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Abstract

Background : Harmonic Series is the sum of Harmonic Progression. There have been multiple
formulas to approximate the harmonic series, from Euler’s formula to even a few in the 21st
Century. Mathematicians have concluded that the sum cannot be calculated, however any
approximation better than the previous others is always needed.

In this paper we will discuss the flaws in Euler’s formula for approximation of harmonic
series and provide a better formula. We will also use the infinite harmonic series to deter-
mine the approximations of finite harmonic series using the Euler-Mascheroni constant. We
will also look at the Leibniz series for Pi and determine the correction factor that Leibniz
discussed in his paper which he found using Euler numbers.

Each subsequent approximation we find in this paper is better than all previous ones.
Different approximations for different types of harmonic series are calculated, best fit for
the given type of harmonic series. The correction factor for Leibniz series might not provide
any applied results but it is a great way to ponder some other infinite harmonic series.

Keywords: Harmonic series, Euler-Mascheroni constant, Correction factor for Leibniz
series, Infinite harmonic series

1. Introduction

1.1. Introduction to Harmonic Series
Harmonic series (HS) is the sum of harmonic progression (HP) which is the progression

formed using reciprocals of consecutive terms of an Arithmetic Progression (AP)
AP = a, a+ d, a+ 2d, a+ 3d, ............., a+ (n− 1)d
In standard notations, ’a’ is the first term, ’d’ is the common difference, ’n’ is the number

of terms, The last term is often noted as ’L’.
HP = 1
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The most trivial case of the HS is when ’a’ and ’d’ is equal to one. This case is the most
studied and used for approximations.
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1.2. Euler’s Formula for Harmonic series [1]
Euler derived an equation for the sum of infinite harmonic series

S(∞) = ln (∞) + γ (1)

γ = 0.5772156649 ...............
where gamma is the Euler-Mascheroni constant.

1.3. Formula in a previous paper [2]
I used the approximation theory to integrate a function similar to the harmonic series in

order to find its approximation.

Sa(L)d =

ln

(
L

a

)
d

+
1

2a
+

1

2L
+ 4Ea(L)d

(2)

Here 4Ea(L)d = Error in the approximation

Sa(L)d ≈
ln

(
L

x

)
d

+
1

2x
+

1

2L
+ Sa(x− d)d

(3)

Here ’x’ is an arbitrarily chosen term of the AP.

1.4. Leibniz series for Pi [3]
Leibniz derived a series to determine the value of Pi.
1− 1

3
+ 1

5
− 1

7
+ .............. = π

4

While calculating this manually gives a pretty close approximation, Leibniz introduced
the correction factor for the series that accounts for the terms not calculated manually,
whose position can be determined using the Euler Numbers, however value is still debated.

2. Results

2.1. Correction in Euler’s formula
By Equation (1), mathematicians determined a formula to approximate finite harmonic

series.
S(n) ∼= ln (n) + γ
But with Equation (2) as a reference point we determine an even better approximation.

S(n) ∼= ln (n) +
1

2n
+ γ (4)
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2.2. Errors in Formula in Equation (2)
Using both Equation (1) and Equation (2) we determine the error in the infinite series

calculated using Equation (2) .
4E1(∞)1 = γ − 1

2

It was found experimentally

4E1 (L)1 ∼= γ(k + 2) − 1

2
(5)

γ(p) = γ to ′p′ decimal places
eg. γ(3) = 0.577
L ≤ 5× 4k

Subsequently,

4Ea (∞)1 ∼= γ − γ(k + 2) (6)

Here, a ≤ 5× 4k

Combining Both,

4Ea (L)1 ∼= γ(k2 + 2) − γ(k1 + 2) (7)

Here, a ≤ 5× 4k1

L ≤ 5× 4k2

Using both Equation (1) and Equation (2)

4E1(∞)d ∼=
ln (d!)

d2
− ln (d)

2d
− 1

4d2
+
γ

d
− γ(k + 2)

2d
(8)

Subsequently,

4Ea(L)d ∼=
ln

(
(a+ d− 1)!

ad × (a− 1)!

)
d2

−
ln

(
a+ d− 1

a

)
2d

+
d− 1

4ad(a+ d− 1)
+
γ

d
− γ(k1 + 2)

2d
− γ(k2 + 2)

2d

(9)

Here a ≤ 5× 4k1

a+ d− 1 ≤ 5× 4k2

2.3. Correction factor for Leibniz series

CF =

ln

(
x+ 2

x

)
4

+
1

x(x+ 2)

(10)

Here, CF = correction factor
x = First term that isnt calculated manually
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3. Discussion

3.1. Proof for Equation (4)
S(∞) = 1

1
+ 1

2
+ 1

3
+ .............

By formula in Equation (2)

S1(∞)1 =
ln

(∞
1

)
1

+ 1
2
+ 1

2∞ +4E1(∞)1

By Euler’s equation Equation (1)
ln (∞) + γ = ln (∞) + 1

2
+4E1(∞)1

Therefore, 4E1(∞)1 = γ − 1
2

It is a well-established result that 4E
1(n)1 ≤ 4E1(∞)1

for all positive integral values of n
If these two errors are equated
S(n) ≈ ln (n) + 1

2
+ 1

2n
+4E(∞)

= ln (n) + 1
2
+ 1

2n
+ γ − 1

2
Hence,

S(n) ≈ ln (n) +
1

2n
+ γ

3.2. Proof for derived Errors in Formula in Equation (2)
3.2.1. Proof for Equation (5)

It is a well-established result that 4E
1(n)1 ≤ 4E1(∞)1

for all positive integral values of n
It was found experimentally that the Error increases by one decimal place of the Euler-

Mascheroni constant after multiplying the Last term by 4.

Eg.
4E1(5)1 = 0.07 389542
4E1(20)1 = 0.077 007383
4E1(80)1 = 0.0772 02126

We used these to conclude that

4E1 (L)1 ∼= γ(k + 2) − 1

2

γ(p) = γ to ′p′ decimal places
eg. γ(3) = 0.577
L ≤ 5× 4k

3.2.2. Proof for Equation (6)
S1(a)1 + Sa(∞)1 = S1(∞)1 + 1

a

By using Equation (1) and Equation (2)
ln (a) + 1

2
+ 1

2a
+ 4E1(a)1 + ln

(∞
a

)
+ 1

2a
+ 1

2∞ + 4Ea(∞)1 = ln (∞) + γ + 1
a

We conclude that
4E1(a)1 + 4Ea(∞)1 = γ − 1

2

We know from Equation (5) that 4E1(a)1 ∼= γ(k + 2) − 1
2
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Putting this in the equation above we get,

4Ea (∞)1 ∼= γ − γ(k + 2)

Here, a ≤ 5× 4k

3.2.3. Proof for Equation (7)
S1(a)1 + Sa(L)1 + SL(∞)1 = S1(∞)1 + 1

a
+ 1

L

By using Equation (1) and Equation (2)
ln (a) + 1

2
+ 1

2a
+4E1(a)1 + ln

(
L
a

)
+ 1

2a
+ 1

2L
+4Ea(L)1 + ln

(∞
L

)
+ 1

2L
+ 1

2∞
= ln (∞) + γ

We can conclude that 4E1(a)1 +4Ea(L)1 +4EL(∞)1 = γ − 1
2

We know from Equation (5) and Equation (6) that 4E
1(a)1 ∼= γ(k1 + 2) − 1

2

4EL(∞)1 ∼= γ − γ(k2 + 2)
a ≤ 5× 4k1

L ≤ 5× 4k2

Putting these in the equation above we get,

4Ea (L)1 ∼= γ(k2 + 2) − γ(k1 + 2)

Here, a ≤ 5× 4k1

L ≤ 5× 4k2

3.2.4. Proof for Equation (8)
S1(∞)d + S2(∞)d + ..........+ Sd(∞)d = S1(∞)1

From Equation (2) and Equation (1)
ln

(∞
1

)
d

+ ......+
ln
(∞
d

)
d

+ 1
2
+ .........+ 1

2d
+4E1(∞)d+ ..........+4Ed(∞)d =

ln
(
∞d
)

d
+γ

We conclude that

ln

∞d

d!


d

+
S1(d)1

2
+4E1(∞)d + ........+4Ed(∞)d =

ln
(
∞d
)

d
+ γ

And
4E1(∞)d + ..........+4Ed(∞)d = ln(d!)

d
+ γ − S1(d)1

2

Because the number of errors is equal to ’d’, we assume that each error is equal and
divide both sides by ’d’
4E1(∞)d ∼= ln(d!)

d2
+ γ

d
− S1(d)1

2d

From Equation (2) and Equation (5)

4E1(∞)d ∼= ln(d!)
d2

+ γ
d
−

ln(d) +
1

2d
+γ(k+2)

2d

Therefore,

4E1(∞)d ∼=
ln (d!)

d2
− ln (d)

2d
− 1

4d2
+
γ

d
− γ(k + 2)

2d

June 29, 2020



3.2.5. Proof for Equation (9)
Sa(∞)d + Sa+d(∞)d + ...........+ Sa+d−1(∞)d = Sa(∞)1

Using Equation (2) and Equation (6)

ln

∞d × (a− 1)!

(a+ d− 1)!


d

+
Sa(a+ d− 1)1

2
+4E = ln

(∞
a

)
+ 1

2a
+ γ − γ(k1 + 2)

4E =

ln

∞d

ad


d

−
ln

∞d × (a− 1)!

(a+ d− 1)!


d

+ 1
2a
− Sa(a+d−1)1

2
+ γ − γ(k1 + 2)

Here 4E = 4Ea(∞)d +4Ea+d(∞)d + .............+ 4Ea+d−1(∞)d

Using Equation (2)

4E =

ln

 (a+ d− 1)!

ad × (a− 1)!


d

−
ln

a+ d− 1

a


2

+ 1
4a
− 1

4(a+d−1) + γ − γ(k1+2)
2

− γ(k2+2)
2

Here a+ d− 1 ≤ 5× 4k2

Because the number of errors is equal to ’d’, we assume each error to be equal and divide
both sides by ’d’ to find the approximate value of one error. We also neglect the difference
in error created by the last term being ’L’ instead of infinity.

4Ea(L)d ∼=
ln

(
(a+ d− 1)!

ad × (a− 1)!

)
d2

−
ln

(
a+ d− 1

a

)
2d

+
d− 1

4ad(a+ d− 1)
+
γ

d
− γ(k1 + 2)

2d
− γ(k2 + 2)

2d

Here a ≤ 5× 4k1

a+ d− 1 ≤ 5× 4k2

3.3. Proof for correction factor of Leibniz series
π
4
= 1

1
− 1

3
+ 1

5
− 1

7
+ ...................

= (1
1
+ 1

5
+ 1

9
+ ...............) − (1

3
+ 1

7
+ 1

11
+ .............................)

If we assume that ’x’ number of terms have been calculated manually, we cas use the
formula in Equation (3) to find the rest of the sum.

By Equation (3)

π
4
∼=

 ln

(∞
x

)
4

+ 1
2x

+ S1(x− 4)4

 −
 ln

(
∞
x+ 2

)
4

+ 1
2(x+2)

+ S3(x− 2)4


Solving this we get

π
4
∼=

ln

(
x + 2

x

)
4

+ 1
x(x+2)

+ S1(x− 4)4 − S3(x− 2)4

Now if we calculate all terms of the Leibniz series up to and including (x-2), we will have
found the value of S1(x− 4)4 − S3(x− 2)4

The remaining portion of the equation can be used as the correction factor
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Therefore,

CF =

ln

(
x+ 2

x

)
4

+
1

x(x+ 2)

Here, CF = correction factor
x = First term that isnt calculated manually

3.4. Verification

Some Important Notations :- 4E = Percent Error
A = Percent Accuracy

Let’s consider some Harmonic Series

• 1 + 1
2
+ 1

3
+ 1

4
+ ....................+ 1

10

a = 1 ; d = 1 ; n = 10 ; L = 10

S1(10)1 = 2.928968254
(calculated manually)

By Formula derived from Euler’s equation

S(10) ∼= ln (10) + γ = 2.879800758
4E = 01.67867 %
A = 98.32133%

By Equation (4)

S(10) ∼= ln (10) + 1
20

+ γ = 2.929800758
4E = 00.02842%
A = 100.02842%

•
1
1
+ 1

2
+ 1

3
+ ......................+ 1

20

a = 1 ; d = 1 ; n = 20 ; L = 20

S(20) = 3.597739657
(calculated manually)

By Equation (4)

S(20) ∼= ln (20) + 1
40

+ γ = 3.597947938
4E = 0.00578%
A = 99.99421%

By Equation (5)

S(20) ∼= ln (20) + 1
40

+ γ(3) = 3.597732274
4E = 00.00020%
A = 99.99979%

•
1
11

+ 1
12

+ 1
13

+ ......................+ 1
50

a = 11 ; d = 1 ; n = 40 ; L = 50

S11(50) = 1.570237084
(calculated manually)

By Equation (5)
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S11(50) ∼= ln
(
50
11

)
+ 1

22
+ 1

100
+ 0.0772 = 1.641782278

4E = 4.55633
A = 104.55633

By Equation (7)
S11(50) ∼= ln

(
50
11

)
+ 1

22
+ 1

100
+ 0.0002 = 1.564782278

4E = 0.34738
A = 99.65261

•
1
20

+ 1
25

+ 1
30

+ ...............+ 1
100

a = 20 ; d = 5 ; n = 17 ; L = 100

S20(100)5 = 0.352881264
(calculated manually)

By Equation (7)
S20(100)5 ∼= ln(5)

5
+ 1

40
+ 1

200
+ 0.00021 = 0.352097582

4E = 0.22208
A = 99.77791
By Equation (9)
S20(100)5 ∼= ln(5)

5
+ 1

40
+ 1

200
+ 0.00085499 = 0.352742579

4E = 0.03930
A = 99.96069

4. Conclusions

1. Approximation of harmonic series by Euler’s method has a distinct error that occurs
due to the error of the series converging slowly. Using Equation (2) we developed a
better formula that converts the error from slowly decreasing to the Euler-Mascheroni
constant to rapidly increasing to it. This molds the error in such a way that increase
in the value of ’n’ decreases the error.

2. Although the equations derived from the infinite harmonic series are obtained using
experimental data, it certainly holds true for practical purposes. The value of error
increases in a certain pattern differing with the type of harmonic series. Different
equations are a formula and solution for these different types of harmonic series.

3. Although the equation when the common difference has a value other than one, it
proves useful in limiting the error and increases the accuracy in a significant way. We
use the same formula for both when last term is a finite and when it is infinity.

4. The value of correction factor derived in this paper is very useful. If a thousand terms
of the Leibniz series are calculated, then the rest of terms can be accounted for by the
correction factor. Also, worth noting is the fact that the correction factor when added
to the sum of the thousand terms will always result in a number lesser than Pi by 4.
What this signifies is that the sum added to the correction factor will never exceed
but slowly converge to the value of Pi by 4.
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4.1. Future Research and Potential
1. As mentioned in the abstract, a newer and better approximation of harmonic series is

always needed. While, this might not provide a completed research, it is a step in the
right way.

2. Many other infinite harmonic series might also have correction factors that can be
calculated using the same method, using Equation (3) .

5. List of abbreviations

HS = harmonic series
Sa(L)d = sum of hs where
a = first term ; d = common difference ; L = last term
of the corresponding arithmetic progression
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