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Abstract

Mass function is used to handle uncertainty. Quaternion number is the extent
of imaginary number. In this paper, the classical mass function is extended by
quaternion number, named as Quaternion Mass Function (QMF). The proposed
QMF has the advantage to deal with uncertain information. When the quater-
nion number degenerates into the complex number, then the QMF degenerates
into the complex mass function. In addition, if the complex mass function is
degenerated as real number, the QMF is the same as mass function in classi-
cal evidence theory. In the case when the quaternion number degenerates into
the real number and the QMF focus on the frame of discernment with single
subsets, the QMF is the same as the probability distribution in probability the-
ory. The combination rule is also presented to combine two QMFs, which is the
generalization of Dempster rule. In the case when the quaternion mass func-
tion degenerates into the real number and assigns only to single subsets, the
proposed combination rule is degenerated as Beyesian updation in probability
theory. Numerical examples are applied to prove the efficiency of the proposed
model. The experimental results show that the proposed model can apply the
quaternion theory to mass function effectively and successfully.

Keywords: Quaternion, Mass function, Quaternion mass function, Complex
mass function, Probability, Beyesian updating

1. Introduction

There are many uncertainties in the real world. In order to deal with the
uncertain issues, many mathematical models and theories have been proposed,
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such as quaternion [1], evidence theory [2, 3], belief entropy [4], belief func-
tion [5], quaternion bayesian updating [6]. Among those models and theories,
the mass function is very efficient in representing uncertainty, which is based
on the frame of discernment. There are many models to combine uncertainties.
Relying on the advantages on representing uncertainty, the mass function have
been widely studied by scholars at home and abroad.

Quaternion theory, which can extend the classical probability theory to the
four-dimensional space, which has great promise for discovery. However, how
to apply quaternion probability to evidence theory is still an open issue.

This paper proposes the QMF, which doesn’t conform to the communitative
property of multiplication. The QMF uses addition, subtraction, multiplication,
and division operations. The quaternions mass function is based on the quater-
nion theory, which is can extend the mass fucntion to the four-dimensional space.
In order to fusing the different QMFs, the quaternion dempster’s rule of combi-
nation has been proposed, which is an extent of dempster’s rule of combination
under the quaternion theory.

The remain of this paper is structured as follows. Section 2 introduces the
preliminary. Section 3 presents the QMF. Section 4 illustrates the flexibility of
QMF. Section 5 summarizes the whole paper.

2. Preliminaries

In this section, mass function, quaternion are briefly introduced.

2.1. Quaternion

Quaternions are a four dimensional hypercomplex numbers system. The
definition of quaternions as follow:

Definition 2.1. (Quaternion) [1]

q = a+ bi+ cj + dk (1)

Given two quaternions, q1 = a+ bi+ cj + dk and q2 = e+ fi+ gj + hk, the
definition of quaternions multiplication as follow:

Definition 2.2. (Quaternion Multiplication) [1]

q1q2 =(ae− (bf + cg + dh))+

(be+ af + ch− dg)i+

(ce+ ag + df − bh)j+

(de+ ah+ bg − cf)k

(2)
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2.2. Frame of Discernment

Given a frame of discernment Ω = {x1, x2, . . . , xn}, the power set of frame
of discernment is defined as follows:

Definition 2.3. (Power Set of Frame of Discernment) [2]

2Ω = {∅, {x1}, {x2}, . . . , {xn}, {x1, x2}, . . . , {x1, x2, . . . , xi}, . . . ,Ω} (3)

2.3. Mass Function

Given a frame of discernment Ω = {x1, x2, . . . , xn}, the mass function, m,
on 2Ω is defined as follows:

Definition 2.4. (Mass Function) [2]

m : 2Ω → [0, 1] (4)

Where, m(∅) = 0 and ΣB∈2Ωm(B) = 0 with a focal element, B, of 2Ω.

2.4. Dempster’s Rule of Combination

Given two mass functions, m1 and m2, in Ω. The dempster’rule of combi-
nation, m = m1 ⊕m2, between m1 and m2 is defined as follows:

Definition 2.5. (Dempster’s Rule of Combination) [2]

m(D) =

{
1

1−K
∑
E

⋂
F=Dm(E)m(F ) D 6= ∅

0 D = ∅
(5)

Where, K =
∑
E

⋂
F=∅m(E)m(F ).

3. The proposed method

3.1. Quaternions Mass Function

In order to extend the mass function to four-dimensional space, this paper
proposes the QMF, which includes several operations.

Given a frame of discernment Ω = {x1, x2, . . . , xn}, the QMF, QM , on Ω is
defined as follows:

Definition 3.1. (Quaternion Mass Function)

QM(∅) = 0 (6)

ΣB∈2ΩQM(B) = 1 (7)

QM(B) = m(B)euΘ, B ∈ 2Ω (8)

Where, u = uxi + uyj + uzk with i = j = k =
√
−1. Assume m(B) is the

magnitude of the QMF QM(B). Θ ∈ [0, 2π].
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Given a QMF QM on frame of discernment Ω = {x1, x2, . . . , xn}, then for
any two subsets A,B ∈ 2Ω such that QM(A) = m(A)euAΘA = a+ bi+ cj + dk
and QM(B) = m(B)euBΘB = e+ fi+ gj + hk, the addition operator of QM is
defined as follows:

Definition 3.2. (The Addition Operator of Quaternion Mass Function)

QM(A) +QM(B) = (a+ e) + (b+ f)i+ (c+ g)j + (d+ h)k (9)

Given a QMF QM on frame of discernment Ω = {x1, x2, . . . , xn}, then for
any subset A ∈ 2Ω such that QM(A) = m(A)euAΘA = a + bi + cj + dk, the
Modular operator of QM is defined as follows:

Definition 3.3. (The Modular Operator of Quaternion Mass Function)

|QM(A)| =
√
a2 + b2 + c2 + d2 (10)

Given a QMF QM on frame of discernment Ω = {x1, x2, . . . , xn}, then for
any two subsets A,B ∈ 2Ω such that QM(A) = m(A)euAΘA = a+ bi+ cj + dk
and QM(B) = m(B)euBΘB = e+ fi+ gj+hk, the subtraction operator of QM
is defined as follows:

Definition 3.4. (The Subtraction Operator of Quaternion Mass Function)

QM(A)−QM(B) = (a− e) + (b− f)i+ (c− g)j + (d− h)k (11)

Given a QMF QM on frame of discernment Ω = {x1, x2, . . . , xn}, then for
any two subsets A,B ∈ 2Ω such that QM(A) = m(A)euAΘA = a+ bi+ cj + dk
and QM(B) = m(B)euBΘB = e + fi + gj + hk, the multiplication operator of
QM is defined as follows:

Definition 3.5. (The Multiplication Operator of Quaternion Mass Function)

QM(A)QM(B) =m(A)euAΘAm(B)euBΘB

= (ae− (bf + cg + dh))

+ (be+ af + ch− dg)i

+ (ce+ ag + df − bh)j

+ (de+ ah+ bg − cf)k

(12)

Theorem 3.1. QMF does not satisfy the commutative law of multiplication.

Proof 3.1. Assume there is a QMF QM on frame of discernment Ω = {x1, x2, . . . , xn},
then for any two subsets A,B ∈ 2Ω such that QM(A) = m(A)euAΘA = a+ bi+
cj + dk and QM(B) = m(B)euBΘB = e+ fi+ gj + hk,
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Relying on Eq.(3.1), one has the following equation:

QM(A)QM(B) = (ae− (bf + cg + dh))

+ (be+ af + ch− dg)i

+ (ce+ ag + df − bh)j

+ (de+ ah+ bg − cf)k

Then, relying on Eq.(3.1), we can obtain the equation of QM(B)QM(A) as
follow:

QM(B)QM(A) = (ea− (fb+ gc+ hd))

+ (fa+ eb+ gd− hc)i
+ (ga+ ec+ hb− fd)j

+ (ha+ ed+ fc− gb)k

When QM(A)QM(B) = QM(B)QM(A), it means the following equation
holds:

QM(A)QM(B) = (ae− (bf + cg + dh))

+ (be+ af + ch− dg)i

+ (ce+ ag + df − bh)j

+ (de+ ah+ bg − cf)k =

QM(B)QM(A) = (ea− (fb+ gc+ hd))

+ (fa+ eb+ gd− hc)i
+ (ga+ ec+ hb− fd)j

+ (ha+ ed+ fc− gb)k

Then, we can obtain that:

(ch− dg)i+ (df − bh)j + (bg − cf)k =

−(ch− dg)i− (df − bh)j − (bg − cf)k

The above equation is only true if ch−dg, (df−bh) and (bg−cf). Otherwise,
QM(A)QM(B) 6= QM(B)QM(A).

Hence, we can conclude that QMF does not satisfy the commutative law of
multiplication. �

Given a QMF QM on frame of discernment Ω = {x1, x2, . . . , xn}, then for
any two subsetsA,B ∈ 2Ω such that QM(A) = m(A)euAΘA = a + bi + cj + dk
and QM(B) = m(B)euBΘB = e + fi + gj + hk, the quadronic multiplication
operator of QM is defined as follows:
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Definition 3.6. (The Quadronic Multiplication Operator of Quaternion Mass
Function)

QM(A) ·QM(B) = ae+ bf + cg + dh (13)

Given a QMF QM on frame of discernment Ω = {x1, x2, . . . , xn}, then for
any two subsetsA,B ∈ 2Ω such that QM(A) = m(A)euAΘA = a + bi + cj + dk
and QM(B) = m(B)euBΘB = e+ fi+ gj + hk, the transpose operator of QM
is defined as follows:

Definition 3.7. (The Transpose Operator of Quaternion Mass Function)

QM(A)−1 =
QM(A)∗

QM(A) ·QM(A)
(14)

Where,
QM(A)∗ = a− bi− cj − dk (15)

Given a QMF QM on frame of discernment Ω = {x1, x2, . . . , xn}, then for
any two subsetsA,B ∈ 2Ω such that QM(A) = m(A)euAΘA = a + bi + cj + dk
and QM(B) = m(B)euBΘB = e+ fi+ gj + hk, the division operator of QM is
defined as follows:

Definition 3.8. (The Division Operator of Quaternion Mass Function)

QM(A)/QM(B) = QM(B)−1QM(A) =
QM(B)∗QM(A)

QM(B) ·QM(B)
(16)

Example 3.1. Given a QMF QM on frame of discernment Ω = {x1, x2, . . . , xn},
then for any A,B ∈ 2Ω such that QM(A) = 0.1 + 0.1i + 0.1j + 0.1k and
QM(B) = 0.2 + 0.2i + 0.2j + 0.2k and QM(A,B) = 0.7 − 0.3i − 0.3j − 0.3k,
then

QM(A)∗ = 0.1− 0.1i− 0.1j − 0.1k

QM(B)∗ = 0.2− 0.2i− 0.2j − 0.2k

QM(A,B)∗ = 0.7 + 0.3i+ 0.3j + 0.3k

|QM(A)| =
√

0.12 + 0.12 + 0.12 + 0.12 = 0.2

|QM(B)| =
√

0.22 + 0.22 + 0.22 + 0.22 = 0.4

|QM(A,B)| =
√

0.72 + 0.32 + 0.32 + 0.32 =
√

0.76

QM(A)−1 =
QM(A)∗

QM(A) ·QM(A)
= 2.5− 2.5i− 2.5j − 2.5k

QM(B)−1 =
QM(B)∗

QM(B) ·QM(B)
= 1.25− 1.25i− 1.25j − 1.25k

QM(A,B)−1 =
QM(A,B)∗

QM(A,B) ·QM(A,B)
=

70

76
+

3

76
i+

3

76
j +

3

76
k
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QM(A) +QM(B) +QM(A,B) = 1

QM(B)−QM(A) = 0.1 + 0.1i+ 0.1j + 0.1k

QM(A)QM(B) = −0.04 + 0.04(i+ j + k)

QM(A)/QM(B) = QM(B)−1QM(A) = (1.25−1.25i−1.25j−1.25k)(0.1+0.1i+0.1j+0.1k) = 0.5

3.2. Combination rule of Quaternions Mass Function

Given two mass functions, QM1 and QM2, in Ω. The Combination rule of
Quaternions Mass Function, QM = QM1 ⊕ QM2, between QM1 and QM2 is
defined as follows:

Definition 3.9. (Combination rule of Quaternions Mass Function)

QM(D) =

{
1

1−QK
∑
E

⋂
F=D QM1(E)QM2(F ) D 6= ∅

0 D = ∅
(17)

Where, QK =
∑
E

⋂
F=∅QM(E)QM(F ). E,F ∈ 2Ω and QK is the conflict

coefficient between QM1 and QM2.

3.3. Discussion

Mass function has high efficiency in handling uncertainty. Quaternion num-
ber is the extent of complex number. This paper proposes the QMF, which is
combined with mass function and quaternion number. When the quaternion
number degenerates into the complex number, then the QMF degenerates into
the complex mass function. In addition, if the complex mass function is de-
generated as real number, the QMF is the same as mass function in classical
evidence theory. In the case when the quaternion number degenerates into the
real number and the QMF focus on the frame of discernment with single sub-
sets, the QMF is the same as the probability distribution in probability theory.
The combination rule is also presented to combine two QMFs, which is the gen-
eralization of Dempster rule. When the quaternion number is degenerated as
the complex number, then the combination rule of quaternions mass function
degenerates into the generalized dempster’s rule of combination. In addition,
when the complex mass function degenerates into real number, the combination
rule of quaternions mass function is the same as dempster’s rule of combination
in classical evidence theory. In the case when the quaternion mass function de-
generates into the real number and assigns only to single subsets, the proposed
combination rule is degenerated as Beyesian updation in probability theory.
The relationship of quaternion evidence theory(QET), complex evidence theo-
ry(CET), evidence theory(ET) and probability theory can be shown in Fig. 1.
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Figure 1: The relationship of four theories

4. Numerical examples

Example 4.1. Supposing that there are two QMFs QM1 and QM2 in the frame
of discernment Ω = {x1, x2, x3, x4, x5}. Here, A = {x1, x2} and B = {x3, x4, x5}.

QM1 :QM1(A) =
√

0.52 + 0.52eu1Θ1

QM1(B) =
√

(1− 0.5)2 + (−0.5)2eu2Θ2

QM2 :QM2(A) =
√

12 + 02eu3Θ3 = 1

QM2(B) =
√

(1− 1)2 + (−0)2eu4Θ4 = 0

Where, Θ1 = π
4 or Θ1 = 7π

4 . Θ2 = 3π
4 or Θ2 = 5π

4 . Θ3 = 0 or Θ3 = 2π.
Since A is proportional to B, then u1 = u2 = u3 = u4.

According to the QM1 and QM2 above, the QK as follows:
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QK = QM1(A)×QM2(B) +QM1(B)×QM2(A)

= QM1(A)× 0 +QM1(B)× 1

= QM1(B)

=
1√
2
eu2Θ2

The magnitude of conflict coefficient |QK| between QM1 and QM2 as follow:

|QK| = 0.7071

In this case, from the value of |QK|, we can obtain the conclusion that there
is a degree of conflict between QM1 and QM2.

When QM1 in the frame of discernment Ω = {x1, x2, . . . , xn} as follow:

QM1 :QM1(A) =
√

12 + 02eu1Θ1

QM1(B) =
√

(1− 1)2 + (−0)2eu2Θ2

According to the QM1 and QM2 above, the QK as follows:

QK = QM1(A)×QM2(B) +QM1(B)×QM2(A)

= 1× 0 + 0× 1

= 0

The magnitude of conflict coefficient |QK| between QM1 and QM2 as follow:

|QK| = 0

In this case, from the value of |QK|, we can obtain the conclusion that there
is no conflict between QM1 and QM2. It is rational, since QM1 = QM2 in this
way. This is intuitively true.

When QM1 in the frame of discernment Ω = {x1, x2, . . . , xn} as follow:

QM1 :QM1(A) =
√

(1− 1)2 + (−0)2eu1Θ1 = 0

QM1(B) =
√

12 + 02eu2Θ2 = 1

According to the QM1 and QM2 above, the QK as follows:

QK = QM1(A)×QM2(B) +QM1(B)×QM2(A)

= 0× 0 + 1× 1

= 1
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The magnitude of conflict coefficient |QK| between QM1 and QM2 as follow:

|QK| = 1

In this case, from the value of |QK|, we can obtain the conclusion that QM1

and QM2 are full conflict. Intuitively, QM1 and QM2 are completely opposite
QMF.

Example 4.2. Supposing that there are two QMFs QM1 and QM2 in the frame
of discernment Ω = {x1, x2, x3, x4, x5}. Here, A = {x1, x2}, B = {x3, x4, x5}
and C = {x1, x2, x3, x4, x5}.

QM1 :QM1(A) = 0.2 + 0.1i+ 0.1j + 0.2k

QM1(B) = 0.3 + 0.2i+ 0.2j + 0.3k

QM1(A,B) = 0.5− 0.3i− 0.3j − 0.5k

QM2 :QM2(A) = 0.3 + 0.2i+ 0.3j + 0.2k

QM2(B) = 0.2 + 0.2i+ 0.2j + 0.2k

QM2(A,B) = 0.5− 0.4i− 0.5j − 0.4k

Relying on the Eq.(17), we can obtain the equation of combination of QM(A)
and QM(B) as follow:

QK1·2 = QM1(A)QM2(B) +QM1(B)QM2(A)

= (−0.04 + 0.04i+ 0.08j + 0.08k) + (−0.07 + 0.07i+ 0.17j + 0.17k)

= −0.11 + 0.11i+ 0.25j + 0.25k

Then, we can obtain that:

1−QK1·2 = 1− (−0.11 + 0.11i+ 0.25j + 0.25k) = 1.11− 0.11i− 0.25j − 0.25k
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QM1·2(A) =
QM1(A)QM2(A) +QM1(A)QM2(A,B) +QM1(A,B)QM2(A)

1−QK1·2

=
(−0.03 + 0.03i+ 0.11j + 0.11k) + (0.27 + 0.03i− 0.09j + 0.01k) + (0.4 + 0.1i+ 0.02j − 0.08k)

1−QK1·2

=
0.64 + 0.16i+ 0.04j + 0.04k

1−QK1·2

= (1−QK1·2)−1(0.64 + 0.16i+ 0.04j + 0.04k)

=
(1−QK1·2)∗(0.64 + 0.16i+ 0.04j + 0.04k)

(1−QK1·2) · (1−QK1·2)

=
(1.11− 0.11i− 0.25j − 0.25k)∗(0.64 + 0.16i+ 0.04j + 0.04k)

(1.11− 0.11i− 0.25j − 0.25k) · (1.11− 0.11i− 0.25j − 0.25k)

=
(1.11 + 0.11i+ 0.25j + 0.25k)(0.64 + 0.16i+ 0.04j + 0.04k)

(1.11− 0.11i− 0.25j − 0.25k) · (1.11− 0.11i− 0.25j − 0.25k)

=
0.6728 + 0.248i+ 0.24j + 0.1688k

1.3692
= 0.4914 + 0.1811i+ 0.1753j + 0.1233k

QM1·2(B) =
QM1(B)QM2(B) +QM1(B)QM2(A,B) +QM1(A,B)QM2(B)

1−QK1·2

=
(−0.08 + 0.08i+ 0.12j + 0.12k) + (0.45 + 0.05i− 0.09j + 0.01k) + (0.32 + 0.08i)

1−QK1·2

=
0.69 + 0.21i+ 0.03j + 0.13k

1−QK1·2

= (1−QK1·2)−1(0.69 + 0.21i+ 0.03j + 0.13k)

=
(1−QK1·2)∗(0.69 + 0.21i+ 0.03j + 0.13k)

(1−QK1·2) · (1−QK1·2)

=
(1.11− 0.11i− 0.25j − 0.25k)∗(0.69 + 0.21i+ 0.03j + 0.13k)

(1.11− 0.11i− 0.25j − 0.25k) · (1.11− 0.11i− 0.25j − 0.25k)

=
(1.11 + 0.11i+ 0.25j + 0.25k)(0.69 + 0.21i+ 0.03j + 0.13k)

(1.11− 0.11i− 0.25j − 0.25k) · (1.11− 0.11i− 0.25j − 0.25k)

=
0.7028 + 0.334i+ 0.244j + 0.2676k

1.3692
= 0.5133 + 0.2439i+ 0.1782j + 0.1954k
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QM1·2(A,B) =
QM1(A,B)QM2(A,B)

1−QK1·2

=
(0.5− 0.3i− 0.3j − 0.5k)(0.5− 0.4i− 0.5j − 0.4k)

1−QK1·2

=
−0.22− 0.48i− 0.32j − 0.42k

1−QK1·2

= (1−QK1·2)−1(−0.22− 0.48i− 0.32j − 0.42k)

=
(1−QK1·2)∗(−0.22− 0.48i− 0.32j − 0.42k)

(1−QK1·2) · (1−QK1·2)

=
(1.11− 0.11i− 0.25j − 0.25k)∗(−0.22− 0.48i− 0.32j − 0.42k)

(1.11− 0.11i− 0.25j − 0.25k) · (1.11− 0.11i− 0.25j − 0.25k)

=
(1.11 + 0.11i+ 0.25j + 0.25k)(−0.22− 0.48i− 0.32j − 0.42k)

(1.11− 0.11i− 0.25j − 0.25k) · (1.11− 0.11i− 0.25j − 0.25k)

=
−0.0064− 0.582i− 0.484j − 0.4364k

1.3692
= −0.0047− 0.425i− 0.3535j − 0.3187k

Here, QM1·2(A) +QM1·2(B) +QM1·2(A,B) = 1. So, the QM1·2 is a QMF.
Then, since the theorem 3.1, we know the QMF doesn’t conform to the com-

mutative property of multiplication. Now, we change the multiplication order of
QM1 and QM2.

QK2·1 = QM2(A)QM1(B) +QM2(B)QM1(A)

= (−0.07 + 0.17i+ 0.13j + 0.13k) + (−0.04 + 0.08i+ 0.04j + 0.08k)

= −0.11 + 0.25i+ 0.17j + 0.21k

Then, we can obtain that:

1−QK2·1 = 1− (−0.11 + 0.25i+ 0.17j + 0.21k) = 1.11− 0.25i− 0.17j − 0.21k
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QM2·1(A) =
QM2(A)QM1(A) +QM2(A)QM1(A,B) +QM2(A,B)QM1(A)

1−QK2·1

=
(−0.03 + 0.11i+ 0.07j + 0.09k) + (0.40− 0.08i+ 0.10j − 0.02k) + (0.27− 0.09i− 0.01j + 0.03k)

1−QK2·1

=
0.64− 0.06i+ 0.16j + 0.1k

1−QK2·1

= (1−QK2·1)−1(0.64− 0.06i+ 0.16j + 0.1k)

=
(1−QK2·1)∗(0.64− 0.06i+ 0.16j + 0.1k)

(1−QK2·1) · (1−QK2·1)

=
(1.11− 0.25i− 0.17j − 0.21k)∗(0.64− 0.06i+ 0.16j + 0.1k)

(1.11− 0.25i− 0.17j − 0.21k) · (1.11− 0.25i− 0.17j − 0.21k)

=
(1.11 + 0.25i+ 0.17j + 0.21k)(0.64− 0.06i+ 0.16j + 0.1k)

(1.11− 0.25i− 0.17j − 0.21k) · (1.11− 0.25i− 0.17j − 0.21k)

=
0.6772 + 0.0768i+ 0.2488j + 0.2956k

1.3676
= 0.4952 + 0.0561i+ 0.1817j + 0.2159k

QM2·1(B) =
QM2(B)QM1(B) +QM2(B)QM1(A,B) +QM2(A,B)QM1(B)

1−QK2·1

=
(−0.08 + 0.12i+ 0.08j + 0.12k) + (0.32 + 0.08j) + (0.45− 0.09i− 0.01j + 0.05k)

1−QK2·1

=
0.69 + 0.03i+ 0.15j + 0.17k

1−QK2·1

= (1−QK2·1)−1(0.69 + 0.03i+ 0.15j + 0.17k)

=
(1−QK2·1)∗(0.69 + 0.03i+ 0.15j + 0.17k)

(1−QK2·1) · (1−QK2·1)

=
(1.11− 0.25i− 0.17j − 0.21k)∗(0.69 + 0.03i+ 0.15j + 0.17k)

(1.11− 0.25i− 0.17j − 0.21k) · (1.11− 0.25i− 0.17j − 0.21k)

=
(1.11 + 0.25i+ 0.17j + 0.21k)(0.69 + 0.03i+ 0.15j + 0.17k)

(1.11− 0.25i− 0.17j − 0.21k) · (1.11− 0.25i− 0.17j − 0.21k)

=
0.6972 + 0.2032i+ 0.2476j + 0.366k

1.3676
= 0.5098 + 0.1484i+ 0.1808j + 0.2673k
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QM2·1(A,B) =
QM2(A,B)QM1(A,B)

1−QK2·1

=
(0.5− 0.4i− 0.5j − 0.4k)(0.5− 0.3i− 0.3j − 0.5k)

1−QK2·1

=
−0.22− 0.22i− 0.48j − 0.48k

1−QK2·1

= (1−QK2·1)−1(−0.22− 0.22i− 0.48j − 0.48k)

=
(1−QK2·1)∗(−0.22− 0.22i− 0.48j − 0.48k)

(1−QK2·1) · (1−QK2·1)

=
(1.11− 0.25i− 0.17j − 0.21k)∗(−0.22− 0.22i− 0.48j − 0.48k)

(1.11− 0.25i− 0.17j − 0.21k) · (1.11− 0.25i− 0.17j − 0.21k)

=
(1.11 + 0.25i+ 0.17j + 0.21k)(−0.22− 0.22i− 0.48j − 0.48k)

(1.11− 0.25i− 0.17j − 0.21k) · (1.11− 0.25i− 0.17j − 0.21k)

=
−0.0068− 0.28i− 0.4964j − 0.6616k

1.3676
= −0.005− 0.2045i− 0.3625j − 0.4832k

Here, QM2·1(A) +QM2·1(B) +QM2·1(A,B) = 1. So, the QM2·1 is a QMF.
However, we can find that QM1·2(A) 6= QM2·1(A), QM1·2(B) 6= QM2·1(B)

and QM1·2(A,B) 6= QM2·1(A,B), which is the result of that the QMF doesn’t
conform to the commutative property of multiplication. Now, we change the
multiplication order of QM1 and QM2. .

Example 4.3. Supposing that there are two QMFs QM1 and QM2 in the frame
of discernment Ω = {x1, x2, x3, x4, x5}. Here, A = {x1, x2}, B = {x3, x4, x5}
and C = {x1, x2, x3, x4, x5}.

QM1 :QM1(A) = 0.2 + 0.1i

QM1(B) = 0.3 + 0.2i

QM1(A,B) = 0.5− 0.3i

QM2 :QM2(A) = 0.3 + 0.2i

QM2(B) = 0.2 + 0.2i

QM2(A,B) = 0.5− 0.4i

Now, the QMF degenerates into the complex mass function.
Relying on the Eq.(17), we can obtain the equation of combination of QM(A)

and QM(B) as follow:

QK = QM1(A)QM2(B) +QM1(B)QM2(A)

= (0.2 + 0.1i)(0.2 + 0.2i) + (0.3 + 0.2i)(0.3 + 0.2i)

= (0.04 + 0.06i− 0.02) + (0.09 + 0.12i− 0.04)

= 0.07 + 0.18i
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Then, we can obtain that:

1−QK = 1− (0.07 + 0.18i) = 0.93− 0.18i

QM(A) =
QM1(A)QM2(A) +QM1(A)QM2(A,B) +QM1(A,B)QM2(A)

1−QK

=
(0.2 + 0.1i)(0.3 + 0.2i) + (0.2 + 0.1i)(0.5− 0.4i) + (0.5− 0.3i)(0.3 + 0.2i)

1−QK

=
(0.04 + 0.07i) + (0.14− 0.03i) + (0.21 + 0.01i)

1−QK

=
0.39 + 0.05i

1−QK

=
0.39 + 0.05i

0.93− 0.18i

=
0.3537 + 0.1167i

0.8973

=
0.3537 + 0.1167i

0.8973

QM(B) =
QM1(B)QM2(B) +QM1(B)QM2(A,B) +QM1(A,B)QM2(B)

1−QK

=
(0.3 + 0.2i)(0.2 + 0.2i) + (0.3 + 0.2i)(0.5− 0.4i) + (0.5− 0.3i)(0.2 + 0.2i)

1−QK

=
(0.02 + 0.1i) + (0.23− 0.02i) + (0.16 + 0.04i)

1−QK

=
0.41 + 0.12i

1−QK

=
0.41 + 0.12i

0.93− 0.18i

=
0.3597 + 0.1854i

0.8973

QM(A,B) =
QM1(A,B)QM2(A,B)

1−QK

=
(0.5− 0.3i)(0.5− 0.4i)

1−QK

=
0.13− 0.35i

1−QK

=
0.13− 0.35i

0.93− 0.18i

=
0.1839− 0.3021i

0.8973
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Here, QM(A)+QM(B)+QM(A,B) = 1. So, the QM1·2 is a complex mass
function.

5. Conclusion

This paper proposes QMF, which is the extent of complex mass function.
The QMF consists of mass function and quaternion theory. The inputs of the
proposed model are based on quaternion numbers. When the quaternion num-
ber degenerates into the complex number, then the QMF degenerates into the
complex mass function. When the quaternion number degenerates into the real
number, then the QMF degenerates into the classical mass function. When the
quaternion number degenerates into the real number and the QMF focus on the
frame of discernment with single subsets, then the QMF degenerates into the
probability of probability theory. The QMFs can be combined by the aid of
Combination rule of QMF, which has been proposed in this paper. When the
quaternion number degenerates into the real number, the QMF will degenerate
into the classical mass function. Numerical examples are applied to verify the
validity of the QMF and Combination rule of QMF. The experimental result-
s demonstrate that the proposed models can address the conflict combination
issues of mass function with the aid of quaternion theory effectively.
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