Prime and Twin Prime Theory Xuan Zhong Ni, Campbell, CA, USA

(June, 2020)

Abstract

In this article, we use method of a modified sieve of Eratosthenes to prove the prime and the twin prime theory.

We use p_{i} for all the primes, $2,3,5,7,11,13, \ldots ., \mathrm{i}=1,2,3, \ldots$. ,
If a prime pair $\left(p_{m}, p_{m+1}\right)$ is a twin prime, then it can be written as ($6 \mathrm{k}-1,6 \mathrm{k}+1$) for some k .

Let $p_{m} \sharp=\prod_{i=1 \ldots m} p_{i}$,

Theorem 1, When seive upto p_{m}, the total number of the remaining numbers $\left\{R_{j}^{m}\right\}$, inside of $\left(0, p_{m} \sharp\right)$ is $\prod_{i=1 \ldots m}\left(p_{i}-1\right)$,

We can generate the remaining numbers for period ($0, p_{m+1} \sharp$) when seive upto p_{m+1} by sequence of the remaining numbers $\left\{R_{j}^{m}\right\}$, inside of ($0, p_{m} \sharp$) as following;
$\left\{R_{j}^{m}\right\},\left\{p_{m} \sharp+R_{j}^{m}\right\},\left\{2 \mathrm{x} p_{m} \sharp+R_{j}^{m}\right\}, \ldots,\left\{\left(p_{m+1}-1\right) \times p_{m} \sharp+R_{j}^{m}\right\}$,
and then taking out the terms of $\left\{p_{m+1} \times R_{j}^{m}\right\}$,
Obviously the total number of the remaining numbers when seive upto p_{m+1} in the period of $\left(1, p_{m+1} \sharp\right)$ is,

$$
\prod_{i=1 \ldots m}\left(p_{i}-1\right) \times p_{m+1}-\prod_{i=1 \ldots m}\left(p_{i}-1\right)=\prod_{i=1 \ldots m+1}\left(p_{i}-1\right)
$$

For $\mathrm{m}=2$, the remaining numbers in $(0,6)$, are 1 and 5 when seive upto 3 , the period of $(0,6)$ is the building blocks for the period $(0,30)$, and the remainging numbers 1 and 5 are the basic numbers to generate all the remainging numbers in period $(0,30)$ when seive upto prime number 5 . It can be seen from the following, blocked sequence;
$(0,1,2,3,4,5,6)(7,8,9,10,11,12),(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)$,
the new generated remainining numbers are;
$(, 1,,,, 5),(7,,,, 11,),(13,,,, 17),(19,,,, 23),(25,,,, 29),$,
there remaining twin pairs of
$(5,7),(11,13),(17,19),(23,25),(29,1)$,
if we treat $(29,1)$ as one twin.
after taking out the two remaining numbers 1 and 5 time 5 , it left the following remaining sequence;
$(, 1,,, \ldots),(7,,, 11,),(13,,,, 17),(19,,, 23),(\ldots,,, 29),$,
and the remaining twin pairs are,
$(11,13),(17,19),(29,1)$;

It is clear that all the remining number twins are generated by basic numbers, 1 and 5 too, And all the primes and twin primes are also from the two basic numbers, 1 and 5 .

Similarly we have the following for the remaining twins,

Theorem 2;

When seive upto p_{m}, the total number of the remaining number twins inside of $\left(0, p_{m} \sharp\right)$ is $\prod_{i=2 \ldots m}\left(p_{i}-2\right)$,

In general not all the remaining twins are twin primes. We need to seive more larger primes to get twin primes.

Let p_{M} be the least prime satisfied the $p_{m} \sharp<p_{M}^{2}$, then we seive upto p_{M} for the period $\left(0, p_{m} \sharp\right)$, then all those still remaining numbers are primes and remaining twins are twin primes.

Theorem 3;

When seive upto p_{m+1}, the total number of the remaining numbers inside period $\left((\mathrm{k}-1) \mathrm{x} p_{m} \sharp, \mathrm{k} \times p_{m} \sharp\right)$ is equal approximately to $\prod_{i=1 \ldots m+1}\left(p_{i}-1\right)$ / $p_{m+1} \pm 1$,
particulary for the period of $\left(0, p_{m} \sharp\right)$,
This is equivalent to the following theorem,
Theorem 4;
For any number d with $\left(\mathrm{d}, p_{m} \sharp\right)=1$, no common factor with $p_{m} \sharp$, when seive upto p_{m}, the total number of the remaining numbers inside period (0 , $\left.p_{m} \sharp / d\right)$ is equal approximately to $\prod_{i=1 \ldots m}\left(p_{i}-1\right) / \mathrm{d} \pm 1$,

When seive upto p_{M}, the total number of the remaining numbers inside period $\left(0, p_{m} \sharp\right)$ are those remaining numbers when seive upto p_{M-1} in the same period $\left(0, p_{m} \sharp\right)$ subtract those remaining numbers when seive upto p_{M-1} in the period $\left(0, p_{m} \sharp / p_{M}\right)$ multiplied by p_{M}.

We use $\{(a, b)\}^{M}$ to denote those remaining numbers in period (a, b) when seive upto p_{M}. We have,

$$
\begin{equation*}
\left\{\left(0, p_{m} \sharp\right)\right\}^{M}=\left\{\left(0, p_{m} \sharp\right)\right\}^{M-1}-\left\{\left\{\left(0, p_{m} \sharp / p_{M}\right)\right\}^{M-1} \times p_{M}\right\}, \tag{1}
\end{equation*}
$$

and so on, we have,

$$
\begin{equation*}
\left\{\left(0, p_{m} \sharp\right)\right\}^{M-1}=\left\{\left(0, p_{m} \sharp\right)\right\}^{M-2}-\left\{\left\{\left(0, p_{m} \sharp / p_{M-1}\right)\right\}^{M-2} \times p_{M-1}\right\}, \tag{2}
\end{equation*}
$$

and
$\left\{\left(0, p_{m} \sharp / p_{M}\right)\right\}^{M-1}=\left\{\left(0, p_{m} \sharp / p_{M}\right)\right\}^{M-2}-\left\{\left\{\left(0, p_{m} \sharp / p_{M} p_{M-1}\right)\right\}^{M-2} \times p_{M-1}\right\}$,
and so on and on, we will have,

$$
\begin{equation*}
\left\{\left(0, p_{m} \sharp\right)\right\}^{M}=\sum_{d \mid P} \mu(d)\left\{\left\{\left(0, p_{m} \sharp / d\right)\right\}^{m} \times d\right\}, \tag{4}
\end{equation*}
$$

here $\mathrm{P}=\prod_{i=m+1 \ldots M} p_{i}$.
There are no remaining number in period $\left(0, p_{m} \sharp / d\right)$ when $p_{m} \sharp / d<1$, and only one remaining number, 1 , when $1<p_{m} \sharp / d<p_{m}$,

We have,

$$
\begin{equation*}
\left|\left\{\left(0, p_{m} \sharp\right)\right\}^{M}\right|=\sum_{d \mid P} \mu(d)\left|\left\{\left(0, p_{m} \sharp\right)\right\}^{m}\right| / d \pm E R_{m} \tag{5}
\end{equation*}
$$

we have,

$$
\begin{equation*}
\left|\left\{\left(0, p_{m} \sharp\right)\right\}^{M}\right|=\left[\prod_{i=1 \ldots m}\left(p_{i}-1\right)\right] \times\left[\prod_{i=m+1, \ldots M}\left(1-1 / p_{i}\right)\right] \pm E R_{m} \tag{6}
\end{equation*}
$$

here, the $E R_{m}$ is the possible error,

$$
E R_{m}=\left|\left\{d ; d \mid P, p_{m}<d<p_{m-1} \sharp\right\}\right|,
$$

$$
\begin{gather*}
E R_{m}=\left|\left\{\left(0, p_{m-1} \sharp\right)\right\}^{m}\right|-\left|\left\{\left(0, p_{m-1} \nVdash\right)\right\}^{M}\right| \tag{7}\\
E R_{m}=\prod_{i=1 \ldots m}\left(p_{i}-1\right) / p_{m}-\left[\prod_{i=1 \ldots m-1}\left(p_{i}-1\right)\right] \times\left[\prod_{i=m, \ldots M}\left(1-1 / p_{i}\right)\right]+E R_{m-1} \tag{8}
\end{gather*}
$$

We have,

$$
\begin{equation*}
E R_{m}=\sum_{l=1, m}\left[\prod_{i=1 \ldots l}\left(p_{i}-1\right) / p_{l}\right] \times\left[1-\prod_{i=l+1, . . M}\left(1-1 / p_{i}\right)\right] \tag{9}
\end{equation*}
$$

Then we have,

Theorem 5;
when seive upto p_{M} for the $\left(0, p_{m} \sharp\right)$, the total number of the remaining primes inside $\left(0, p_{m} \sharp\right)$ is equal approximately to $\prod_{i=1 \ldots m}\left(p_{i}-1\right) \prod_{j=m+1 \ldots M}(1-$ $\left.1 / p_{j}\right) \pm E R_{m}$,
here $E R_{m}$ as above.

Similarly for the twin primes we have,

Theorem 6;
when seive upto p_{M} for the $\left(0, p_{m} \sharp\right)$, the total number of the remaining twin primes inside $\left(0, p_{m} \sharp\right)$ is equal approximately to $\prod_{i=2 \ldots m}\left(p_{i}-\right.$ 2) $\prod_{j=m+1 \ldots M}\left(1-2 / p_{j}\right) \pm E R_{m}$,
and here $E R_{m}$ is the same as above.

This also proves the twin prime conjecture.

