
A polynomial time algorithm for SAT

Ortho Flint

Abstract

The deterministic polynomial time algorithm that determines sat-
isfiability of 3-SAT can be generalized for SAT.

1 Introduction

The proof for the deterministic polynomial time algorithm that determines
satisfiability of 3-SAT found at: polynomial3sat.org, can be easily modified
to prove a generalized version of the algorithm for SAT.

2 A polynomial time algorithm for SAT

Let Kq be a complete graph on q vertices, q ≥ 1. Observe that every defini-
tion in the paper at polynomial3sat.org can be modified by simply replacing
the term: edge-sequence with Kq-sequence and the term: vertex-sequence
with K1-sequence. Most importantly, the three lemmas and the theorem in
the paper can also be modified by the very same replacements. Thus, we
have a proof for a generalized version of the original algorithm for 3-SAT.
We note that all the definitions, rules, etc., must be used in the generalized
version of the algorithm. For example, Kq-sequences (and the K1-sequences
which are also constructed), must be LCR and K-rule compliant. And in
the proof for 3-SAT the concept of literal triples for 3-SAT, would be the
concept of literal (q+1)-tuples for (q+1)-SAT. Provided below are the mod-
ified versions of definition 2.2 and 2.11 respectively, from the paper.

1



Definition 2.1. A Kq-sequence is an ordered sequence with elements 1 and
0. The ordering is an ordering of the clauses, with indexing: C1, C2, C3,
. . . , Cc where a corresponding Ci has its literals ordered the same way for
each sequence constructed for a SAT. A Kq-sequence I, for a Kq with end-
points labelled x1, x2, x3, . . . , xq, where no xi and its negation appear, the
literals associated with the endpoints, is denoted by Ix1,...,xq . The endpoints
must always be from different clauses. We call the positions in Ix1,...,xq that
correspond to a clause Ci the cell Ci. The cells containing the endpoints, x1,
x2, x3, . . . , xq, have only one entry that is 1 in the positions associated to
x1, x2, x3, . . . , xq. When a Kq-sequence is constructed, a given position in
Ix1,...,xq is 1 if the associated literal is not a negation of the literals x1, x2, x3,
. . . , xq. The initial construction of Ix1,...,xq is subject to certain rules defined
in 2.8 and 2.9 of the paper, which may produce more zero entries. Lastly, re-
moving one or more cells from Ix1,...,xq is again a (sub) Kq-sequence, denoted
by Ix1,...,xq*, if the cells containing the endpoints for Ix1,...,xq remain.

Note that a K2-sequence is an edge-sequence.

Definition 2.2. An S-set is a collection of Kq-sequences whose endpoints
are from q clauses, where the literals associated with the endpoints are such
that no xi and its negation appear. The number of constructed Kq-sequences
to be an S-set is the product of the sizes of the q clauses less any non Kq-
sequence. ie. A non Kq-sequence is a Kq-sequence containing at least one xi

and its negation associated with the endpoints.

As clause sizes increase, Comparing any two S-sets is more work in general,
and the number of S-sets to Compare also increases. In other words, sup-
pose c clauses are considered, then there are

(
c
q

)
S-sets, thus the number of

S-set comparisons for a run is
((c

q)
2

)
. For example, a 4-SAT G, with c clauses

requires S-sets containing K3-sequences. So, an S-set could have as many
as 43 K3-sequences and the number of S-sets constructed for G would be(
c
3

)
. Note well that only Kq-sequences and K1-sequences for (q+1)-SAT are

constructed. The latter is for our mechanism to determine possible unsatis-
fiability of the given SAT. If the given SAT is satisfiable, then a round one
can be completed, where every Kq-sequence from a collection of equivalent
S-sets X , is such that a literal with a 1 entry in Ix1,...,xq belongs to at least
one KC with x1, x2, x3, . . . , xq.

2



For 2-SAT

It can now be seen by the generalization that a 2-SAT G, with c clauses,
is processed by Comparing just the K1-sequences between the c S-sets, one
for each clause. Clearly, 1-SAT is trivial and it’s always handled by pre-
processing. ie. either one solution or no solution.

3 Final comments

It is the case that Comparing for SAT becomes more expensive as clause
size increases relative to just converting to 3-SAT. However, the natural
generalization of the algorithm for 3-SAT, could be exploited for efficiency
purposes, by extracting information at chosen costs, for Comparing a SAT’s
corresponding 3-SAT. Below, is a scheme for converting SAT to 3-SAT.

Given a collection of clauses for some SAT, let k ≥ 4 be the size of a clause
Ci. Then the number of clauses of size 3 that will replace Ci when converting
the SAT to a 3-SAT, is k−2. There is no need to replace clauses of size 2 or
3 from the given SAT.

If Ci = (1, 2, 3, 4, 5) say, then it’s replaced with (5−2) clauses of the form:
(1, 2, x), (−x, y, 3) and (−y, 4, 5) where the connectors : x, −x, y and −y
must be singletons wrt. all the clauses constructed for the 3-SAT. For an-
other example, let Ci = (1, 2, 3, 4, 5, 6). Then it’s replaced with (6−2) clauses
of the form: (1, 2, x), (−x, y, 3), (−y, z, 4) and (−z, 5, 6) where again the
connectors : x, −x, y, −y, z and −z must be singletons wrt. all the clauses
constructed for the 3-SAT. So in general, if Ci = (1, 2, 3, . . . , r), then it’s
replaced with (r−2) clauses of the form: (1, 2, l1), (−l1, l2, 3), (−l2, l3, 4), . . .,
(−lr−4, lr−3, r−2), (−lr−3, r−1, r), where the connectors : l1, −l1, l2, −l2, l3,
−l3, . . ., lr−3 and −lr−3, must be singletons wrt. all the clauses constructed
for the 3-SAT.

In conclusion, equivalency is determined by Comparing S-sets for each SAT
by: K1-sequences for 2-SAT, K2-sequences for 3-SAT, K3-sequences for 4-
SAT, . . . , Kq-sequences for (q+1)-SAT. It should be clear by this general-
ization, that there is nothing special or unique about 3-SAT conceptually.

3


	Introduction
	A polynomial time algorithm for SAT
	Final comments

