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Abstract

Mass function vector is used to handle uncertainty. Quaternion number is the
extent of real number. The mass function vector can extend the mass function
by combining the vector. In this paper, the mass function vector is extended by
quaternion number, named as Quaternion Mass Function Vector(QMFV). The
proposed QMFV has the advantage to deal with uncertain information. When
the quaternion number degenerates into the real number, then the QMFV de-
generates into the quaternion mass function. In addition, if the probability of
multiple subsets of frame of discernment is not assigned to the single subsets,
then the mass function vector will degenerate into mass function in classical ev-
idence theory. When the quaternion number degenerates into the real number,
then the combination rule of quaternion mass function vectors degenerates into
the combination rule of mass function vectors. In the case when the probability
of multiple subsets of frame of discernment is not assigned to the single sub-
sets, the combination rule of mass function vectors degenerates into generalized
dempster’s rule of combination. Numerical examples are applied to prove the
efficiency of the proposed model. The experimental results show that the pro-
posed model can apply the quaternion theory to mass function vector effectively
and successfully.

Keywords: Quaternion, Mass function, Quaternion mass function, Quaternion
mass function vector, Vector

1. Introduction

There are many uncertainties in the real world. In order to deal with the
uncertain issues, many mathematical models and theories have been proposed,
such as quaternion [1], evidence theory [2, 3], belief entropy [4], belief func-
tion [5], quaternion beyesian updating [6], quaternion mass function [7]. Among
those models and theories, the quaternion mass function is very efficient in rep-
resenting uncertainty, which is based on the quaternion theory. The quaternion
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mass function doesn’t conform to the multiplication commutative law. Relying
on the advantages on representing uncertainty, the quaternion mass function
have been widely studied by scholars at home and abroad.

Recently, Luo and Deng proposed the mass function vector [8], which has a
meaningful model. The mass function vector can interpret the mass function as
a vector clearly with the aid of vector. However, what is the QMFV is still an
open issue.

This paper proposed the QMFV, which is an extent of mass function vector
under quaternion environment. QMFV can interpret the quaternion mass func-
tion as a vector. Based on the QMFV, this paper proposed the combination
rule of QMFVs, which can combine the QMFVs effectively. Meanwhile, the
combination rule of QMFVs doesn’t conform to the multiplicatin commutative
law.

The remain of this paper is structured as follows. Section 2 introduces the
preliminary. Section 3 presents the QMFV. Section 4 illustrates the flexibility
of QMFV. Section 5 summarizes the whole paper.

2. Preliminaries

In this section, mass function, quaternion are briefly introduced.

2.1. Quaternion

Quaternion numbers are a four dimensional hypercomplex numbers system.
The definition of quaternion numbers as follow:

Definition 2.1. (Quaternion) [1]

q = a+ bi+ cj + dk (1)

Given two quaternion numbers, q1 = a+bi+cj+dk and q2 = e+fi+gj+hk,
the definition of quaternion numbers multiplication as follow:

Definition 2.2. (Quaternion Multiplication) [1]

q1q2 =(ae− (bf + cg + dh))+

(be+ af + ch− dg)i+

(ce+ ag + df − bh)j+

(de+ ah+ bg − cf)k

(2)

2.2. Frame of Discernment

Given a frame of discernment Ω = {x1, x2, . . . , xn}, the power set of frame
of discernment is defined as follows:

Definition 2.3. (Power Set of Frame of Discernment) [2]

2Ω = {∅, {x1}, {x2}, . . . , {xn}, {x1, x2}, . . . , {x1, x2, . . . , xi}, . . . ,Ω} (3)
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2.3. Mass Function

Given a frame of discernment Ω = {x1, x2, . . . , xn}, the mass function, m,
on 2Ω is defined as follows:

Definition 2.4. (Mass Function) [2]

m : 2Ω → [0, 1] (4)

Where, m(∅) = 0 and ΣB∈2Ωm(B) = 0 with a focal element, B, of 2Ω.

2.4. Dempster’s Rule of Combination

Given two mass functions, m1 and m2, in Ω. The dempster’rule of combi-
nation, m = m1 ⊕m2, between m1 and m2 is defined as follows:

Definition 2.5. (Dempster’s Rule of Combination) [2]

m(12)(A) =

{
1

1−K
∑

E
⋂

F=Am
(1)(E)m(2)(F ) A 6= ∅

0 A = ∅
(5)

Where, K =
∑

E
⋂

F=∅m
(1)(E)m(2)(F ).

If we ignore the normalization factor, the above formula can be simplified
as [8]

m(12)(A) =
∑

E
⋂

F=A

m(1)(E)m(2)(F ) (6)

2.5. Quaternions Mass Function

In order to extend the mass function to four-dimensional space, this paper
proposes the quaternion mass function, which includes several operations.

Given a frame of discernment Ω = {x1, x2, . . . , xn}, the quaternion mass
function, QM , on Ω is defined as follows:

Definition 2.6. (Quaternion Mass Function) [7]

QM(∅) = 0 (7)

ΣB∈2ΩQM(B) = 1 (8)

QM(B) = m(B)euΘ, B ∈ 2Ω (9)

Where, u = uxi + uyj + uzk with i = j = k =
√
−1. Assume m(B) is the

magnitude of the quaternion mass function QM(B). Θ ∈ [0, 2π].
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2.6. Combination rule of Quaternions Mass Function

Given two mass functions, QM1 and QM2, in Ω. The Combination rule of
Quaternions Mass Function, QM = QM1 ⊕ QM2, between QM1 and QM2 is
defined as follows:

Definition 2.7. (Combination rule of Quaternions Mass Function) [7]

QM(D) =

{
1

1−QK

∑
E

⋂
F=D QM1(E)QM2(F ) D 6= ∅

0 D = ∅
(10)

Where, QK =
∑

E
⋂

F=∅QM(E)QM(F ). E,F ∈ 2Ω and QK is the conflict
coefficient between QM1 and QM2.

2.7. Mass function vector

Given a frame of discernment Θ = {H1, H2, . . . ,HN}, the mass function
vector M under a mass function based on Θ is defined as follows:

Definition 2.8. (mass function vector) [8]

M = (M1,M2, . . . ,MN )T (11)

Where
Mj =

∑
Ai⊆Θ

m(Ai)κ(HJ |Ai) (j = 1, 2, . . . , N) (12)

The variable parameter κ(HJ |Ai)(j = 1, 2, . . . , N ; i = 1, 2, . . . , 2N ) satisfies
the following conditions:

Remark 1. 1) κ(Hj |Ai) = 0, if Hj /∈ Ai.

2) κ(Hj |Ai) ∈ (0, 1], if Hj ∈ Ai.

3)
∑

Hj∈Ai

κ(Hj |Ai) = 1, for a fixed Ai ⊆ Θ.

2.8. Combination rule of mass function vectors

Given two mass function vectors on a given frame of discernment Θ =

{H1, H2, . . . ,HN}, M (1) = (M
(1)
1 ,M

(1)
2 , . . . ,M

(1)
N ) andM (2) = (M

(2)
1 ,M

(2)
2 , . . . ,M

(2)
N ).

The combination of M (1) and M (2), M (12) can be defined as follows:

Definition 2.9. (Combination rule of mass function vectors) [8]

M (12) = M (1) ⊗M (2) = (M
(1)
1 ·M (2)

1 ,M
(1)
2 ·M (2)

2 , . . . ,M
(1)
N ·M (2)

N ) (13)

Where

M
(1)
k ·M (2)

k =

2N∑
i=1

2N∑
j=1

m(1)(Ai)κ(Hk|Ai) ·m
(2)(Aj)κ(Hk|Aj) (14)
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2.9. The distance between mass function vectors

Given two mass function vectors on a given frame of discernment Θ =

{H1, H2, . . . ,HN}, M (1) = (M
(1)
1 ,M

(1)
2 , . . . ,M

(1)
N ) andM (2) = (M

(2)
1 ,M

(2)
2 , . . . ,M

(2)
N ).

The distance of M (1) and M (2) is defined as follows:

Definition 2.10. (The distance between mass function vectors) [8]

D2(M (1),M (2)) =

N∑
i=1

(M
(1)
i −M (2)

i )2 (15)

3. The proposed method

3.1. Quaternion mass function vector

Given a frame of discernment Θ = {H1, H2, . . . ,HN}, the QMFV, QMFV ,
under a quaternion mass function QMF based on Θ is defined as follows:

Definition 3.1. (Quaternion mass function vector)

QMFV = (QMFV1, QMFV2, . . . , QMFVN )T (16)

Where

QMFVj =
∑

Ai⊆Θ

QMF (Ai)κ(HJ |Ai) (j = 1, 2, . . . , N) (17)

N∑
j=1

QMFVj = 1 (18)

The variable parameter κ(Hj |Ai)(j = 1, 2, . . . , N ; i = 1, 2, . . . , 2N ) satisfies
the following conditions:

Remark 2. 1) κ(Hj |Ai) = 0, if Hj /∈ Ai.

2) κ(Hj |Ai) ∈ (0, 1], if Hj ∈ Ai.

3)
∑

Hj∈Ai

κ(Hj |Ai) = 1, for a fixed Ai ⊆ Θ.

Theorem 3.1. Given a frame of discernment Θ = {H1, H2, . . . ,HN}, QMFV
is a QMFV under a quaternion mass function QMF based on Θ. If the QMF
degenerates into the classical mass function m, then the QMFV will be degen-
erated as mass function vector.

Proof 3.1. Since QMF is degenerated as a classical mass function m, relying
on the Eq.(17), then we can obtain the following equation:

QMFVj =
∑

Ai⊆Θ

QMF (Ai)κ(Hj |Ai) (j = 1, 2, . . . , N)

=
∑

Ai⊆Θ

m(Ai)κ(Hj |Ai) (j = 1, 2, . . . , N)
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Then, we can see that the above formula and Eq.(12) are equivalent. Hence,
we can find that Eq.(11) and Eq.(16) are equivalent, which means that in this
way the QMFV degenerates into mass function vector.

�

3.2. Combination rule of quaternion mass function vectors

Given two QMFVs on a given frame of discernment Θ = {H1, H2, . . . ,HN},
QMFV (1) = (QMFV

(1)
1 , QMFV

(1)
2 , . . . , QMFV

(1)
N ) andQMFV (2) = (QMFV

(2)
1 , QMFV

(2)
2 , . . . , QMFV

(2)
N ).

The combination of QMFV (1) and QMFV (2), QMFV (12) can be defined as fol-
lows:

Definition 3.2. (Combination rule of quaternion mass function vectors)

QMFV (12)

= QMFV (1) ⊗QMFV (2)

= (QMFV
(1)
1 ·QMFV

(2)
1 , . . . , QMFV

(1)
N ·QMFV

(2)
N )

(19)

Where

QMFV
(1)
k ·QMFV

(2)
k

=

2N∑
i=1

2N∑
j=1

QMF (1)(Ai)κ(Hk|Ai) ·QMF (2)(Aj)κ(Hk|Aj)

=

2N∑
i=1

2N∑
j=1

QMF (1)(Ai) ·QMF (2)(Aj)[κ(Hk|Ai) · κ(Hk|Aj)]

=

2N∑
i=1

2N∑
j=1

QMF (1)(Ai) ·QMF (2)(Aj)κ(Hk|Ai∩Aj)

(20)

When the quaternion number degenerates into the real number, the combination
rule of QMFVs will degenerate into the Dempster’s rule of combination.

Theorem 3.2. Given a frame of discernment Θ = {H1, H2, . . . ,HN}, QMFV (1)

and QMFV (2) are two QMFVs under a quaternion mass function QMF based
on Θ. Then, QMFV (12) 6= QMFV (21).

Proof 3.2. According to the Eq.(17), the following equations can be obtained:
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QMFV
(1)
k ·QMFV

(2)
k =

2N∑
i=1

2N∑
j=1

QMF (1)(Ai)κ(Hk|Ai) ·QMF (2)(Aj)κ(Hk|Aj)

=

2N∑
i=1

2N∑
j=1

QMF (1)(Ai) ·QMF (2)(Aj)[κ(Hk|Ai) · κ(Hk|Aj)]

=

2N∑
i=1

2N∑
j=1

QMF (1)(Ai) ·QMF (2)(Aj)κ(Hk|Ai∩Aj)

QMFV
(2)
k ·QMFV

(1)
k =

2N∑
i=1

2N∑
j=1

QMF (2)(Ai)κ(Hk|Ai) ·QMF (1)(Aj)κ(Hk|Aj)

=

2N∑
i=1

2N∑
j=1

QMF (2)(Ai) ·QMF (1)(Aj)[κ(Hk|Ai) · κ(Hk|Aj)]

=

2N∑
i=1

2N∑
j=1

QMF (2)(Ai) ·QMF (1)(Aj)κ(Hk|Ai∩Aj)

Since the quaternion mass functions doesn’t conform to the commutative
property of multiplication, which means that QMF (1)(Ai) · QMF (2)(Aj) 6=
QMF (2)(Ai) ·QMF (1)(Aj).

Then, we can obtain the equation as follows:

2N∑
i=1

2N∑
j=1

QMF (1)(Ai) ·QMF (2)(Aj)κ(Hk|Ai∩Aj) 6=
2N∑
i=1

2N∑
j=1

QMF (2)(Ai) ·QMF (1)(Aj)κ(Hk|Ai∩Aj)

Hence, we can get that QMFV
(1)
k ·QMFV

(2)
k = QMFV

(2)
k ·QMFV

(1)
k .

3.3. The distance between quaternion mass function vectors

Given two QMFVs on a given frame of discernment Θ = {H1, H2, . . . ,HN},
QMFV (1) = (QMFV

(1)
1 , QMFV

(1)
2 , . . . , QMFV

(1)
N ) andQMFV (2) = (QMFV

(2)
1 , QMFV

(2)
2 , . . . , QMFV

(2)
N ).

The distance of QMFV (1) and QMFV (2) is defined as follows:

Definition 3.3. (The distance between quaternion mass function vectors)

D2(QMFV (1), QMFV (2)) =

N∑
i=1

|QMFV
(1)
i −QMFV

(2)
i |

2 (21)
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Theorem 3.3. Given a frame of discernment Θ = {H1, H2, . . . ,HN}, QMFV (1)

and QMFV (2) are two QMFV under a quaternion mass function QMF based
on Θ. Then, when QMFV (1) = QMFV (2), the distance between QMFVs
QMFV (1) and QMFV (2) reach the minimum value 0.

Proof 3.3. According to the Eq.(22), the following equations can be obtained:

D2(QMFV (1), QMFV (2)) =

N∑
i=1

|QMFV
(1)
i −QMFV

(2)
i |

2 (22)

Since the |QMFV
(1)
i −QMFV

(2)
i |2 ≥ 0, then

N∑
i=1

|QMFV
(1)
i −QMFV

(2)
i |2geq0.

So, the distance between QMFVs QMFV (1) and QMFV (2) reach the mini-
mum value 0.

When QMFV (1) = QMFV (2), then |QMFV
(1)
i −QMFV

(2)
i |2 = 0. Hence,

when QMFV (1) = QMFV (2), the distance between QMFVs QMFV (1) and
QMFV (2) reach the minimum value 0.

3.4. The belief function and plausibility function of quaternion mass function
vector

Given a QMFV on a given frame of discernment Θ = {H1, H2, . . . ,HN},
QMFV = (QMFV1, QMFV2, . . . , QMFVN ). The belief function and plausi-
bility function of QMFV is defined as follows:

Definition 3.4. (The belief function and plausibility function of quaternion
mass function vector)

Bel(Hi) = min{QMFVi} (i = 1, 2, . . . , N) (23)

Where min{QMFVi} means that |QMFVi| get the minimum value.

Pl(Hi) = max{QMFVi} (i = 1, 2, . . . , N) (24)

Where max{QMFVi} means that |QMFVi| get the maximum value.

3.5. Discussion

Mass function has high effective in dealing with uncertainties. Luo and
Deng [8] proposed the mass function vector and combination rule of mass func-
tion vectors, which has promising aspects. This paper proposed the QMFV,
which is an extent of mass function vector with the aid of quaternion number.
When the quaternion number degenerates into the real number, then the QMFV
degenerates into the quaternion mass function. In addition, if the probability
of multiple subsets of frame of discernment is not assigned to the single subsets,
then the mass function vector will degenerate into mass function in classical ev-
idence theory. When the quaternion number degenerates into the real number,
then the combination rule of quaternion mass function vectors degenerates into
the combination rule of mass function vectors. In the case when the probability
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of multiple subsets of frame of discernment is not assigned to the single sub-
sets, the combination rule of mass function vectors degenerates into generalized
dempster’s rule of combination.

4. Numerical examples

Example 4.1. Supposing that there are two quaternion mass functions QM
in the frame of discernment Ω = {x1, x2, x3, x4, x5}. Here, A1 = {x1, x2},
A2 = {x3, x4, x5}.

QM :QM(A1) = 0.2 + 0.1i+ 0.1j + 0.2k

QM(A2) = 0.3 + 0.2i+ 0.2j + 0.3k

QM(A1, A2) = 0.5− 0.3i− 0.3j − 0.5k

Assume the variable parameter satisfies that κ(A2|A1,A2) = κ(A2|A1,A2) = 1/2.
Relying on the Eq.(17), the QMFV under the QM can be obtained as follows:

QMFV1 = QM(A1) +QM(A1, A2)κ(A1|A1,A2)

= 0.2 + 0.1i+ 0.1j + 0.2k + (0.5− 0.3i− 0.3j − 0.5k)κ(A1|A1,A2)

= 0.45− 0.05i− 0.05j − 0.05k

QMFV2 = QM(A2) +QM(A1, A2)κ(A2|A1,A2)

= 0.3 + 0.2i+ 0.2j + 0.3k + (0.5− 0.3i− 0.3j − 0.5k)κ(A2|A1,A2)

= 0.8 + 0.05i+ 0.05j + 0.05k

Since QMFV1 +QMFV2 = 1, then the QMFV is a QMFV.

Example 4.2. Assume there are two QMFVs as follows:

QMFV (1) = (0.1 + 0.2i+ 0.3j + 0.3k, 0.9− 0.2i− 0.3j − 0.3k)

QMFV (2) = (0.6 + 0.1i+ 0.2j + 0.1k, 0.4− 0.1i− 0.2j − 0.1k)

Relying on the Eq.(22), the distance between these QMFVs can be calculated
as follows:

D2(QMFV (1), QMFV (2)) = |QMFV
(1)
1 −QMFV

(2)
1 |2 + |QMFV

(1)
2 −QMFV

(2)
2 |2

= (0.1− 0.6)2 + (0.2− 0.1)2 + (0.3− 0.2)2 + (0.3− 0.1)2

+ (0.9− 0.4)2 + (−0.2− (−0.1))2 + (−0.3− (−0.2))2 + (−0.3− (−0.1))2

= 0.62
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Example 4.3. Supposing that there are two quaternion mass functions QMF (1)

and QMF (2) in the frame of discernment Θ = {H1, H2}. The quaternion mass
functions are known as follows:

QMF (1)(H1) = 0.1 + 0.4j + 0.2k

QMF (1)(H2) = 0.3 + 0.3i+ 0.2j + 0.1k

QMF (1)(H1, H2) = 0.6− 0.3i− 0.6j − 0.3k

QMF (2)(H1) = 0.7 + 0.6i+ 0.6j + 0.6k

QMF (2)(H1, H2) = 0.3− 0.6i− 0.6j − 0.6k

Assume the variable parameter satisfies that κ(H1|H1,H2) = 2/3 and κ(H2|H1,H2) =
1/3.

Relying on the Eq.(17), the QMFVs under the these quaternion mass func-
tions can be obtained as follows:

QMFV
(1)
1 = QMF (1)(H1) +QMF (1)(H1, H2)κ(H1|H1,H2)

= 0.1 + 0.4j + 0.2k + (0.6− 0.3i− 0.6j − 0.3k)(2/3)

= 0.5− 0.2i

QMFV
(1)
2 = QMF (1)(H2) +QMF (1)(H1, H2)κ(H2|H1,H2)

= 0.3 + 0.3i+ 0.2j + 0.1k + (0.6− 0.3i− 0.6j − 0.3k)(1/3)

= 0.5 + 0.2i

QMFV
(2)
1 = QMF (2)(H1) +QMF (2)(H1, H2)κ(H1|H1,H2)

= 0.7 + 0.6i+ 0.6j + 0.6k + (0.3− 0.6i− 0.6j − 0.6k)(2/3)

= 0.9 + 0.2i+ 0.2j + 0.2k

QMFV
(2)
2 = QMF (2)(H2) +QMF (2)(H1, H2)κ(H2|H1,H2)

= 0 + (0.3− 0.6i− 0.6j − 0.6k)(1/3)

= 0.1− 0.2i− 0.2j − 0.2k

Then, we can obtain the vector form of QMDV (1) and QMDV (2) as follows:

QMFV (1) = (0.5− 0.2i, 0.5 + 0.2i)

QMFV (2) = (0.9 + 0.2i+ 0.2j + 0.2k, 0.1− 0.2i− 0.2j − 0.2k)

10



Relying on the Eq.(19), the combination of QMFV (1) and QMFV (2), QMFV (12)

as follows:

QMFV
(1)
1 ·QMFV

(2)
1 =

2N∑
i=1

2N∑
j=1

QMF (1)(Ai) ·QMF (2)(Aj)κ(H1|Ai∩Aj)

= QMF (1)(H1) ·QMF (2)(H1)κ(H1|H1∩H1)

+QMF (1)(H1) ·QMF (2)(H2)κ(H1|H1∩H2)

+QMF (1)(H1) ·QMF (2)(H1, H2)κ(H1|H1∩{H1,H2})

+QMF (1)(H2) ·QMF (2)(H1)κ(H1|H2∩H1)

+QMF (1)(H2) ·QMF (2)(H2)κ(H1|H2∩H2)

+QMF (1)(H2) ·QMF (2)(H1, H2)κ(H1|H2∩{H1,H2})

+QMF (1)(H1, H2) ·QMF (2)(H1)κ(H1|{H1,H2}∩H1)

+QMF (1)(H1, H2) ·QMF (2)(H2)κ(H1|{H1,H2}∩H2)

+QMF (1)(H1, H2) ·QMF (2)(H1, H2)κ(H1|{H1,H2}∩{H1,H2})

= QMF (1)(H1) ·QMF (2)(H1)

+QMF (1)(H1) ·QMF (2)(H1, H2)

+QMF (1)(H1, H2) ·QMF (2)(H1)

+QMF (1)(H1, H2) ·QMF (2)(H1, H2)κ(H1|{H1,H2})

= (0.1 + 0.4j + 0.2k) · (0.7 + 0.6i+ 0.6j + 0.6k)

+ (0.1 + 0.4j + 0.2k) · (0.3− 0.6i− 0.6j − 0.6k)

+ (0.6− 0.3i− 0.6j − 0.3k) · (0.7 + 0.6i+ 0.6j + 0.6k)

+ (0.6− 0.3i− 0.6j − 0.3k) · (0.3− 0.6i− 0.6j − 0.6k)(2/3)

= (0.1 + 0.4j + 0.2k) · (0.7 + 0.6i+ 0.6j + 0.6k)

+ (0.1 + 0.4j + 0.2k) · (0.3− 0.6i− 0.6j − 0.6k)

+ (0.6− 0.3i− 0.6j − 0.3k) · (0.7 + 0.6i+ 0.6j + 0.6k)

+ (0.6− 0.3i− 0.6j − 0.3k) · (0.3− 0.6i− 0.6j − 0.6k)(2/3)

= (−0.29 + 0.18i+ 0.46j − 0.04k)

+ (0.39− 0.18i− 0.06j + 0.24k)

+ (1.14− 0.03i− 0.06j + 0.33k)

+ (−0.36− 0.18i− 0.36j − 0.42k)

= 0.88− 0.21i− 0.02j + 0.11k
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QMFV
(1)
2 ·QMFV

(2)
2 =

2N∑
i=1

2N∑
j=1

QMF (1)(Ai) ·QMF (2)(Aj)κ(H2|Ai∩Aj)

= QMF (1)(H1) ·QMF (2)(H1)κ(H2|H1∩H1)

+QMF (1)(H1) ·QMF (2)(H2)κ(H2|H1∩H2)

+QMF (1)(H1) ·QMF (2)(H1, H2)κ(H2|H1∩{H1,H2})

+QMF (1)(H2) ·QMF (2)(H1)κ(H2|H2∩H1)

+QMF (1)(H2) ·QMF (2)(H2)κ(H2|H2∩H2)

+QMF (1)(H2) ·QMF (2)(H1, H2)κ(H2|H2∩{H1,H2})

+QMF (1)(H1, H2) ·QMF (2)(H1)κ(H2|{H1,H2}∩H1)

+QMF (1)(H1, H2) ·QMF (2)(H2)κ(H2|{H1,H2}∩H2)

+QMF (1)(H1, H2) ·QMF (2)(H1, H2)κ(H2|{H1,H2}∩{H1,H2})

= QMF (1)(H2) ·QMF (2)(H2)κ(H2|H2)

+QMF (1)(H2) ·QMF (2)(H1, H2)κ(H2|H2)

+QMF (1)(H1, H2) ·QMF (2)(H2)κ(H2|H2)

+QMF (1)(H1, H2) ·QMF (2)(H1, H2)κ(H2|{H1,H2})

= (0.3 + 0.3i+ 0.2j + 0.1k)) · (0)

+ (0.3 + 0.3i+ 0.2j + 0.1k) · (0.3− 0.6i− 0.6j − 0.6k)

+ (0.6− 0.3i− 0.6j − 0.3k) · (0)

+ (0.6− 0.3i− 0.6j − 0.3k) · (0.3− 0.6i− 0.6j − 0.6k)(1/3)

= (0.45− 0.15i+ 0j − 0.21k)

+ (−0.18− 0.09i− 0.18j − 0.21k)

= 0.27− 0.24i− 0.18j − 0.42k

Then, the combination of QMFV (1) and QMFV (2) is as follows:

QMFV (12) = (0.648 + 0.11i+ 0.02312j + 0.2602k, 0.352− 0.11i− 0.02312j − 0.2602k)

Since the QMFVs doesn’t conform to the commutative property of multipli-
cation, then QMFV (12) 6= QMFV (21).

Relying on the Eq.(19), the combination of QMFV (1) and QMFV (2), QMFV (21)

as follows:
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QMFV
(2)
1 ·QMFV

(1)
1 =

2N∑
j=1

2N∑
i=1

QMF (2)(Ai) ·QMF (1)(Aj)κ(H1|Ai∩Aj)

= QMF (2)(H1) ·QMF (1)(H1)κ(H1|H1∩H1)

+QMF (2)(H1) ·QMF (1)(H2)κ(H1|H1∩H2)

+QMF (2)(H1) ·QMF (1)(H1, H2)κ(H1|H1∩{H1,H2})

+QMF (2)(H2) ·QMF (1)(H1)κ(H1|H2∩H1)

+QMF (2)(H2) ·QMF (1)(H2)κ(H1|H2∩H2)

+QMF (2)(H2) ·QMF (1)(H1, H2)κ(H1|H2∩{H1,H2})

+QMF (2)(H1, H2) ·QMF (1)(H1)κ(H1|{H1,H2}∩H1)

+QMF (2)(H1, H2) ·QMF (1)(H2)κ(H1|{H1,H2}∩H2)

+QMF (2)(H1, H2) ·QMF (1)(H1, H2)κ(H1|{H1,H2}∩{H1,H2})

= QMF (2)(H1) ·QMF (1)(H1)

+QMF (2)(H1) ·QMF (1)(H1, H2)

+QMF (2)(H1, H2) ·QMF (1)(H1)

+QMF (2)(H1, H2) ·QMF (1)(H1, H2)κ(H1|{H1,H2})

= (0.7 + 0.6i+ 0.6j + 0.6k) · (0.1 + 0.4j + 0.2k)

+ (0.7 + 0.6i+ 0.6j + 0.6k) · (0.6− 0.3i− 0.6j − 0.3k)

+ (0.3− 0.6i− 0.6j − 0.6k) · (0.1 + 0.4j + 0.2k)

+ (0.3− 0.6i− 0.6j − 0.6k) · (0.6− 0.3i− 0.6j − 0.3k)(2/3)

= (−0.29− 0.06i+ 0.22j + 0.44k)

+ (1.14 + 0.33i− 0.06j − 0.03k)

+ (0.39 + 0.06i+ 0.18j − 0.24k)

+ (−0.36− 0.42i− 0.36j − 0.18k)

= 0.88− 0.09i− 0.02j − 0.01k

13



QMFV
(2)
2 ·QMFV

(1)
2 =

2N∑
j=1

2N∑
i=1

QMF (2)(Ai) ·QMF (1)(Aj)κ(H2|Ai∩Aj)

= QMF (2)(H1) ·QMF (1)(H1)κ(H2|H1∩H1)

+QMF (2)(H1) ·QMF (1)(H2)κ(H2|H1∩H2)

+QMF (2)(H1) ·QMF (1)(H1, H2)κ(H2|H1∩{H1,H2})

+QMF (2)(H2) ·QMF (1)(H1)κ(H2|H2∩H1)

+QMF (2)(H2) ·QMF (1)(H2)κ(H2|H2∩H2)

+QMF (2)(H2) ·QMF (1)(H1, H2)κ(H2|H2∩{H1,H2})

+QMF (2)(H1, H2) ·QMF (1)(H1)κ(H2|{H1,H2}∩H1)

+QMF (2)(H1, H2) ·QMF (1)(H2)κ(H2|{H1,H2}∩H2)

+QMF (2)(H1, H2) ·QMF (1)(H1, H2)κ(H2|{H1,H2}∩{H1,H2})

= QMF (2)(H2) ·QMF (1)(H2)

+QMF (2)(H2) ·QMF (1)(H1, H2)

+QMF (2)(H1, H2) ·QMF (1)(H2)

+QMF (2)(H1, H2) ·QMF (1)(H1, H2)κ(H2|{H1,H2})

= (0) · (0.3 + 0.3i+ 0.2j + 0.1k)

+ (0) · (0.6− 0.3i− 0.6j − 0.3k)

+ (0.3− 0.6i− 0.6j − 0.6k) · (0.3 + 0.3i+ 0.2j + 0.1k)

+ (0.3− 0.6i− 0.6j − 0.6k) · (0.6− 0.3i− 0.6j − 0.3k)(1/3)

= (0.45− 0.03i− 0.24j − 0.09k)

+ (−0.18− 0.21i− 0.18j − 0.09k)

= 0.22− 0.24i− 0.42j − 0.18k

Then, the QMFV of combination of QMFV (1) and QMFV (2) is as follows:

QMFV (21) = (0.6512 + 0.1232i+ 0.2269j + 0.1222k, 0.3488− 0.1232i− 0.2269j − 0.1222k)

We can obtain that QMFV
(12)
1 6= QMFV

(21)
1 and QMFV

(12)
2 6= QMFV

(21)
2 .

5. Conclusion

This paper proposes QMFV, which is the extent of mass function vector.
The QMFV consists of mass function vector and quaternion theory. The inputs
of the proposed model are based on quaternion numbers. Mass function vector
is used to handle uncertainty. Quaternion number is the extent of real num-
ber. The mass function vector can extend the mass function by combining the
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vector. The proposed QMFV has the advantage to deal with uncertain infor-
mation. When the quaternion number degenerates into the real number, then
the QMFV degenerates into the quaternion mass function. In addition, if the
probability of multiple subsets of frame of discernment is not assigned to the
single subsets, then the mass function vector will degenerate into mass function
in classical evidence theory. When the quaternion number degenerates into the
real number, then the combination rule of quaternion mass function vectors de-
generates into the combination rule of mass function vectors. In the case when
the probability of multiple subsets of frame of discernment is not assigned to the
single subsets, the combination rule of mass function vectors degenerates into
generalized dempster’s rule of combination. Numerical examples are applied to
prove the efficiency of the proposed model. The experimental results show that
the proposed model can apply the quaternion theory to mass function vector
effectively and successfully.
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