Solving the 106 years old 3^{k} Points Problem with the Clockwise-algorithm

Marco Ripà

sPIqr Society, World Intelligence Network
Rome, Italy
e-mail: marcokrt1984@yahoo.it

Published online: 09 Jul. 2020

Abstract

In this paper, we present the clockwise-algorithm that solves the extension in k-dimensions of the infamous nine-dot problem, the well known two-dimensional thinking outside the box puzzle. We describe a general strategy that constructively produces minimum length covering trails, for any $k \in \mathbb{N}-\{0\}$, solving the NP-complete ($3 \times 3 \times \ldots$ X 3)-points problem inside a 3 X 3 X \ldots X 3 hypercube. In particular, using our algorithm, we explicitly draw different covering trails of minimal length $h(k)=\frac{3^{k}-1}{2}$ for $k=3$ and $k=4$, and we also conjecture that, for every $k \geq 1$, it is possible to solve the 3^{k}-points problem with $h(k)$ lines starting from any of the 3^{k} nodes, except from the central one.

Keywords: Nine dots puzzle, Nine-dot problem, Clockwise-algorithm, Thinking outside the box, Hypergraph, Lateral thinking, Link-length, Connectivity, Polygonal path, Optimization problem.

2010 Mathematics Subject Classification: Primary 05C85; Secondary 05C57, 68R10.

1 Introduction

The classic nine dots puzzle $[8,10]$ is the well known thinking outside the box challenge [3, 11] and it corresponds to the two-dimensional case of the general 3^{k}-points problem (assuming $k=2$) [2, 5, 9, 13].

The statement of the 3^{k}-points problem problem is as follows:
"Given a finite set of 3^{k} points in \mathbb{R}^{k}, we need to visit all of them (at least once) with a polygonal path that has the minimum number of line segments $h(k)$, and we simply define the aforementioned line segments as lines. Let G_{k} be a $3 \times 3 \times \ldots \mathrm{X} 3$ grid in $\mathbb{N}_{0}{ }^{k}$, we are asked to join all the points of G_{k} with a minimum (link) length covering trail $C:=C(k)(C(k)$ represents any trail consisting of $h(k)$ lines), without letting one single line of C go outside of a 3 X 3 X \ldots X $3 k$-dimensional (hyper-)box (i.e., remaining inside a $4 \times 4 \times \ldots \mathrm{X} 4$ grid in \mathbb{Z}^{k}, which strictly contains G_{k}, and we call it box)".

It is trivial to note that the formulation of our problem is equivalent to asking:
"Which is the minimum number of turns $(h(k)-1)$ in order to visit (at least once) all the points of the k-dimensional regular grid G_{k} with a connected series of line segments (i.e., a possibly selfcrossing polygonal chain allowed to turn at nodes and at Steiner points)?" [1, 14].

In the present paper, our goal is to definitely solve the 3^{k}-points problem for any $k \in \mathbb{N}-\{0\}$. We introduce a general algorithm, that we name as the clockwise-algorithm, which produces minimum length trails $C(k)$ for the 3^{k}-points problem. In particular, we show that $C(k)$ has $h(k)=\frac{3^{k}-1}{2}$ lines, answering to the most spontaneous 106 years old question which arose from the original Loyd's puzzle [10].

The aspect of the 3^{k}-points problem that most amazed us, when we eventually solved it, is the central role of Loyd's expected solution for the $k=2$ case. In fact, the clockwise-algorithm, able to solve the main problem in a k-dimensional space, is the natural generalization of the classic solution of the nine dots puzzle.

$3 k$-points problem

The stated 3^{k}-points optimization problem, especially for $k<4$, appears to have concrete applications in manufacturing, drone routing, cognitive psychology, and integrated circuits (VLSI design). Many suboptimal bounds have been proved for the NP-complete [4] 3^{k}-points problem under additional constraints (such as limiting the solutions to Hamiltonian's paths or considering only rectilinear spanning paths [2, 6, 9]), but (to the best of our knowledge) the $3^{k>3}$-points problem remains unsolved to the present day, and this article provides its first exact solution so far [12].

2.1 A tight lower bound

Given the 3^{k}-points problem as introduced in Section 1, if we remove its constraint on the inside the box solutions, then we have that a lower bound is provided by Theorem 1.
Theorem 1. For any $k \in \mathbb{N}-\{0\}, h(k) \geq \frac{3^{k}-1}{2}$.
Proof. If $k=1$, then it is necessary to spend (at least) 1 line to join the 3 points.
Given $k=2$, we already know that the nine points problem cannot be solved with less than 4 lines (see [7], assuming $n=3$).

Let k be greater than 2 . We invoke the proof of Theorem 1 in [12], substituting $n_{i}=3$. Thus, equation (4) of [12] can be rewritten as

$$
\begin{equation*}
h_{l}\left(3_{1}, 3_{2}, \ldots, 3_{k}\right)=\left\lceil\frac{3^{k}-1}{2}\right\rceil \text {, } \tag{1}
\end{equation*}
$$

which is an integer (since $3^{k}-1$ is always even).
Therefore, $h(k) \geq h_{l}\left(3_{1}, 3_{2}, \ldots, 3_{k}\right)=\frac{3^{k}-1}{2}$ for any (strictly positive) natural number k.
It is redundant to point out that Theorem 1 provides also a valid lower bound for the standard $3 \times 3 \times \ldots$ X 3 box constrained 3^{k}-points problem. The purpose of Section 2.2 is to show that this bound matches $h(k)$ for any k.

2.2 The clockwise-algorithm

In order to introduce the clockwise-algorithm, let we begin from the trivial case $k=1$. This means that we have to visit 3 collinear points with a single line, remaining inside a unidimensional box which is 3 units long.

One solution is shown in Figure 1.

3X1 PERFECT SOLUTION 1 line

START END

Figure 1. Solving the 3 X 1 puzzle inside the box (3 units of length), starting from one of the line segment endpoints. The puzzle is solvable with this $C(1)$ path starting from any of the two red points.

Considering the spanning path by Figure 1, it is easy to see that we cannot solve the 3^{1}-points problem starting from one point of G_{1} iff this point is the central one.

Given $k=2$, we are facing the classic nine dots puzzle considering a 3×3 box (9 units of area). The well-known Hamiltonian path shown in Figure 2 proves that we can solve the problem, without allowing any line to exit from the box, if we start from any node of G_{2} except from the central one [7].

3X3 PERFECT SOLUTION
 4 lines

Figure 2. $C(2)$ is a path that consists of $h(2)=\frac{3^{2}-1}{2}$ lines. In order to solve the 3 X 3 puzzle with 4 lines starting from one node of G_{2}, it is necessary to avoid to start from the central point of the grid.

Looking carefully at $C(2)$, as shown in Figure 2, we note that line 1 includes $C(1)$ if we simply extend it by one unit backward. Thus, $C(1)$ and the first line of $C(2)$ are essentially the same trail and so they are considering the clockwise-algorithm. Line 2 can be obtained from line 1 going backward when we apply a standard rotation of $\frac{\pi}{4}$ radians: we are just spinning around in a two-
dimensional space, forgetting the $3^{2-1}-1$ collinear points that will later be covered by the repetition of $C(1)$ following a different direction. Now, we are able to understand what line 3 really is: it is just a link between the repeated $C(2-1)$ trail backward and the final $C(2-1)$ trail following the new direction. In general, the aforementioned link corresponds to line $2 \cdot h(k-1)+1=3^{k-1}$ of any $C(k)$ generated by the clockwise-algorithm.

Definition 1. Let G_{3} be the $3 \times 3 \times 3$ regular grid in $\mathbb{N}_{0}{ }^{3}$. We call "nodes" all the 27 points of G_{3}, as usual. In particular, we indicate the nodes $V_{1} \equiv(0,0,0), V_{2} \equiv(2,0,0), V_{3} \equiv(0,2,0)$, $V_{4} \equiv(0,0,2), V_{5} \equiv(2,2,0), V_{6} \equiv(2,0,2), V_{7} \equiv(0,2,2), V_{8} \equiv(2,2,2)$ as "vertices", we indicate the nodes $F_{1} \equiv(1,1,0), F_{2} \equiv(1,0,1), F_{3} \equiv(0,1,1), F_{4} \equiv(2,1,1), F_{5} \equiv(1,2,1), F_{6} \equiv(1,1,2)$ as "face-centers", we call "center" the node $X_{3} \equiv(1,1,1)$, and we indicate as "edges" the remaining 12 nodes of G_{3}.

Now, we are ready to describe the generalization of the original Loyd's covering trail to a higher number of dimensions. Given $k=3$, a minimum length covering trail has already been shown in [12], but this time we need to solve the problem inside a 3 X 3 X 3 box. Our strategy is to follow the optimal two-dimensional covering trail (see Figure 2) swirling in one more dimension, according to the 3 -steps scheme given by lines 1 to 3 of $C(2)$, and beginning from a congruent starting point.

Thus, we take one vertex of G_{3} and, while we rotate in the space at every turn (as observed for $k=2$), it is possible to repeat twice (forward and backward) the whole $C(2)$ or, alternatively (Figure 3), we can follow $\frac{8}{3}$ times the scheme provided by its lines 1 to 3 . In both cases, at the end of the process, $3^{3-2}-\frac{1}{3}$ gyratories have been performed, so we spend the $\left(3^{3-1}\right)$-th line to close the subtour $(C(3)$ can never be a cycle plus we avoided to extend its first line backwards, but we have already seen that this fact does not really matter), joining $3-1$ new points. In this way, we reach the "starting vertex" again, and the last $3^{3}-1$ unvisited nodes belong only to $G_{k-1}=G_{2}$ (choosing the right direction). Therefore, we can finally paste $C(2)$ (Figure 2) by extending one unit backward its first line (the new $(2 \cdot h(3-1)+2)$-th line) in order to visit every 3^{2} nodes of G_{3-1}.

3X3X3 PERFECT SOLUTION

1004
31012
65

Figure 3. C (3) solves the 3 X 3 X 3 puzzle inside a 3 X 3 X 3 box (27 cubic units of volume), starting from face-centers or vertices, thanks to the clockwise-algorithm.

Before moving on $k=4$, we wish to prove that the 3^{3}-points problem is solvable starting from any node of G_{3} if we exclude the center of the grid (as we have previously seen for $k \in\{1,2\}$). This result immediately follows by symmetry when we combine the trails shown in Figures 3\&4.

3X3X3 PERFECT SOLUTION

Figure 4. Solving the 3 X 3 X 3 puzzle inside a 3 X 3 X 3 box (27 cubic units of volume), starting from edges or vertices.

The number of $\frac{3^{k}-1}{2}$ lines solutions increases as k grows. Moreover, if we remove the box constraint, we are able to find new minimal covering trails [12], including those that reproduce (on a given 3 X 3 subgrid of G_{3}) the endpoints by Figure 2, as shown in Figure 5.

3X3X3 PERFECT SOLUTION

Figure 5. Solving the $3 \times 3 \times 3$ puzzle inside a $3 \times 3 \times 4$ box (36 cubic units of volume).

Finally, we present the solution of the 3^{4}-points problem. Two examples of minimum length covering trails generated by the clockwise-algorithm are given. The method to find $C(4)$ is basically the same that we have previously discussed for G_{3}. So, we utilize the standard pattern shown in Figure 3 as we used $C(2)$ in order to solve the 3^{3}-points problem. We apply $C(3)$ forward (while we spin around following the 3 -steps gyratory as shown in Figure 6), then backward (Figure 7), subsequently we return to the "starting point" with line 27 (the $(2 \cdot h(4-1)+1)$-th link), and lastly we join the $3^{3}-1$ unvisited points with $C(3)$ by simply extending backward its first line (corresponding to the 28 -th link of $C(4)$ - see Figure 8).

3X3X3X3 PERFECT SOLUTION

8

2,5 111
Figure 6. Lines 1 to 13 of $C(4)$ following $C(3)$, as shown in Figure 3.

3X3X3X3 PERFECT SOLUTION

40 lines
$4,10,16,22$

$$
\begin{aligned}
& 1.7 \quad 23 \quad 26 \\
& \begin{array}{lll}
5 & 1 \cdot 1 & 2
\end{array} \\
& 20 \quad 8 \quad 14 \\
& 27 \quad 9 \quad 18 \\
& \begin{array}{lll}
6 & 12 & 3
\end{array} \\
& 24 \quad 24 \quad 15
\end{aligned}
$$

Figure 7. Lines 14 to 27 of $C(4)$ following $C(3)$ backward, the 27-th link to come back to the "starting point" is also included.

30,38 . 28

32

Figure 8. A minimum length covering trail that completely solves the 3 X 3 X 3 X 3 puzzle with 40 lines, inside a 3 X 3 X 3 X 3 box (hyper-volume 81 units 4), thanks to the clockwise-algorithm applied to $C(3)$ from Figure 3.

The clockwise-algorithm reduces the complexity of the 3^{k}-points problem to the complexity of the 3^{k-1}-points one. A clear example is shown in Figure 9.

Figure 9. How the clockwise-algorithm concretely works: it takes a minimum length covering trail $C(3)$ as input, and returns $C(4)$. Lines 1-13 belong to the covering trail $C(3)$ (shown in the upperright quadrant), line 13 ' follows line 13 and belongs to $C(3)$ backward. $C(3)$ backward ends with line 1^{\prime} : it is extended (by one unit) in order to be connected to the $\left(2 \cdot h\left(3^{3}\right)+1\right)$-th link, and this allows $C(3)$ to be repeated one more time (joining the remaining 26 unvisited points).

Since the clockwise-algorithm takes $C(k-1)$ as input and returns $C(k)$ as its output, it can be applied to any $C(k)$ in order to produce some $C(k+1)$ consisting of $h(k+1)=3 \cdot h(k)+1$ lines. In this way, we have shown that the 3^{k}-points problem can be solved, inside a $3 \times 3 \times \ldots \times 3$ box of hyper-volume 3^{k} units $^{\mathrm{k}}$, drawing optimal trails with $3 \cdot h(k-1)+1$ lines, for any $k>1$.

Therefore, $\forall k \in \mathbb{N}-\{0\}$,

$$
\begin{equation*}
h(k+1)=3 \cdot h(k)+1=\frac{3^{k+1}-1}{2} . \tag{2}
\end{equation*}
$$

3 Conclusion

Given the k-dimensional grid G_{k}, the clockwise-algorithm let us easily draw different covering trails of $\frac{3^{k}-1}{2}$ lines, and all of them remain inside the box. After the $\left(3^{k}-1\right)$-th link, it is possible to
switch from the previously applied $C(k-1)$ to another known solution of the 3^{k-1}-points problem, completing a new optimal trial with one different endpoint (e.g., we can take the walk shown in Figure 7 and then apply $C(3)$ from Figure 9).

Let $X_{k} \equiv(1,1, \ldots, 1)$ be the central node of G_{k} (see Definition 1 for the case $k=3$). We conjecture that, $\forall k \in \mathbb{N}-\{0\}$, the 3^{k}-points problem is solvable (embracing also every outside the box optimal trail) starting from any node of $G_{k}-\left\{X_{k}\right\}$ with a covering trail of length $h(k)=\frac{3^{k}-1}{2}$, while it is not if we include X_{k} as an endpoint of $C(k)$.

References

[1] Aggarwal, A., Coppersmith, D., Khanna, S., Motwani, R., Schieber, B. (1999). The angularmetric traveling salesman problem. SIAM Journal on Computing 29, 697-711.
[2] Bereg, S., Bose, P., Dumitrescu, A., Hurtado, F., Valtr, P. (2009). Traversing a set of points with a minimum number of turns. Discrete \& Computational Geometry 41(4), 513-532.
[3] Chein, J.M., Weisberg, R.W., Streeter, N.L. et al. (2010). Working memory and insight in the nine-dot problem. Memory \& Cognition 38, 883-892.
[4] Chitturi, B., Pai, J. (2018). Minimum-Link Rectilinear Covering Tour is NP-hard in R^4. arXiv, 1 Oct. 2018, https://arxiv.org/abs/1810.00529
[5] Collins, M.J. (2004). Covering a set of points with a minimum number of turns. International Journal of Computational Geometry \& Applications 14(1-2), 105-114.
[6] Collins, M.J., Moret, M.E. (1998). Improved lower bounds for the link length of rectilinear spanning paths in grids. Information Processing Letters 68(6), 317-319.
[7] Keszegh, B. (2013). Covering Paths and Trees for Planar Grids. arXiv, 3 Nov. 2013, https://arxiv.org/abs/1311.0452
[8] Kihn, M. (1995). Outside the Box: The Inside Story. FastCompany.
[9] Kranakis, E., Krizanc, D., Meertens, L. (1994). Link length of rectilinear Hamiltonian tours in grids. Ars Combinatoria 38, 177-192.
[10] Loyd, S. (1914). Cyclopedia of Puzzles. The Lamb Publishing Company, p. 301.
[11] Lung, C.T., Dominowski, R.L. (1985). Effects of strategy instructions and practice on ninedot problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition 11(4), 804-811.
[12] Ripà, M. (2020). Solving the n_1 $\leq n _2 \leq n _3$ Points Problem for n_3 <6. ResearchGate, 25 Jun. 2020, https://www.researchgate.net/publication/342331014_ Solving_the_n_1_n_2_n_3_Points_Problem_for_n_3_6
[13] Ripà, M., Remirez, P. (2013). The Nine Dots Puzzle extended to n X n X ... X n Points, viXra, 5 Sep. 2013, https://vixra.org/pdf/1307.0021v4.pdf
[14] Stein, C., Wagner, D.P. (2001). Approximation algorithms for the minimum bends traveling salesman problem. In: Aardal K., Gerards B. (eds) Integer Programming and Combinatorial Optimization. LNCS, vol. 2081, 406-421. Springer, Berlin.

