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Abstract

We continue our study of the Hagen-Hurley equations describing spin
1 bosons. Recently, we have demonstrated that it is possible to describe
the decay of a Hagen-Hurley boson into a lepton and a neutrino. However,
it was necessary to assume that the spin of the boson is in the 0⊕1 space.
We have suggested that this Hagen-Hurley boson can be identified with
the W boson mediating weak interactions. The mixed beta decays have
been explained by a mechanism of spin 1 and spin 0 mixing of the virtual
W boson. In this work, we study the top quark decay involving the real
W boson. We substantiate the view that the real W boson is a mixture
of spin 1 and spin 0 states.
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1 Introduction

The intermediate vector bosons, W± as well as Z0, are extremely short-lived
particles with a half-life of about 3 × 10−25 s, see [1] for decay widths. This
property is justifiable in all these cases when W bosons are virtual particles.
On the other hand, it is quite surprising that the real W , as it appears in
the top quark decay, is such an ephemeral particle. Decays of the W bosons,
especially in the case of mixed beta decay, also lead to some interpretational
difficulties [2, 3]. Moreover, the possibility of composite W and Z bosons has
been suggested, see [4, 5], and references therein.

Recently, we have addressed some of these problems describing decays of the
virtual W boson within the Hagen-Hurley formalism [6–10]. More precisely, we
have assumed that the spin of the virtual W is partly undefined – belonging to
the 0 ⊕ 1 space [2,3]. However, in the top quark decay, the W boson is real. In
the present work, we investigate further the possibility, put forward in [3], that
the real W boson can be a mixture of spin 1 and spin 0 states. Accordingly,
compositeness of the W boson is suggested and the problem of experimental
verification is addressed in the last Section.
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2 The Hagen-Hurley equations

In what follows, tensor indices are denoted with Greek letters, µ = 0, 1, 2, 3.
The metric tensor is assumed as gµν = diag(1,−1,−1,−1), and we always sum
over repeated indices. Four-momentum operators are defined in natural units
(c = 1, ℏ = 1) as Pµ = i ∂

∂xµ
while non-operator four-vectors are denoted as pµ,

xµ, etc. For elements of the spinor calculus, see [11–14].
The spin 1 Hagen-Hurley equations can be written in spinor formalism as

[13,15,16]:

P Ḃ
A ζCḂ = mηAC , ηAC = ηCA

PC
Ḃ
ηAC = −mζAḂ

}
, (1)

PA
Ḃ
ζAḊ = mχḂḊ, χḂḊ = χḊḂ

P Ḋ
A χḂḊ = −mζAḂ

}
, (2)

where spin 1 conditions follow from the symmetry of the spinors: ηAC = ηCA and
χḂḊ = χḊḂ . Solutions of, for example, Eqs. (2) are of form ζAḂ = ζ̂AḂe

−ip·x,

χḂḊ = χ̂ḂḊe−ip·x, where ζ̂AḂ , χ̂ḂḊ are constant spinors and

pµpµ = m2. (3)

Equations (1), (2) can also be written in tensor formalism with 7 × 7 matrices
βµ [9, 10]:

βµP
µΨ = mΨ. (4)

Eq. (4) describes a particle with definite mass if βµ matrices obey the commu-
tation relations [9, 10, 17–19]:∑

λ,µ,ν
βλβµβν =

∑
λ,µ,ν

gλµβν , (5)

and the sum is over all permutations of λ, µ, ν.
It was noticed in Ref. [21] that βµ matrices can be realized in the form:

βµ =
1

2
(γµ ⊗ I4×4 + I4×4 ⊗ γµ) . (6)

It turns out that such βµ obey simpler but more restrictive commutation rela-
tions [20,21]:

βλβµβν + βνβµβλ = gλµβν + gνµβλ, (7)

for which Eq. (4) yields the Duffin-Kemmer-Petiau (DKP) theory of spin 0 and
1 mesons, see [20–22]. This reducible 16-dimensional representation (6) of βµ

matrices (denoted as 16) can be decomposed as 16 = 10 ⊕ 5 ⊕ 1. Explicit
formulas for the corresponding 10× 10 (spin 1 case) and 5× 5 (spin 0) matrices
are given in [9, 10, 21], while the one-dimensional representation 1 is trivial,
i.e. all βµ = 0. In the case of more general Eqs. (5) there are also other
representations of βµ matrices, see [9, 10] for a review. For example, there are
two representations 7 for which the corresponding 7 × 7 matrices βµ yield the
Hagen-Hurley equations for spin 1 bosons [6–8]. We have demonstrated that the
Hagen-Hurley equations can be obtained by splitting the 10 × 10 spin 1 DKP
equations [14].
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3 Rearrangement of the Hagen-Hurley equations

We shall now rewrite the Hagen-Hurley equations (2). Substituting expressions

for P Ḃ
A and PC

Ḃ
into Eqs. (2), cf. [14], we obtain a system of eight equations:

−
(
P 1 + iP 2

)
χ1̇1̇ −

(
P 0 − P 3

)
χ2̇1̇ = −mζ11̇(

P 0 + P 3
)
χ1̇1̇ +

(
P 1 − iP 2

)
χ2̇1̇ = −mζ21̇

−
(
P 1 − iP 2

)
ζ11̇ −

(
P 0 − P 3

)
ζ21̇ = mχ1̇1̇(

P 0 + P 3
)
ζ11̇ +

(
P 1 + iP 2

)
ζ21̇ = mχ2̇1̇

 , (8a)

−
(
P 1 + iP 2

)
χ1̇2̇ −

(
P 0 − P 3

)
χ2̇2̇ = −mζ12̇(

P 0 + P 3
)
χ1̇2̇ +

(
P 1 − iP 2

)
χ2̇2̇ = −mζ22̇

−
(
P 1 − iP 2

)
ζ12̇ −

(
P 0 − P 3

)
ζ22̇ = mχ1̇2̇(

P 0 + P 3
)
ζ12̇ +

(
P 1 + iP 2

)
ζ22̇ = mχ2̇2̇

 , (8b)

where the equations are arranged into two subsets (8a), (8b). Note that each of
these subsets is the Dirac equation with the same set of γµ matrices [23]. Al-
ternatively, equations (8) can be written as one Dirac equation with generalized

matrix solution (ζAḂ , χĊḊ)
T

where T stands for transposition [2,23]. Moreover,
the condition χḂḊ = χḊḂ entails that the spin equals one. Indeed, it follows
from the fourth equation in (8a), the third equation in (8b), and χḂḊ = χḊḂ

that:

(
P 0 + P 3

)
ζ11̇ +

(
P 1 + iP 2

)
ζ21̇ +

(
P 1 − iP 2

)
ζ12̇ +

(
P 0 − P 3

)
ζ22̇ =

= PAḂζAḂ = 0.
(9)

The spinor equation PAḂζAḂ = 0 is equivalent to Pµζµ = 0, i.e. to the spin 1

condition, see definitions of the spinors ζAḂ , pCḊ in Section 3 in [14].

4 Reduction of the Hagen-Hurley equations and
decay of bosons

The coupled Dirac equations (8) are non-standard because they are concerned
with higher-order spinors rather than spinors ξA, ηḂ . Equations (8) can be
decoupled and cast into a standard form by the following substitution:

χḂḊ (x) = ηḂ (x)αḊ (x) , (10a)

ζAḂ (x) = ξA (x)αḂ (x) , (10b)

where αȦ (x) is the Weyl spinor, describing massless neutrinos, while ηḂ (x),
ξA (x) are the Dirac spinors. Although neutrinos are massive [24], their masses
are tiny; therefore, this approximation should not lead to significant errors.

Note that now χ1̇2̇ ̸= χ2̇1̇ and, accordingly, the spin is not determined –
more exactly, the spin is in the 0 ⊕ 1 space. Accordingly, we consider not real
but virtual (off-shell) bosons [25] (note, however, that in the case of top quark
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decay, discussed in Section 6, the W boson is real). The substitution (10) was
inspired by the method of fusion of de Broglie [11, 26] (see also [27] where a
similar formula was used in the s = 0 case). After the substitution of (10) into
Eqs. (8) we obtain two equations:

−
(
P 1 + iP 2

)
η1̇αȦ −

(
P 0 − P 3

)
η2̇αȦ = −mξ1αȦ(

P 0 + P 3
)
η1̇αȦ +

(
P 1 − iP 2

)
η2̇αȦ = −mξ2αȦ

−
(
P 1 − iP 2

)
ξ1αȦ −

(
P 0 − P 3

)
ξ2αȦ = mη1̇αȦ(

P 0 + P 3
)
ξ1αȦ +

(
P 1 + iP 2

)
ξ2αȦ = mη2̇αȦ

 , (11)

where Ȧ = 1̇, 2̇, and, after substituting solution of the Weyl equation

PAḂαḂ = 0, (12)

αȦ (x) = α̂Ȧe
−ik·x, kµkµ = 0, we get a single Dirac equation for spinors ξA (x),

ηḂ (x):

−
(
P̃ 1 + iP̃ 2

)
η1̇ −

(
P̃ 0 − P̃ 3

)
η2̇ = −mξ1(

P̃ 0 + P̃ 3
)
η1̇ +

(
P̃ 1 − iP̃ 2

)
η2̇ = −mξ2

−
(
P̃ 1 − iP̃ 2

)
ξ1 −

(
P̃ 0 − P̃ 3

)
ξ2 = mη1̇(

P̃ 0 + P̃ 3
)
ξ1 +

(
P̃ 1 + iP̃ 2

)
ξ2 = mη2̇


, (13)

with rescaled momentum operators P̃µ = Pµ + kµ = i ∂
∂xµ

+ kµ.

Indeed, the first term in the first of equations (11), for example, can be
written as:

−αȦ

(
P 1 + iP 2

)
η1̇ − η1̇

(
P 1 + iP 2

)
αȦ =

−αȦ

(
P 1 + iP 2

)
η1̇ − η1̇

(
k1 + ik2

)
αȦ =

−αȦ

(
P̃ 1 + iP̃ 2

)
η1̇

(14)

and thus, Eqs. (11) reduce to a single Dirac equation (13) for spinors ξA (x),
ηḂ (x) since components α1̇ (x), α2̇ (x) cancel out.

Summing up, the Hagen-Hurley equations have been reduced to the Weyl
equation (12) and the Dirac equation (13) with rescaled momentum operators
P̃µ = Pµ + kµ [2]. This transformation has been carried out at the cost of
relaxing the condition that spin s of the Hagen-Hurley boson equals one. Indeed,
we had to assume that s ∈ 0 ⊕ 1. Note that there is an invertible operator
transforming spin 0 into spin 1 states [3], and it seems that mixing of spin 0
and spin 1 states is possible.

Equations (12), (13) describe a pair of spin 1
2 particles, one massless and

another massive, with total spin s = 0 or s = 1. The transformation of Eqs. (8)
into equations (12), (13) corresponds to a decay of a virtual W− boson into a
lepton and antineutrino, for example [2]:

W− −→ e + ν̄e. (15)

Note that the W boson appears exclusively as an intermediate particle in
weak decays. In the products of decay, there must also be at least a third particle
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that accounts for energy, momentum, and angular momentum conservation. An
example is furnished by the case of a mixed beta decay [28]:

n (↑) −→
{

p (↓) + [e (↑) ν̄e (↑)] Gamow-Teller transition
p (↑) + [e (↑) ν̄e (↓)] Fermi transition

(16)

where products of the W− boson decay (see [1]) are shown in square brackets
and (↑) denotes spin 1

2 – this seems to correspond well to the proposed transition
from Eq. (2) to Eqs. (12), (13). To describe the decay, we had to accept spin 1
and spin 0 mixing, see the beginning of this Section and Refs. [2, 3]. However,
this agrees well with decay products of the W− meson with spins coupling to
s = 1 (Gamow-Teller transition) or s = 0 (Fermi transition) with the spin
change absorbed by a spin-flip of the proton.

5 Kinematics of decay of the real Hagen-Hurley
bosons

Assume now that the Hagen-Hurley boson is a real (on-shell) particle and inter-
pret Eq. (13) involving a fixed four-momentum kµ of the Weyl particle. Solution

of this equation is of form Ψ = (ξ1, ξ2, η1̇, η2̇)
T

= Ψ̂ e−iq·x, where Ψ̂ is a constant
bispinor, and thus:

(qµ + kµ) (qµ + kµ) = qµq
µ + 2qµk

µ + kµk
µ = m2, (17)

where m is a mass of the Hagen-Hurley boson. It should be kept in mind that
in the case of unstable particles, the mass is not sharply defined. Note that
due to pµp

µ = m2, cf. Eq. (3), we get conservation of the four-momentum, i.e.
qµ + kµ = pµ. In particular, we get the momentum conservation:

|−→q |2 +
∣∣∣−→k ∣∣∣2 + 2−→q ·

−→
k = |−→p |2 . (18)

Moreover, we have

qµq
µ =

(
q0
)2 − |−→q |2 = m̃2, (19)

kµk
µ =

(
k0

)2 − ∣∣∣−→k ∣∣∣2 = 0, (20)

where m̃ is a well-defined mass of the lepton, while a neutrino – the Weyl particle
– is massless. We thus have

m̃2 + 2
(
q0k0 −−→q ·

−→
k
)

= m2. (21)

We expect, of course, that m̃ < m. Indeed, this inequality follows from Eq.

(21) if we choose the following solutions of Eqs. (19), (20): q0 = +

√
|−→q |2 + m̃2,

k0 = +
∣∣∣−→k ∣∣∣, respectively. Finally, we obtain:
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q0k0 −−→q ·
−→
k =

√
|−→q |2 + m̃2

∣∣∣−→k ∣∣∣− |−→q |
∣∣∣−→k ∣∣∣ cosφ > 0, (22)

and hence m̃ < m.
We shall analyse the consequences of condition (21), bearing at mind that,

while kµ and m̃ are fixed, the mass m is not well defined with the mass inde-
terminacy |∆m| < 1

2Γ where Γ is the decay width. Moreover, assume also that

|−→q | is fixed, while
−→q
|−→q | variable. Therefore, Eqs. (21), (22) lead to two main

cases: √
|−→q |2 + m̃2 + |−→q |

∣∣cosφ(1)

∣∣ = 1
2

m2
(1) − m̃2∣∣∣−→k ∣∣∣ , cosφ(1) < 0, (23)

√
|−→q |2 + m̃2 − |−→q | cosφ(2) = 1

2

m2
(2) − m̃2∣∣∣−→k ∣∣∣ , cosφ(2) > 0, (24)

and thus
m2

(1) −m2
(2) = 2 |−→q |

∣∣∣−→k ∣∣∣ (− cosφ(1) + cosφ(2)

)
> 0. (25)

Equation (25) can also be written as

∆m ≡ m(1) −m(2) =
|−→q |

∣∣∣−→k ∣∣∣
m

(
− cosφ(1) + cosφ(2)

)
> 0 (26)

where m = 1
2

(
m(1) + m(2)

)
. The mass difference m(1) −m(2) should be smaller

than 1
2Γ.

6 Discussion and conclusions

Consider the important channel of the top quark decay, t −→ b+W+ (→ l+ + νl).
Since the mass of the top quark is larger than the mass of the W boson plus the
mass of the bottom quark b, this decay should involve a real, on-shell, boson
W . We assume that the Hagen-Hurley equations (1), (2) describe the W boson
and thus analyse consequences of results described in Section 5.

To this end, we recall some properties of beta decay predicted by the Stan-
dard Model. Namely, in the case of Gamow-Teller transition, spins of lepton

and neutrino are parallel, and their momenta are anti-aligned, −→q ·
−→
k < 0, while

in the case of Fermi transition spins are anti-parallel, and momenta are aligned,
−→q ·

−→
k > 0, see [29–31] and references therein.

Let us further assume that decay of the spin 1 W+ boson, formed in the
top quark decay, can be described as in Section 4, with the b quark accounting
for the conservation of energy, momentum, and angular momentum. It follows
from Section 4 that the Hagen-Hurley boson can decay into a lepton and a
neutrino, if we assume that its spin is partly undefined – it is in the 0⊕1 space.
It is important that we have demonstrated the possibility of spin 0 and spin
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1 mixing [3]. Moreover, this view is supported by the existence of mixed beta
decays, where the W boson is a virtual particle. We thus expect that our theory
can indeed describe the decay of the real W boson – a product of the top quark
decay. However, since the W boson is highly unstable, its decay width Γ is quite
large since Γ = 1/τ , where τ is the mean lifetime [1]. Hence, the mass of the
W is not sharply defined. We can now make several predictions concerning this
decay.

1. The real W boson is described by the Hagen-Hurley equations and due
to mechanism of decay (which requires that its spin belongs to the 0 ⊕ 1
space [2]) due to mixing of spin 0 and spin 1 states [3]) decays as a linear
combination of these. In the top quark decay (this is the only case when
the W boson is real) both channels

t (↑) → b (↓) + W (⇑) → b (↓) + [l (↑) νl (↑)] Gamow-Teller
t (↑) → b (↑) + W (◦) → b (↑) + [l (↑) νl (↓)] Fermi

(27)

should be observed [3], where (⇑), (↑), (◦) denote spin 1, 1
2 and 0, respec-

tively. Note that spins of the top quark and a lepton are correlated [32].
Conservation of the total momentum is secured by the b quark, carrying
the missing momentum.

While the Fermi-type decay of the t quark is hypothetical, it can be ex-
perimentally tested, see the end of Discussion in [3].

2. In the case of Gamow-Teller decay (27), we have −→q ·
−→
k < 0 (momenta of a

lepton and a neutrino anti-aligned, parallel spins) while in the hypothetical

Fermi-type decay (27) −→q ·
−→
k > 0 (aligned momenta of a lepton and a

neutrino, anti-parallel spins). It follows from Section 5 that these two
decays occur with different masses of the W boson (m(1) in the case of
Gamow-Teller mechanism, m(2) in the Fermi case), the mass difference
given by Eq. (26).

3. The mass difference, ∆m, provides energy ∆mc2 (in standard units) for
the reconstruction [l (↑) νl (↑)] −→ [l (↑) νl (↓)].

4. It seems that the W boson decays in a state with partly undefined mass
and spin. The mass indeterminacy stems from the fact that the W is
a resonance with decay width Γ. The spin mixing, if confirmed, would
be a signature of a mild Lorentz symmetry breaking or a non-elementary
character of the W boson, which would be a complex state l (↑) νl (↑).

Summing up, it seems that the W bosons, if described by the Hagen-Hurley
equations (1) or (2), are composite, as suggested by Suzuki [4,5]. The possibility
of experimental verification of these predictions was pointed out in Ref. [3].
More exactly, the detection of the Fermi channel in the top quark decay 27
would confirm the non-elementary nature of the W boson.
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University of Paris Thesis, Acad. Royale de Belgique, Classe de Sci., Mem-
oires Coll. in 8o. 1936, 16(2), 1–115.
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