAN. However, in this paper, 

it is used to verify that the correct latent vector 

has been recovered. 

 Suppose that for some distribution 𝐴 , the 

train latent random variable 𝑍~𝐴𝑑𝑧 , and latent 

vector recovery for the test data was properly 

performed. At this time, the distribution of all 

elements of all recovered latent vector 𝑧𝑝, that 

is, 𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎 𝑠𝑖𝑧𝑒 × 𝑑𝑧  samples, will follow 

distribution 𝐴. Latent distribution goodness of 

fit test tests whether the 𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎 𝑠𝑖𝑧𝑒 × 𝑑𝑧 

samples follow the distribution 𝐴 . If the 

distribution consisting of elements of latent 

vectors does not pass the latent distribution 

goodness of fit test, it cannot be considered 

that proper latent vector recovery has been 

achieved. 

 However, just passing the latent distribution 

goodness of fit test does not mean that proper 

latent vector recovery has been achieved. For 

example, if the latent vector 𝑧𝑝 is initialized to 

a value sampled from the train latent random 

Name Z~ALL Z~IID Z~N Z~U

Wasserstein distance O O O

Energy distance O O O

Fool discriminator O O O O

Z score square O

Logistic cutoff O

Truncated normal cutoff O

Boundary resampling O



variable 𝑍 and then latent vector recovery is 

performed with a very low learning rate, the 

latent distribution goodness of fit test can be 

passed. Therefore, the reconstruction loss 

𝐿𝑟𝑒𝑐 (or 𝑑𝑖𝑓𝑓 (𝑥, 𝐺(𝑧𝑝)) ) is still important for 

evaluation. 

 In other words, the Latent distribution 

goodness of fit test is an additional test 

whether latent vector 𝑧𝑝  minimizing 

reconstruction loss 𝐿𝑟𝑒𝑐  (or 𝑑𝑖𝑓𝑓 (𝑥, 𝐺(𝑧𝑝)) )  

has been properly recovered.  

 And even if the train latent random variable 𝑍 

is not an IID random variable, the latent 

distribution goodness of fit test can be 

performed. Elements with the same index of the 

recovered latent vector 𝑧𝑝  should have been 

sampled from the same distribution. In other 

words, it is possible to evaluate whether latent 

recovery is appropriate by performing a latent 

distribution goodness of fit test for each 

distribution of elements with the same index. 

 

4. Material and methods 

4.1 Model train 

For the experiment, we trained the GAN that 

generates the MNIST handwriting dataset [14] 

using the adversarial loss of LSGAN [13]. The 

latent vector dimension 𝑑𝑧 = 256 . Each GAN 

used in the experiment referred to the structure 

of DCGAN[15], and used 

𝐴𝑑𝑎𝑚(𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 10−5), 𝑒𝑝𝑜𝑐ℎ =

200, 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 = 32 . For evaluation, 

classification tests, latent distribution goodness 

of fit test, L1 loss, and L2 loss were used. The 

classifier used in the evaluation was trained 

using 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = 𝐴𝑑𝑎𝑚(𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =

10−5), 𝑒𝑝𝑜𝑐ℎ = 50, 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 = 32. 

 

4.2 Latent vector recovery 

𝑧𝑝  initialize function 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒( )  is 

𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑍) . Sixteen latent vectors per data 

were initialized and optimized in parallel, and 

among them, the latent vector 𝑧𝑝  with the 

lowest loss 𝐿  was selected. For 𝑑𝑖𝑓𝑓 , mean 

absolute error, which obtained the best result 

in [5], was used. The number of gradient 

descent 𝑡 = 200 and optimizer 𝑜𝑝𝑡 = 𝐴𝑑𝑎𝑚. In 

the evaluation, only 1000 randomly selected 

out of 10000 test data were used for each 

experiment run. KS-test (Kolmogorov–Smirnov 

test) was used as the latent distribution 

goodness of fit test. The test is a two-sided test. 

The null hypothesis 𝐻0 is "All elements of all 

recovered latent vector 𝑧𝑝 were sampled from 

the train latent distribution 𝑍". Each table in the 

resulting section has a p-value. If the 

significance probability is 5%, the null 

hypothesis 𝐻0 is rejected when the p-value is 

less than 5%, and the alternative hypothesis 𝐻1 

is rejected when it is above 95%. Wasserstein 

distance and energy distance were measured by 

sampling sufficiently many samples (10000 

samples) from the train latent random variable 

𝑍.  

 In the case of logistic cutoff, two 

hyperparameters are used, of which 𝑏 is fixed 

to 2, which has the best performance in the 

paper. All experiments were conducted 3 times 

including GAN and classifier training. All figures 



in the Results section are the average of the 

results of the three trials. 

 

5. Experimental results and discussion 

The classifier shows 99.18% accuracy for test 

data. 

 The following tables show the performance 

according to the latent regulation loss when the 

train latent random variable 𝑍~𝑁(0, 12)𝑑𝑧 . 

The FID of GAN is 6.576. 

 

Table 8. Without regulation loss performance 

When the learning rate is low, the latent vector 𝑧𝑝 hardly changes from the initial latent vector, so 

the p-value is high, but the L1 loss and L2 loss are high and the classifier accuracy is low. That is, 

𝐿𝑟𝑒𝑐 is too large. When the 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 is high, 𝐿𝑟𝑒𝑐 is sufficiently low because L1 loss, L2 loss, 

and classifier accuracy are low, but since the p-value is too low, it is difficult to say that latent vector 

recovery has been properly performed. When learning rate = 0.001, sufficient latent space search 

was not performed due to low learning rate. When the 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.01, due to the high 

learning rate, sufficient latent space search was performed, but the p-value was too low. Therefore, 

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.01 was used in later experiments using latent regulation loss or resampling. 

 

Table 9. Wasserstein latent regulation loss results 

No regulation Learning rate

0.00001 0.0001 0.001 0.01 0.1

Latent mean 0.003 0.001 0.003 0.006 0.034

Latent variance 0.998 0.994 0.999 1.331 19.630

Goodness of fit p-value (%) 41.21% 37.24% 26.34% 0.00% 0.00%

L1 loss 167.491 122.348 38.603 18.930 20.860

L2 loss 15.355 12.366 5.088 2.678 2.947

Classifier accuracy (%) 41.63% 63.90% 96.27% 99.00% 98.20%

Wasserstein distance Latent regulation loss weight

0.001 0.01 0.1 1 10

Latent mean 0.004 0.002 0.000 0.000 0.000

Latent variance 1.305 1.180 1.000 0.995 0.995

Goodness of fit p-value (%) 0.00% 0.00% 99.99% 59.08% 56.63%

L1 loss 18.876 18.798 19.976 27.861 69.839

L2 loss 2.668 2.650 2.789 3.804 8.193

Classifier accuracy (%) 98.80% 99.10% 98.90% 98.73% 85.97%



 

Table 10. Energy latent regulation loss results 

 Wasserstein latent regulation loss and energy latent regulation loss showed sufficiently high p-

value when using the appropriate latent regulation loss weight λ𝑙𝑟 , and showed better performance 

in all aspects than when the latent regulation loss was not used. Also, because the p-value is very 

high, the alternative hypothesis 𝐻1 (All elements of all recovered latent vector 𝑧𝑝 were not sampled 

from the train latent distribution 𝑍) can also be rejected. 

 

 

Table 11. Z score square latent regulation loss results 

 In the case of the Z score, a more meticulous hyperparameter search was performed so that the 

latent variance was 1 to find the latent regulation loss weight λ𝑙𝑟 with a barely significant p-value. 

However, it is still much lower than the statistical distance regulation loss. 

 

Energy distance Latent regulation loss weight

0.001 0.01 0.1 1 10

Latent mean 0.006 0.003 0.000 0.000 0.000

Latent variance 1.319 1.231 1.022 0.996 0.996

Goodness of fit p-value (%) 0.00% 0.00% 61.86% 99.18% 89.56%

L1 loss 18.840 18.889 19.589 29.403 82.368

L2 loss 2.663 2.673 2.745 3.979 9.273

Classifier accuracy (%) 99.03% 98.33% 98.93% 98.30% 81.83%

Z score square Latent regulation loss weight

0.001 0.0032 0.0057 0.01

Latent mean 0.006 0.004 0.003 0.004

Latent variance 1.259 1.124 0.995 0.816

Goodness of fit p-value (%) 0.00% 0.00% 5.58% 0.00%

L1 loss 18.919 18.829 18.628 18.218

L2 loss 2.665 2.659 2.624 2.559

Classifier accuracy (%) 98.70% 98.70% 98.97% 99.07%



 

Table 12. Fool discriminator latent regulation loss results 

 

 

Table 13. Logistic cutoff latent resampling results 

 

 

Table 14. Truncated normal cutoff latent resampling results 

Fool discriminator, logistic cutoff latent resampling, and truncated normal cutoff latent resampling 

failed to find latent regulation loss weight with a meaningful p-value. This means that proper latent 

vector recovery has not been performed. The following tables show the performance according to 

the latent regulation loss when the train latent random variable 𝑍~𝑈(−1,1)𝑑𝑧 . The FID of GAN is 

6.9265. 

Fool discriminator Latent regulation loss weight

0.000001 0.0001 0.01 1 100

Latent mean 0.003 0.004 0.006 0.005 0.004

Latent variance 1.328 1.330 1.298 1.119 1.119

Goodness of fit p-value (%) 0.00% 0.00% 0.00% 0.00% 0.00%

L1 loss 19.054 18.840 21.413 152.095 183.491

L2 loss 2.690 2.665 3.020 14.423 16.311

Classifier accuracy (%) 98.80% 98.77% 98.50% 45.67% 38.83%

Logistic cutoff Hyperparameter

2 2.5 3

Latent mean 0.001 0.001 0.000

Latent variance 0.329 0.280 0.261

Goodness of fit p-value (%) 0.00% 0.00% 0.00%

L1 loss 99.827 73.777 57.304

L2 loss 10.558 8.373 6.798

Classifier accuracy (%) 83.70% 93.80% 95.70%

Truncated normal cutoff Hyperparameter

2 2.5 3 3.5 4 4.5

Latent mean 0.000 0.002 0.002 0.003 0.003 0.005

Latent variance 0.529 0.520 0.573 0.730 1.022 1.223

Goodness of fit p-value (%) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

L1 loss 155.650 108.708 61.151 35.834 25.424 20.694

L2 loss 14.563 11.241 7.193 4.494 3.308 2.837

Classifier accuracy (%) 49.43% 80.47% 95.93% 98.63% 98.93% 98.83%



 

Table 15. Without latent regulation loss 

It shows poor performance when there is no latent regulation loss. 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.01 is the value 

used in the previous experiment, and since the latent variance exceeds 
1

3
 when 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =

0.01, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.01 was used in the next experiments. However, in the case of boundary 

resampling, since there is no hyperparameter, we instead tested the performance according to the 

learning rate. 

 

Table 16. Wasserstein latent regulation loss results 

 

 

Table 17. Energy latent regulation loss results 

No regulation Learning rate

0.00001 0.0001 0.001 0.01 0.1

Latent mean -0.002 -0.001 -0.001 -0.007 -0.077

Latent variance 0.332 0.332 0.341 0.568 19.296

Goodness of fit p-value (%) 20.89% 0.00% 0.00% 0.00% 0.00%

L1 loss 164.220 101.742 31.117 18.299 24.599

L2 loss 15.158 10.809 4.208 2.580 3.433

Classifier accuracy (%) 42.70% 73.30% 98.13% 98.90% 96.33%

Wasserstein distance Latent regulation loss weight

0.001 0.01 0.1 1 10

Latent mean -0.007 -0.003 0.000 0.000 0.000

Latent variance 0.563 0.499 0.346 0.333 0.333

Goodness of fit p-value (%) 0.00% 0.00% 0.00% 99.97% 100.00%

L1 loss 18.492 18.292 18.420 22.434 40.983

L2 loss 2.594 2.570 2.546 3.071 5.305

Classifier accuracy (%) 98.90% 98.63% 98.60% 98.90% 96.43%

Energy distance Latent regulation loss weight

0.001 0.01 0.1 1 10

Latent mean -0.007 -0.004 0.000 0.000 0.000

Latent variance 0.562 0.510 0.362 0.334 0.333

Goodness of fit p-value (%) 0.00% 0.00% 0.00% 66.76% 99.99%

L1 loss 18.260 18.197 18.409 25.097 57.141

L2 loss 2.573 2.550 2.564 3.426 7.003

Classifier accuracy (%) 98.93% 99.00% 98.93% 98.20% 90.93%



When using the statistical distance latent regulation loss, like the previous experiment, latent vectors 

with very high p-value and low 𝐿𝑟𝑒𝑐 were found. 

 

Table 18. Fool discriminator latent regulation loss results 

 

 

Table 19. Boundary resampling results 

 On the other hand, when fool discriminator latent regulation loss was used, as in previous 

experiments, latent vector with meaningful p-value could not be found. When the learning rate is 

high, boundary resampling has a meaningful p-value because it is almost always resampling, but 

𝐿𝑟𝑒𝑐 is too high.  

 The following experiment shows the result of latent recovery by applying statistical distance latent 

regulation loss when the train latent random variable 𝑍 is a unique IID random variable (𝑍~𝐴𝑑𝑧). 𝐴 

is half uniform and half normal distribution.  

Probability density function of 𝐴 is 𝑃𝐴(𝑥) = {

0 𝑖𝑓 𝑥 < −1

0.5 𝑖𝑓 𝑥 ∈ [−1,0]

1

√2𝜋
𝑒−

𝑥2

2  𝑖𝑓 0 < 𝑥

. 

The following graph shows the graph of the probability density function of 𝐴. 

  

Fool discriminator Latent regulation loss weight

0.000001 0.0001 0.01 1 100

Latent mean -0.009 -0.007 -0.007 -0.005 -0.006

Latent variance 0.568 0.566 0.551 0.449 0.451

Goodness of fit p-value (%) 0.00% 0.00% 0.00% 0.00% 0.00%

L1 loss 18.232 18.431 20.738 158.037 186.580

L2 loss 2.566 2.596 2.931 14.780 16.488

Classifier accuracy (%) 98.80% 98.73% 98.47% 44.67% 36.53%

Boundary resampling Learning rate

0.001 0.01 0.1 1 10

Latent mean 0.000 -0.003 -0.006 -0.005 0.000

Latent variance 0.268 0.246 0.297 0.321 0.333

Goodness of fit p-value (%) 0.00% 0.00% 0.00% 0.00% 39.54%

L1 loss 39.809 22.854 48.838 95.118 174.681

L2 loss 5.117 3.041 5.865 10.108 15.798

Classifier accuracy (%) 96.50% 98.77% 96.40% 82.77% 37.23%



 

Figure 20. Half uniform and half normal probability density function 

The FID of the GAN trained with 𝑍~𝐴𝑑𝑧 is 7.424. 

 

Table 21. Without latent regulation loss results 

 Without latent regulation loss, as in previous experiments, it was impossible to recover the latent 

vector to have a low 𝐿𝑟𝑒𝑐  while having a meaningful p-value. The following tables show the 

performance when using the statistical distance latent regulation loss when the 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =

0.01, like the previous experiments. 

 

No regulation Learning rate

0.00001 0.0001 0.001 0.01 0.1

Latent mean 0.150 0.148 0.153 0.258 1.653

Latent variance 0.646 0.641 0.650 0.912 17.549

Goodness of fit p-value (%) 39.04% 0.00% 0.00% 0.00% 0.00%

L1 loss 166.662 115.787 35.291 19.588 22.805

L2 loss 15.300 11.859 4.677 2.725 3.159

Classifier accuracy (%) 39.77% 67.37% 96.97% 99.10% 97.50%



 

Table 22. Wasserstein latent regulation loss results 

 

 

Table 23. Energy distance latent regulation loss results 

 The above experimental results show that the statistical distance latent regulation loss can also be 

used for latent vector recovery using a generative model trained with a unique IID random variable 

𝑍. 

 

6. Conclusion 

In this paper, we evaluated the performance of 

latent vector recovery according to the types of 

latent regulation loss and resampling methods. 

In addition, an additional test, the latent 

distribution goodness of fit test, was proposed 

to evaluate whether latent vector recovery was 

properly performed. 

 Among several latent regulation loss and 

resampling methods, only the statistical 

distance latent regulation loss proposed in this 

paper had a very high p-value for the latent 

distribution goodness of fit test. This shows that 

statistical distance latent regulation loss 

maximizes 𝑃(𝑍 = 𝑧𝑝) , while previous works 

maximize ∑ 𝑃(𝑍[𝑖] = 𝑧𝑝[𝑖])
𝑑𝑧
𝑖=1 . 
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8.Appendix 

8.1 Model architecture 

 

Generator 

Latent vector ([256]) 

Fully connected layer ([7*7*512], Leaky 

ReLU) 

Reshape ([7, 7, 512]) 

Instance normalization () 

Up sampling () 

Convolution layer (256, [3, 3], Leaky ReLU) 

Instance normalization () 

Convolution layer (256, [3, 3], Leaky ReLU) 

Instance normalization () 

Convolution layer (256, [3, 3], Leaky ReLU) 

Instance normalization () 

Up sampling () 

Convolution layer (128, [3, 3], Leaky ReLU) 

Instance normalization () 

Convolution layer (128, [3, 3], Leaky ReLU) 

Instance normalization () 

Convolution layer (128, [3, 3], Leaky ReLU) 

Instance normalization () 

Convolution layer (1, [1, 1], tanh) 

 

Discriminator and Classifier architecture 

Input image ([28, 28, 1]) 

Convolution layer (128, [3, 3], Leaky ReLU) 

Instance normalization () 

Average Pooling () 

Convolution layer (256, [3, 3], Leaky ReLU) 

Instance normalization () 

Convolution layer (256, [3, 3], Leaky ReLU) 

Instance normalization () 

Convolution layer (256, [3, 3], Leaky ReLU) 

https://arxiv.org/abs/1706.08500
https://ieeexplore.ieee.org/document/8953411
https://arxiv.org/abs/1611.04076
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1511.06434


Instance normalization () 

Average Pooling () 

Convolution layer (512, [3, 3], Leaky ReLU) 

Instance normalization () 

Convolution layer (512, [3, 3], Leaky ReLU) 

Instance normalization () 

Convolution layer (512, [3, 3], Leaky ReLU) 

Instance normalization () 

Flatten () 

Fully connected layer 

(1, Linear) 

for Discriminator 

Fully connected layer 

(10, Softmax) 

for Classifier 

 

 


