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Abstract: We construct biinvariant vector valued functions of relative distances using the influence matrix, 

and the Mahalanobis distance defined by scattered sets of points on Lie groups. The functions are invariant 

under all group operations. Distance vectors define an ordering of the points in the scattered set with 

respect to a group element. Applications are classification, inverse distance weighting, and the construction 

of generalized barycentric coordinates for the purpose of deformation, and domain transfer. ◼

a)          b)           c)

Figure: Applications of biinvariant distance vectors and weightings: a) classification task in the Lie group 

SE(2), b) kriging function f : ℝP2 →ℝ on the real projective space based on four control points with associ-

ated values, c) smooth domain transfer [0, 1]2 ⊂ℝ2 →SE(2) based on control points of the form 

pi = (pxi, pyi) ∈ ℝ2 mapped to qi = (pxi, pyi, θi) ∈SE(2) for i = 1, ..., 6. ◼
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Introduction

For a set of points P = {p1, ..., pn} and a point x, we discuss distance vectors dP(x) ∈ ℝn where the i-th entry 

dP(x)i corresponds to the relative distance of x to pi for i = 1, ..., n. The term relative means that dP(x)i may 

depend not only on x and pi but on all points in P. The distance vector satisfies dP(x)i ≥ 0 for general x, and 

dP(pi)i = 0 in particular, for all i = 1, ..., n.

The vector dP(x) ∈ ℝn defines a preorder on the elements in P as pi ≼ pj ⇔ dP(x)i ≤ dP(x)j. The distance 

vector can be used for classification: one can simply assign a point x the label associated to the point pj 

where j = argmini=1,...,n dP(x)i. The distance vectors that we consider in the article are invariant under all 

symmetries of the space.

Figure: The illustration shows an example in the 3-dimensional non-linear Lie group SE(2) where the 

distance vector dP(x) ∈ ℝ8 determines p2, p4, p5 to be the 3 nearest neighbors of x in P. The vector dP(x), 

and the induced preorder in particular, remain invariant after applying a group transformation simultaneously 

to x and pi for i = 1, ..., 8. Three equivalent configurations are shown. ◼
Raising each entry of the distance vector to the power of -β for some exponent β ≥ 0 followed by normaliza-

tion of the vector to sum up to 1 defines inverse distance weighting wP(x). The projection of wP(x) to the 



solution space of the barycentric equation results in generalized barycentric coordinates cP(x). The coordi-

nate functions cP(x) define deformations within the domain, and allow the transfer of the domain into any 

other space that is equipped with a weighted average.

The article is structured as follows: In the first section, we restrict the discussion to the d-dimensional vector 

space ℝd and already introduce three types of distance vectors: metric, leverage, and harbor. The generaliza-

tion to Lie groups later on is achieved simply by modification of the design matrix in the construction. Then, 

we introduce the garden distance vector. We show that the biinvariant influence matrix, and Mahalanobis 

distance in the definition of the distance vectors result in biinvariant weightings, and biinvariant generalized 

barycentric coordinates. Examples and applications are illustrated in the spaces ℝd, S2, and SE(2). We 

conclude by outlining possible future work.

Notation: We use the symbol “.” as the dot product according to the convention in Mathematica, where a 

vector, i.e. a tensor of rank 1, cannot be transposed. Instead of the expression w⊤ B v  for vectors v , w and a 

matrix B, we write either of w.B.v = (B.v).w =B.v .w. Since the group action of most Lie groups can be 

formulated as matrix multiplication, “.” also denotes the group action as in g.h for g, h ∈G. || v || denotes the 

Euclidean norm. n := (1, ..., 1) is the vector of length n with all entries equal to 1. By “weighting” we refer to 

weights that sum up to 1.

Related Work

The construction of distance vectors, weightings, and generalized barycentric coordinates that we encounter 

in this article rely on concepts from linear algebra that also appear in the context of statistical data analysis:

Design matrix of dimensions n×d:  V

Pseudo inverse of V : V + = (V ⊤.V )+.V ⊤

Hat matrix, or influence matrix: H =V .V +

Residual maker matrix: M = I -H

where I denotes the n×n identity matrix, see [2013 Cardinali]. [Wikipedia: Proofs involving the Moore-

Penrose inverse] render M as the projection to the left-nullspace of V , since

M.V = (I -V .V +).V =V -V .V +.V = 0 

A diagonal element Hi,i of the influence matrix H is referred to as leverage. Because the projection matrix H 

is symmetric and idempotent H =H.H, we have Hi,i = ∑j=1
n Hi,j

2 , which assertains that

Hi,i ∈ [0, 1] for i = 1, ..., n

as well as Hi,i = || hi ||, where hi denotes the i-th row of matrix H, see [Wikipedia: Leverage (Statistics)]. 

The matrix equation H =V .V + =V .(V ⊤.V )+.V ⊤ allows to compute the leverage as

Hi,i = (V ⊤.V )+.vi.vi for i = 1, ..., n

where vi denotes the i-th row of matrix V . The right hand side is an evaluation of the Mahalanobis distance 

squared.

Finally, we define the operator η : ℝn →ℝn that normalizes the entries of a vector w ∈ ℝn to sum up to 1

η(w) :=
1

∑i=1
n wi

w ∑i=1
n wi ≠ 0

undefined otherwise
 

Euclidean Space

For a scattered set of points P = {p1, ..., pn} from the d-dimensional Euclidean space pi ∈ ℝd for i = 1, ..., n it 

is a straightforward choice to define a distance vector dP : ℝd →ℝn with respect to a location x ∈ ℝd as

dP(x)i := || pi - x || for i = 1, ..., n.

[1968 Shepard] has introduced inverse distance weighting, i.e. the function wP : ℝd\P →ℝn that raises each 

entry dP(x)i to the power of -β with β ≥ 0
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w
˜

P(x)i := dP (x)i
-β

 for i = 1, ..., n 

followed by normalization of the entries to sum up to 1

wP(x) := η(w˜P(x))

Common choices are β ∈ {1, 2}. Using the terminology introduced above, we define

Design matrix: VP(x) :=

p1 - x

...

pn - x

Influence matrix: HP(x) :=VP(x).VP(x)
+ 

Residual maker matrix: MP(x) := I -HP(x) 

[2020 Hakenberg a)] constructs inverse distance coordinates cP : ℝd\P →ℝn as

cP(x) := η(MP(x).wP(x))

Because of MP(x).VP(x) = 0, any linear combination of rows of the symmetric matrix MP(x) lies in the left-

nullspace of VP(x), and therefore, the vector cP(x) in particular satisfies

cP(x).VP(x) = 0 (barycentric equation)

dP is continuous but not differentiable at the isolated points x ∈P. On ℝd\P, the construction of wP and cP is 

a combination of C∞ functions. At points where the construction is well defined, i.e. does not involve a 

division by 0, the functions wP and cP are also C∞.

Let en,i denote the unit vector of length n with 1 at the i-th entry, and 0 otherwise. Due to continuity and 

boundedness of wP and cP, the limits exist as limx→pi
wP(x) = en,i and limx→pi

cP(x) = en,i and allow the continua-

tion of the functions at x ∈P as wP(pi) := en,i and cP(pi) := en,i for all i = 1, ..., n.

The construction of wP(x) and cP(x) also succeeds for alternative distance vectors:

definition of distance vector weighting coordinates

metric dP
M(x)i := || vi || = || pi - x || wP

ID cP
ID

leverage dP
L(x)i := HP(x)i,i wP

IL cP
IL

harbor dP
H(x)i := || HP(pi) -HP(x) ||F wP

H cP
H

 

Example: Let P consist of the six points p1 = (0.1, 0.1), p2 = (0.8, 0.2), p3 = (0.9, 0.7), p4 = (0.6, 0.5), 

p5 = (0.3, 0.9), p6 = (0.1, 0.7) from the 2-dimensional plane ℝ2. We plot the weightings wP
ID, wP

IL, wP
H as well 

as the coordinates cP
ID, cP

IL, cP
H over the unit square [0, 1]2 ⊂ℝ2 for β = 2.

Each graphic aggregates the n = 6 entries of the vector valued function. ◼
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The generalized barycentric coordinates cP
IL(x) that are based on inverse leverags were derived in [2020 

Hakenberg b)]. The motivation was to create coordinates without the use of a metric. For x ∈P, dP
L(pi)i = 0 

follows from Hi,i = (V ⊤.V )+.vi.vi since then vi = pi - pi = 0 for all i = 1, ..., n.

The harbor distance vector dH is introduced in this article. dP
H(x) is determined by the Frobenius norm of the 

difference between the influence matrices HP(x) and HP(pi) for i = 1, ..., n. Clearly, 

dP
H(pi)i = || HP(pi) -HP(pi) ||F = 0 for all i = 1, ..., n.

The i-th entry dP
M(x)i of the metric distance vector only depends on the two locations pi and x, and is indepen-

dent of the remaining points pj ∈ P for j ≠ i. Therefore, one can refer to dP
M as a vector of absolute distances. 

In contrast, the i-th entry dP
L(x)i depends on all points in P and x. In that case, we refer to dP

L as a vector of 

relative distances. Analogous, dP
H is a vector of relative distances.

Remark: The special choice of β = 0 results in the constant wP(x) = (1 /n)n for all x, and affine coordinates 

cP
AF(x) = η(MP(x).n) as proposed in [2011 Waldron], see also [2016 Hormann, Sukumar; p.12]. ◼

Lie Groups

A continuous distance function between two points x, y ∈G in a Lie group G cannot always be defined in a 

way that is invariant under all group actions. “To overcome the lack of existence of bi-invariant Riemannian 

metrics for general Lie groups”, [2012 Pennec, Arsigny] propose to rely on the canonical Cartan connection. 

The geodesics of the connection are consistent with group composition and inversion:

logx(y) = dLx.logx-1.y = dRx.logy.x-1 
for all y ∈ in a neighborhood of x ∈⊂G. The function log : ⊂G → without subindex refers to the 

mapping of group elements to the Lie algebra . The function Lx(y) := x.y denotes left-action, and Rx(y) := y.x 

is right-action.

Let G be a d-dimensional Lie group, and P = {p1, ..., pn} a set of points pi ∈G for i = 1, ..., n with n > d. [2012 

Pennec, Arsigny; p.14] generalize VP(x) for x ∈G as

Design matrix: VP(x) :=

logx(p1)

...

logx(pn)

The vectors vi := logx(pi) for i = 1, ..., n are from the same vector space, namely the tangent space Tx G. 

The logarithm logx : ⊂G → Tx G maps geodesics emanating from x to straight lines in Tx G with logx(x) = 0. 

We quietly assume that “the dispersion of the data is small enough”, that means all points p1, ..., pn, x are 

from a sufficiently small neighborhood ⊂G so that logx(pi) exists for all i = 1, ..., n. The definition of VP(x) 

is consistent with the previous section regarding the Euclidean space, since in ℝd we have dLx = I, and 

logx(y) = logx-1.y = y - x.

a) b) 

Figure: a) shows ⊂G as a neighborhood of x in yellow, and several geodesics emanating from x. b) 

visualizes the logx image of  and of the geodesics in Tx G. ◼
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Two problems can be posed from the following equations where x ∈G and w ∈ ℝn 

(1) w.n = 1 (partition of unity)

(2) w.VP(x) = 0 (barycentric equation)

Forward problem: Given P and w, find the weighted average x ∈G that satisfies (2).

Inverse problem: Given P and x, find a barycentric coordinate w ∈ ℝn that satisfies (1) and (2).

[2012 Pennec, Arsigny] refer to (2) as the characterization of the weighted average as the exponential 

barycenter. The authors show that the weighted average μP(w) := x ∈G is unique, and biinvariant regardless 

whether a biinvariant metric exists on the Lie group G. In Theorem 3, p.21 the authors show that the left-

nullspace of VP(x) is biinvariant, i.e. for any w ∈ ℝn

w.VP(x) = 0     ⇔     w.Vg.P(g.x) = 0     ⇔     w.VP.g(x.g) = 0     ⇔     w.VP-1x-1 = 0

where g.P := {g.p1, ..., g.pn}, P.g := {p1.g, ..., pn.g} for g ∈ G, and P-1 := p1
-1, ..., pn

-1.
The authors derive explicit formulas for weighted averages in selected Lie groups, for instance SE(2), and 

He(d). In ℝd, the weighted average is simply μP(w) = ∑i=1
n wi pi. Generally, the weighted average may be 

obtained using an iterative fixed point algorithm. The uniqueness of the weighted average allows to general-

ize constructions that involve affine linear combinations originally conceived for ℝd to Lie groups: Bézier 

curves, subdivision, and smoothing filters, see the references in [2018 Hakenberg b); p.10].

The solution to the inverse problem is generally not unique. In the 2-dimensional Euclidean space ℝ2, 

numerous constructions for barycentric coordinates exist, see [2016 Hormann, Sukumar; p.15]. However, 

these functions involve notions of length, area, angle, and convexity, which complicates their generalization 

to arbitrary Lie groups.

[2016 Pennec] refers to the set of solutions of the inverse problem as the exponential barycentric subspace. 

The article “shows that barycentric subspaces locally define a submanifold of dimension n - 1”. The main 

aim of the author is the generalization of principal component analysis to Riemannian manifolds referred to 

as barycentric subspaces analysis.

[2020 Hakenberg b)] constructs the specific solution cP
IL(x) to the inverse problem, i.e. generalized barycen-

tric coordinates that are moreover biinvariant on arbitrary Lie groups.

The terms “forward problem” and “inverse problem” were introduced in [2013 Panozzo, Baran, Diamanti, 

Sorkine-Hornung].

Biinvariant Distance Vectors

A distance vector dP : ⊂G →ℝn is called biinvariant if

dP(x) = dg.P(g.x) = dP.g(x.g) = dP-1x-1 for all g ∈G.

[2012 Pennec, Arsigny; p.21] show that the left-nullspace of VP(x) as a subspace in ℝn is biinvariant. That 

means the projection MP(x) to the left-nullspace of VP(x) is also biinvariant. The projection HP(x) to the 

orthogonal complement of the left-nullspace of VP(x) is therefore also biinvariant. That implies that both 

functions dP
L, and dP

H defined as

dP
L(x)i := HP(x)i,i  for i = 1, ..., n

dP
H(x)i := || HP(pi) -HP(x) ||F  for i = 1, ..., n 

are biinvariant. For metric distances dP
M(x)i := || vi || = || logx(pi) || to be biinvariant, a biinvariant metric has to 

exist on the Lie group, which is not always the case. For instance, “there is No Bi-invariant Metric for Rigid 

Transformations” SE(d) for d ≥ 2, see [2012 Pennec, Arsigny; p.16]. The impossible often has a kind of 

integrity to it which the merely improbable lacks.

[2012 Pennec, Arsigny; p.39] define the Mahalanobis distance mP,x : ⊂G →ℝ as

mP,x
2 (y) :=SP(x)

+.logx(y).logx(y)         where SP(x) :=VP(x)
⊤.VP(x)

The authors argue that mP,x(y) is biinvariant under simultaneous transformation of all parameters P, x, y by 

an arbitrary group element g ∈G, and inversion. The 2-covariant tensor SP(x) is generally positive definite, 
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but may be only positive semidefinite if the tangent space Tx G is embedded in a vector space of higher 

dimensions for convenience, or for pathological constellations of points P. Therefore, we define the bilinear 

form using the pseudo inverse SP(x)
+. Furthermore, we omit the factor n-1 in the definition of SP(x) in order 

to achieve equivalence with leverages as argued in the previous section

dP
L(x)i = HP(x)i,i =mP,x(pi) for i = 1, ..., n.

In other words, the bilinear form SP(x)
+ on the tangent space Tx G evaluated with the vectors vi = logx(pi) for 

i = 1, ..., n yield the same distance notion as the projection matrix HP(x).

a) b)

Figure: Two equivalent approaches to compute dP
L(x) ∈ ℝ5 for P = {p1, ..., p5} and x on the 2-dimensional 

sphere S2: a) Influence matrix HP(x) of dimensions 5×5. b) Positive semidefinite form SP(x)
+ indicated as 

ellipse, and tangent vectors vi = logx(pi) ∈ Tx S2 for i = 1, ..., 5 embedded in ℝ3 that determine mP,x(pi). ◼
The garden distance vector makes use of the bilinear form SP(pi)

+ on the tangent space Tpi
G in the evalua-

tion of the Mahalanobis distance at each pi ∈ P as

dP
G(x)i :=mP,pi

(x) = SP(pi)
+.logpi

(x).logpi
(x) for i = 1, ..., n.

The distance vector dP
G(x) is biinvariant, because all entries mP,pi

(x) are biinvariant. We yield 

dP
G(pi)i =mP,pi

(pi) = 0 due to logpi
(pi) = 0 for all i = 1, ..., n.

a) b) 

Figure: a) Projection matrices HP(x) and HP(pi) for i = 1, ..., 5 involved in the computation of harbor dis-

tances dP
H(x) ∈ ℝ5. b) Mahalanobis bilinear form SP(pi)

+ and tangent vector logpi
(x) ∈ Tpi

S2 for i = 1, ..., 5 that 

determine garden distances dP
G(x) ∈ ℝ5. ◼

Remark: We have coined the distance vectors “harbor”, and “garden” respectively, due to lack of aware-

ness of a preexisting concept. Is there any tea on this spaceship? ◼
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Examples

ℝd is a d-dimensional Lie group with vector addition as group action. The tangent space Tx ℝd at a point 

x ∈ ℝd is a d-dimensional vector space and therefore can be identified with Tx ℝd =ℝd. The mapping of a 

point y ∈ ℝd into the vector space Tx ℝd is simply by translation logx(y) = logx-1.y = y - x, so that logx(x) = 0.

Example: For the set P = {-1, 0, 1} of three points in ℝ1 the inverse distance coordinates cP
ID and inverse 

leverage coordinates cP
IL are identical, see [2020 Hakenberg b); p.5]. Mathematica yields the components of 

the generalized barycentric harbor coordinates cP
H(x)i for i ∈ {1, 2, 3} as

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

β=1

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

β=2

The exponent β = 1 results in

cP
H(x) =

1

2 2 x2-1- 5 2+3 x2 x

(-1 + x) - 2 x(x + 1)2 + 5 2 + 3 x2 x

2 2 x4 - 1
(-1 - x) + 2 x(x - 1)2 + 5 2 + 3 x2 x

The exponent β = 2 results in smooth cP
H ∈C∞ namely

cP
H(x) =

1

4+12 x2+84 x4

x(x - 1) 2 + 3 x (x - 13) x2 - 2
2 1 - x2 2 + 3 x4

x (x + 1) 2 + 3 x (x + 13) x2 + 2
 ◼

 |     

Figure: The left image shows the square domain  = [0, 1]2 ⊂ℝ2 and the set P of seven control points. 

Each point pi ∈P has an associated target location qi ∈ ℝ2 for i = 1, ..., 7. The images to the right show the 

deformation of  subject to different interpolatory methods that have in common that pi is mapped to qi for 

i = 1, ..., 7: Moving least squares with Shepard’s inverse distance weighting wP
ID. Then, deformation as the 

concatenation cP ∘μQ : →ℝ2 with cP
ID, cP

IL, and cP
H. The exponent β = 2 is used in all instances. ◼

Remark: In ℝ1, w ID =w IL. In ℝd, wH =wG. I’d far rather be happy than right any day. ◼

The d-dimensional sphere is the homogeneous space Sd =SO(d + 1) /SO(d). [2016 Pennec; p.8] states the 

formula for logx : ⊂Sd → Tx Sd.

a) b) 

Figure: a) subset ⊂S2 in yellow, and several geodesics emanating from x ∈. b) logx image of  and of 

the geodesics in Tx S2. ◼
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Example: Eight control points P = {p1, ..., p8} are placed on the front hemisphere ⊂S2 as

The distance vectors dP : ⊂S2 →ℝ8 are

dP
M

dP
L

dP
H

dP
G

The exponent β = 2 results in the smooth coordinate functions cP : ⊂S2 →ℝ8 as

cP
ID

cP
IL

cP
H

cP
G

Only the front hemisphere is shown. The back hemisphere contains the antipodes -pi for i = 1, ..., 8 where 

the dP’s are not smooth. Consequently, the cP’s also lack regularity on the back hemisphere. ◼
[2001 Buss, Fillmore; p.114] “prove existence and uniqueness properties of the [spherical] weighted aver-

ages, and give fast iterative algorithms with linear and quadratic convergence rates.”

|

Figure: Deformation of a “square” patch ⊂S2 as the concatenation μQ ∘cP : →S2 defined by points 

pi, qi ∈S2 for i = 1, ..., 6. The deformations are produced using cP
ID, cP

IL, cP
H, and cP

G respectively. ◼
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The 3-dimensional special Euclidean group SE(2) is a Lie group, that means logx(y) = dLx.logx-1.y for all 

x, y ∈SE(2). [2017 Eade; p.16] states the formula for log : SE(2)→(2). [2018 Hakenberg b); p.3] states the 

formula for the logarithm of the covering group SE(2). A point p ∈SE(2) consists of a position (px, py) ∈ ℝ2 

and an angular orientation θ ∈ [-π, π). We visualize p = (px, py, θ) as an arrowhead in the plane.

Figure: Points pi, x ∈SE(2) and the transformed points p 'i = g.pi.h, x ' = g.x.h for some g, h ∈SE(2). The 

influence matrix is biinvariant, i.e. HP(x) =HP'(x '). Numbers indicated at pi and p 'i are the i-th leverage 

identical to the diagonal entry HP(x)i,i for i = 1, ..., 5. ◼

              

Figure: The points in P ⊂SE(2) are color coded according to their position in the ordering based on their 

relative distance from x ∈SE(2). From left to right: dP
L(x), dP

H(x), dP
G(x). ◼

Implementation

The Mathematica code below computes metric, leverage, and harbor distance vectors, weightings, and 

generalized barycentric coordinates. For spaces other than ℝd, the implementation of logx(y) has to be 

adapted accordingly.

η[v_] := Normalizev, Total
log[x_][y_] := y - x

H[P_][x_] := WithV = log[x] /@ P, V.PseudoInverse[V]
M[P_][x_] := IdentityMatrixLength[P] - H[P][x]

HP[P_] := HP[P] = H[P] /@ P

dM[P_, x_] := Norm /@ log[x] /@ P

dL[P_, x_] := Diagonal[H[P][x]]^(1 / 2)

dH[P_, x_] := With{Hx = H[P][x]}, NormFlatten[# - Hx] & /@ HP[P]

wID[β_][P_, x_] := ηdM[P, x]^-β
wIL[β_][P_, x_] := ηdL[P, x]^-β
wH[β_][P_, x_] := ηdH[P, x]^-β

cID[β_][P_, x_] := η[M[P][x].wID[β][P, x]]

cIL[β_][P_, x_] := η[M[P][x].wIL[β][P, x]]

cH[β_][P_, x_] := η[M[P][x].wH[β][P, x]]

The visualizations of non-linear geometry in this article were computed with the open source software library 

sophus. The library implements weighted averages, distance vectors, weightings, and generalized barycen-

tric coordinates for the Lie groups ℝd, SO(3), ST(d), He(d), SE(2), SE(2), SE(3), and the homogeneous 

spaces Sd, Hd, Sym+(d), ℝPd. Weblink: https://github.com/datahaki/sophus
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Future Work

The preorder induced by the biinvariant distance vector dP(x) allows to arrange the points pi ∈ P in a priority 

queue according to their relative distance to x. This prioritization may be useful in motion planning applica-

tions when the shortest paths between x and pi ∈ P should be tested first.

[2007 Press, Teukolsky, Vetterling, Flannery; p.145] give a recipe for kriging, also known as Gauss-Markov 

estimation, or Gaussian process regression. At the heart of the method is a (symmetric) matrix of distances. 

We plan to investigate the use of the matrix Di,j := dP(pi)j in kriging on Lie groups and homogeneous spaces.

dP
H measures the distance between the projection matrices HP(x) and HP(pi) as the Frobenius norm of the 

matrix difference. The use of other distances are possible. In particular, the geodesic distance between two 

projection matrices H1, H2 in the Grassmannian manifold Gr(n, k) is

dGr
2 (H1, H2) = -

1

4
trlog2((I - 2 H2).(I - 2 H1))

as derived in [2015 Batzies, Hüper, Machado, Silva Leite; p.91]. However, “notice that we are assuming that 

H1 and H2 can be joined by a unique geodesic. So, there is an implicit condition on these two matrices, 

namely that the orthogonal matrix (I - 2 H1 ) (I - 2 H2) has no negative real eigenvalues.” Furthermore, 

HP(x) and HP(pi) may not always be of the same rank.

The weighted average μP(w) defined as exponential barycenter exists uniquely and can be computed using 

an iterative fixed point algorithm. [2012 Pennec, Arsigny] prove this for all Lie groups. [2001 Buss, Fillmore] 

provide the proof for the homogeneous space Sd. Both results assume non-negative weights wi ≥ 0. How-

ever, the explicit formulas that [2012 Pennec, Arsigny] derive for the weighted average in ℝd, SE(2), and 

He(d) do not require wi ≥ 0 at all. Furthermore, what about weighted averages on general homogeneous 

spaces?
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