Prime and Twin Prime Theory

Xuan Zhong Ni, Campbell, CA, USA

(June, 2020)

Abstract

In this article, we use method of a modified sieve of Eratosthenes to prove the prime and the twin prime theory.

We use p_i for all the primes, 2,3,5,7,11,13,...., i=1,2,3,....,

If a prime pair (p_m, p_{m+1}) is a twin prime, then it can be written as (6k-1, 6k+1) for some k.

Let $p_m \not\equiv \prod_{i=1...m} p_i$,

Theorem 1, When seive up to p_m , the total number of the remaining numbers $\{R_j^m\}$, inside of $(0, p_m \sharp)$ is $\prod_{i=1...m} (p_i - 1)$,

We can generate the remaining numbers for period $(0, p_{m+1}\sharp)$ when seive upto p_{m+1} by sequence of the remaining numbers $\{R_j^m\}$, inside of $(0, p_m \sharp)$ as following;

 $\{ R_j^m \}, \{ p_m \sharp + R_j^m \}, \{ 2x p_m \sharp + R_j^m \}, \dots, \{ (p_{m+1}-1)x p_m \sharp + R_j^m \}, \}$

and then taking out the terms of { $p_{m+1} \times R_j^m$ },

Obviously the total number of the remaining numbers when seive up o p_{m+1} in the period of $(1, p_{m+1}\sharp)$ is,

$$\prod_{i=1...m} (p_i - 1) \ge p_{m+1} - \prod_{i=1...m} (p_i - 1) = \prod_{i=1...m+1} (p_i - 1),$$

For m=2, the remaining numbers in (0, 6), are 1 and 5 when seive upto 3, the period of (0,6) is the building blocks for the period (0, 30), and the remaining numbers 1 and 5 are the basic numbers to generate all the remaining numbers in period (0, 30) when seive upto prime number 5. It can be seen from the following, blocked sequence;

(0,1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30),

the new generated remaining numbers are;

(,1,..,5,)(7,..,11,.)(13,..,17,)(19,..,23,)(25,..,29,),

there remaining twin pairs of

(5,7), (11,13), (17,19), (23,25), (29,1),

if we treat (29,1) as one twin.

after taking out the two remaining numbers 1 and 5 time 5, it left the following remaining sequence;

(,1,,,,...)(7,,,,11,,)(13,,,,17,)(19,,,,23,)(...,,,29,),

and the remaining twin pairs are,

(11,13),(17,19),(29,1);

It is clear that all the remining number twins are generated by basic numbers, 1 and 5 too, And all the primes and twin primes are also from the two basic numbers, 1 and 5.

Similarly we have the following for the remaining twins,

Theorem 2;

When seive up to p_m , the total number of the remaining number twins inside of $(0, p_m \sharp)$ is $\prod_{i=2...m} (p_i - 2)$,

In general not all the remaining twins are twin primes. We need to seive more larger primes to get twin primes.

Let p_M be the least prime satisfied the $p_m \sharp < p_M^2$, then we serve upto p_M for the period $(0, p_m \sharp)$, then all those still remaining numbers are primes and remaining twins are twin primes.

Theorem 3;

When seive up to p_{m+1} , the total number of the remaining numbers inside period ((k-1)x p_m \sharp , k x p_m \sharp) is equal approximately to $\prod_{i=1...m+1}(p_i-1)$ / $p_{m+1} \pm 1$,

particulary for the period of $(0, p_m \sharp)$,

This is equivalent to the following theorem,

Theorem 4;

For any number d with $(d, p_m \sharp) = 1$, no common factor with $p_m \sharp$, when seive upto p_m , the total number of the remaining numbers inside period (0, $p_m \sharp/d$) is equal approximately to $\prod_{i=1...m} (p_i - 1) / d \pm 1$,

When seive up to p_M , the total number of the remaining numbers inside period $(0, p_m \sharp)$ are those remaining numbers when seive up to p_{M-1} in the same period $(0, p_m \sharp)$ subtract those remaining numbers when seive up to p_{M-1} in the period $(0, p_m \sharp/p_M)$ multiplied by p_M .

We use $\{(a, b)\}^M$ to denote those remaining numbers in period (a, b) when seive up to p_M . We have,

$$\{(0, p_m \sharp)\}^M = \{(0, p_m \sharp)\}^{M-1} - \{\{(0, p_m \sharp/p_M)\}^{M-1} \times p_M\},$$
(1)

and so on, we have,

$$\{(0, p_m \sharp)\}^{M-1} = \{(0, p_m \sharp)\}^{M-2} - \{\{(0, p_m \sharp/p_{M-1})\}^{M-2} \times p_{M-1}\},$$
(2)

and

$$\{(0, p_m \sharp/p_M)\}^{M-1} = \{(0, p_m \sharp/p_M)\}^{M-2} - \{\{(0, p_m \sharp/p_M p_{M-1})\}^{M-2} \times p_{M-1}\},\$$
(3)

and so on and on, we will have,

$$\{(0, p_m \sharp)\}^M = \sum_{d|P} \mu(d) \{\{(0, p_m \sharp/d)\}^m \times d\},\tag{4}$$

here P = $\prod_{i=m+1...M} p_i$.

There are no remaining number in period $(0, p_m \sharp/d)$ when $p_m \sharp/d < 1$, and only one remaining number, 1, when $1 < p_m \sharp/d < p_m$,

We have,

$$|\{(0, p_m \sharp)\}^M| = \sum_{d|P} \mu(d) |\{(0, p_m \sharp)\}^m| / d \pm ER_m$$
(5)

we have,

$$|\{(0, p_m \sharp)\}^M| = [\prod_{i=1\dots m} (p_i - 1)] \times [\prod_{i=m+1,\dots M} (1 - 1/p_i)] \pm ER_m$$
(6)

here, the ER_m is the possible error,

$$ER_m = |\{d; d \mid P, p_m < d < p_{m-1} \sharp\}|,$$

$$ER_m = |\{(0, p_{m-1}\sharp)\}^m| - |\{(0, p_{m-1}\sharp)\}^M|$$
(7)

$$ER_m = \prod_{i=1\dots m} (p_i - 1)/p_m - [\prod_{i=1\dots m-1} (p_i - 1)] \times [\prod_{i=m,\dots M} (1 - 1/p_i)] + ER_{m-1}$$
(8)

We have,

$$ER_m = \sum_{l=1,m} \left[\prod_{i=1...l} (p_i - 1)/p_l\right] \times \left[1 - \prod_{i=l+1,..M} (1 - 1/p_i)\right],\tag{9}$$

Then we have,

Theorem 5;

when seive up to p_M for the $(0, p_m \sharp)$, the total number of the remaining primes inside $(0, p_m \sharp)$ is equal approximately to $\prod_{i=1...m} (p_i - 1) \prod_{j=m+1...M} (1 - 1/p_j) \pm ER_m$,

here ER_m as above.

Similarly for the twin primes we have,

Theorem 6;

when seive up to p_M for the $(0, p_m \sharp)$, the total number of the remaining twin primes inside $(0, p_m \sharp)$ is equal approximately to $\prod_{i=2...m} (p_i - 2) \prod_{j=m+1...M} (1 - 2/p_j) \pm ER_m$,

and here ER_m is the same as above.

This also proves the twin prime conjecture.