A polynomial time algorithm for SAT

Ortho Flint

Abstract

The deterministic polynomial time algorithm that determines satisfiability of 3 -SAT can be generalized for SAT.

1 Introduction

The proof for the deterministic polynomial time algorithm that determines satisfiability of 3-SAT found at: polynomial3sat.org, can be easily modified to prove a generalized version of the algorithm for SAT.

2 A polynomial time algorithm for SAT

Let K_{q} be a complete graph on q vertices, $q \geq 1$. Observe that every definition in the paper at polynomial3sat.org can be modified by simply replacing the term: edge-sequence with K_{q}-sequence and the term: vertex-sequence with K_{1}-sequence. Most importantly, the three lemmas and the theorem in the paper can also be modified by the very same replacements. Thus, we have a proof for a generalized version of the original algorithm for 3-SAT. We note that all the definitions, rules, etc., must be used in the generalized version of the algorithm. For example, K_{q}-sequences (and the K_{1}-sequences which are also constructed), must be $L C R$ and K-rule compliant. And in the proof for 3-SAT the concept of literal triples for 3-SAT, would be the concept of literal $(q+1)$-tuples for $(q+1)$-SAT. Provided below are the modified versions of definition 2.2 and 2.11 respectively, from the paper.

Definition 2.1. A K_{q}-sequence is an ordered sequence with elements 1 and 0 . The ordering is an ordering of the clauses, with indexing: C_{1}, C_{2}, C_{3}, \ldots, C_{c} where a corresponding C_{i} has its literals ordered the same way for each sequence constructed for a SAT. A K_{q}-sequence I, for a K_{q} with endpoints labelled $x_{1}, x_{2}, x_{3}, \ldots, x_{q}$, where no x_{i} and its negation appear, the literals associated with the endpoints, is denoted by $I_{x_{1}, \ldots, x_{q}}$. The endpoints must always be from different clauses. We call the positions in $I_{x_{1}, \ldots, x_{q}}$ that correspond to a clause C_{i} the cell C_{i}. The cells containing the endpoints, x_{1}, $x_{2}, x_{3}, \ldots, x_{q}$, have only one entry that is 1 in the positions associated to $x_{1}, x_{2}, x_{3}, \ldots, x_{q}$. When a K_{q}-sequence is constructed, a given position in $I_{x_{1}, \ldots, x_{q}}$ is 1 if the associated literal is not a negation of the literals x_{1}, x_{2}, x_{3}, \ldots, x_{q}. The initial construction of $I_{x_{1}, \ldots, x_{q}}$ is subject to certain rules defined in 2.8 and 2.9 of the paper, which may produce more zero entries. Lastly, removing one or more cells from $I_{x_{1}, \ldots, x_{q}}$ is again a (sub) K_{q}-sequence, denoted by $I_{x_{1}, \ldots, x_{q}}{ }^{*}$, if the cells containing the endpoints for $I_{x_{1}, \ldots, x_{q}}$ remain.

Note that a K_{2}-sequence is an edge-sequence.

Definition 2.2. An S-set is a collection of K_{q}-sequences whose endpoints are from q clauses, where the literals associated with the endpoints are such that no x_{i} and its negation appear. The number of constructed K_{q}-sequences to be an S-set is the product of the sizes of the q clauses less any non K_{q} sequence. ie. A non K_{q}-sequence is a K_{q}-sequence containing at least one x_{i} and its negation associated with the endpoints.
As clause sizes increase, Comparing any two S-sets is more work in general, and the number of S-sets to Compare also increases. In other words, suppose c clauses are considered, then there are $\binom{c}{q} S$-sets, thus the number of S-set comparisons for a run is $\left(\begin{array}{c}c \\ c \\ 2\end{array}\right)$. For example, a 4 -SAT \mathcal{G}, with c clauses requires S-sets containing K_{3}-sequences. So, an S-set could have as many as $4^{3} K_{3}$-sequences and the number of S-sets constructed for \mathcal{G} would be $\binom{c}{3}$. Note well that only K_{q}-sequences and K_{1}-sequences for $(q+1)$-SAT are constructed. The latter is for our mechanism to determine possible unsatisfiability of the given SAT. If the given SAT is satisfiable, then a round one can be completed, where every K_{q}-sequence from a collection of equivalent S-sets \mathcal{X}, is such that a literal with a 1 entry in $I_{x_{1}, \ldots, x_{q}}$ belongs to at least one K_{C} with $x_{1}, x_{2}, x_{3}, \ldots, x_{q}$.

For 2-SAT

It can now be seen by the generalization that a 2-SAT \mathcal{G}, with c clauses, is processed by Comparing just the K_{1}-sequences between the $c S$-sets, one for each clause. Clearly, 1-SAT is trivial and it's always handled by preprocessing. ie. either one solution or no solution.

3 Final comments

It is the case that Comparing for SAT becomes more expensive as clause size increases relative to just converting to 3 -SAT. However, the natural generalization of the algorithm for 3-SAT, could be exploited for efficiency purposes, by extracting information at chosen costs, for Comparing a SAT's corresponding 3-SAT. Below, is a scheme for converting SAT to 3 -SAT.

Given a collection of clauses for some SAT, let $k \geq 4$ be the size of a clause C_{i}. Then the number of clauses of size 3 that will replace C_{i} when converting the SAT to a 3 -SAT, is $k-2$. There is no need to replace clauses of size 2 or 3 from the given SAT.

If $C_{i}=(1,2,3,4,5)$ say, then it's replaced with (5-2) clauses of the form: $(1,2, x),(-x, y, 3)$ and $(-y, 4,5)$ where the connectors: $x,-x, y$ and $-y$ must be singletons wrt. all the clauses constructed for the 3-SAT. For another example, let $C_{i}=(1,2,3,4,5,6)$. Then it's replaced with ($6-2$) clauses of the form: $(1,2, x),(-x, y, 3),(-y, z, 4)$ and $(-z, 5,6)$ where again the connectors: $x,-x, y,-y, z$ and $-z$ must be singletons wrt. all the clauses constructed for the 3 -SAT. So in general, if $C_{i}=(1,2,3, \ldots, r)$, then it's replaced with $(r-2)$ clauses of the form: $\left(1,2, l_{1}\right),\left(-l_{1}, l_{2}, 3\right),\left(-l_{2}, l_{3}, 4\right), \ldots$, $\left(-l_{r-4}, l_{r-3}, r-2\right),\left(-l_{r-3}, r-1, r\right)$, where the connectors: $l_{1},-l_{1}, l_{2},-l_{2}, l_{3}$, $-l_{3}, \ldots, l_{r-3}$ and $-l_{r-3}$, must be singletons wrt. all the clauses constructed for the 3 -SAT.

In conclusion, equivalency is determined by Comparing S-sets for each SAT by: K_{1}-sequences for 2 -SAT, K_{2}-sequences for 3 -SAT, K_{3}-sequences for 4 SAT, \ldots, K_{q}-sequences for $(q+1)$-SAT. It should be clear by this generalization, that there is nothing special or unique about 3-SAT conceptually.

