A polynomial time algorithm for SAT

Ortho Flint

Abstract

The deterministic polynomial time algorithm that determines satisfiability of 3-SAT can be generalized for SAT.

1 Introduction

The proof for the deterministic polynomial time algorithm that determines satisfiability of 3-SAT found at: polynomial3sat.org, can be easily modified to prove a generalized version of the algorithm for SAT.

2 A polynomial time algorithm for SAT

Let K_q be a complete graph on q vertices, $q \ge 1$. Observe that every definition in the paper at polynomial3sat.org can be modified by simply replacing the term: edge-sequence with K_q -sequence and the term: vertex-sequence with K_1 -sequence. Most importantly, the three lemmas and the theorem in the paper can also be modified by the very same replacements. Thus, we have a proof for a generalized version of the original algorithm for 3-SAT. We note that all the definitions, rules, etc., must be used in the generalized version of the algorithm. For example, K_q -sequences (and the K_1 -sequences which are also constructed), must be LCR and K-rule compliant. And in the proof for 3-SAT the concept of literal triples for 3-SAT, would be the concept of literal (q+1)-tuples for (q+1)-SAT. Provided below are the modified versions of definition 2.2 and 2.11 respectively, from the paper. **Definition 2.1.** A K_q -sequence is an ordered sequence with elements 1 and 0. The ordering is an ordering of the clauses, with indexing: C_1 , C_2 , C_3 , \ldots , C_c where a corresponding C_i has its literals ordered the same way for each sequence constructed for a SAT. A K_q -sequence I, for a K_q with endpoints labelled $x_1, x_2, x_3, \ldots, x_q$, where no x_i and its negation appear, the literals associated with the endpoints, is denoted by I_{x_1,\ldots,x_q} . The endpoints must always be from different clauses. We call the positions in I_{x_1,\ldots,x_q} that correspond to a clause C_i the cell C_i . The cells containing the endpoints, x_1 , x_2, x_3, \ldots, x_q , have only one entry that is 1 in the positions associated to $x_1, x_2, x_3, \ldots, x_q$. When a K_q -sequence is constructed, a given position in I_{x_1,\ldots,x_q} is 1 if the associated literal is not a negation of the literals $x_1, x_2, x_3, \ldots, x_q$. The initial construction of I_{x_1,\ldots,x_q} is subject to certain rules defined in 2.8 and 2.9 of the paper, which may produce more zero entries. Lastly, removing one or more cells from I_{x_1,\ldots,x_q} is again a (sub) K_q -sequence, denoted by I_{x_1,\ldots,x_q}^* , if the cells containing the endpoints for I_{x_1,\ldots,x_q} remain.

Note that a K_2 -sequence is an edge-sequence.

Definition 2.2. An S-set is a collection of K_q -sequences whose endpoints are from q clauses, where the literals associated with the endpoints are such that no x_i and its negation appear. The number of constructed K_q -sequences to be an S-set is the product of the sizes of the q clauses less any non K_q sequence. ie. A non K_q -sequence is a K_q -sequence containing at least one x_i and its negation associated with the endpoints.

As clause sizes increase, Comparing any two S-sets is more work in general, and the number of S-sets to Compare also increases. In other words, suppose c clauses are considered, then there are $\binom{c}{a}$ S-sets, thus the number of

S-set comparisons for a **run** is $\binom{\binom{r}{q}}{2}$. For example, a 4-SAT \mathcal{G} , with c clauses requires S-sets containing K_3 -sequences. So, an S-set could have as many as $4^3 K_3$ -sequences and the number of S-sets constructed for \mathcal{G} would be $\binom{c}{3}$. Note well that only K_q -sequences and K_1 -sequences for (q+1)-SAT are constructed. The latter is for our mechanism to determine possible unsatisfiability of the given SAT. If the given SAT is satisfiable, then a **round** one can be completed, where every K_q -sequence from a collection of equivalent S-sets \mathcal{X} , is such that a literal with a 1 entry in I_{x_1,\ldots,x_q} belongs to at least one K_C with $x_1, x_2, x_3, \ldots, x_q$.

For 2-SAT

It can now be seen by the generalization that a 2-SAT \mathcal{G} , with c clauses, is processed by Comparing just the K_1 -sequences between the c S-sets, one for each clause. Clearly, 1-SAT is trivial and it's always handled by preprocessing. ie. either one solution or no solution.

3 Final comments

It is the case that Comparing for SAT becomes more expensive as clause size increases relative to just converting to 3-SAT. However, the natural generalization of the algorithm for 3-SAT, could be exploited for efficiency purposes, by extracting information at chosen costs, for Comparing a SAT's corresponding 3-SAT. Below, is a scheme for converting SAT to 3-SAT.

Given a collection of clauses for some SAT, let $k \ge 4$ be the size of a clause C_i . Then the number of clauses of size 3 that will replace C_i when converting the SAT to a 3-SAT, is k-2. There is no need to replace clauses of size 2 or 3 from the given SAT.

If $C_i = (1, 2, 3, 4, 5)$ say, then it's replaced with (5-2) clauses of the form: (1, 2, x), (-x, y, 3) and (-y, 4, 5) where the *connectors*: x, -x, y and -y must be singletons wrt. all the clauses constructed for the 3-SAT. For another example, let $C_i = (1, 2, 3, 4, 5, 6)$. Then it's replaced with (6-2) clauses of the form: (1, 2, x), (-x, y, 3), (-y, z, 4) and (-z, 5, 6) where again the *connectors*: x, -x, y, -y, z and -z must be singletons wrt. all the clauses constructed for the 3-SAT. So in general, if $C_i = (1, 2, 3, \ldots, r)$, then it's replaced with (r-2) clauses of the form: $(1, 2, l_1), (-l_1, l_2, 3), (-l_2, l_3, 4), \ldots, (-l_{r-4}, l_{r-3}, r-2), (-l_{r-3}, r-1, r)$, where the *connectors*: $l_1, -l_1, l_2, -l_2, l_3, -l_3, \ldots, l_{r-3}$ and $-l_{r-3}$, must be singletons wrt. all the clauses constructed for the 3-SAT.

In conclusion, equivalency is determined by Comparing S-sets for each SAT by: K_1 -sequences for 2-SAT, K_2 -sequences for 3-SAT, K_3 -sequences for 4-SAT, ..., K_q -sequences for (q+1)-SAT. It should be clear by this generalization, that there is nothing special or unique about 3-SAT conceptually.