
THE WARING RANK OF THE 3× 3 PERMANENT

YAROSLAV SHITOV

Abstract. Let f be a homogeneous polynomial of degree d with coefficients

in a field F satisfying charF = 0 or charF > d. The Waring rank of f is the

smallest integer r such that f is a linear combination of r powers of F-linear
forms. We show that the Waring rank of the polynomial

x1y2z3 + x1y3z2 + x2y1z3 + x2y3z1 + x3y1z2 + x3y2z1

is at least 16, which matches the known upper bound.

1. Introduction

Let F be a field. A linear form is a homogeneous polynomial of degree 1, where
the word homogeneous means that the non-zero terms of a polynomial should have
equal degrees. A homogeneous polynomial f ∈ F[x1, . . . , xn] of degree d has Waring
rank r if there are linear forms l1, . . . , lr and c1, . . . , cr ∈ F such that

(1.1) f = c1l
d
1 + . . .+ crl

d
r ,

and r is the smallest number of terms in such a decomposition. If the characteristic
of F was finite and did not exceed d, the monomial md = x1x2 . . . xd would appear
with zero coefficient in the dth power of any linear form, so the Waring rank of md

would not be defined in this case. So it is natural to assume that either charF = 0
or charF > d, which guarantees the existence of a decomposition of the form (1.1).

Waring rank is NP-hard to compute [17], and its exact value is unknown for
many families of polynomials as well as several relevant sporadic examples. This
paper is devoted to the permanent, that is, the polynomial perd ∈ F[x11, . . . , xdd]
obtained from the determinant of a generic matrix (xij) by replacing every −1
coefficient with a +1. The Waring ranks of both the determinant and permanent
grow exponentially with d, but the ratios between the known lower and upper
bounds are still exponential [9, 11]. In fact, no exact value was known for the Waring
rank of these polynomials except the trivial cases of d = 1 (the rank equals 1) and
d = 2 (the rank equals 4). The main result of this paper is as follows.

Theorem 1.1. The Waring rank of per3 equals 16.

In what follows, we denote the Waring rank of a polynomial f by WR(f), so
the statement of Theorem 1.1 can be written as WR(per3) = 16. We finalize the
introductory section with a brief survey of prior work related to this theorem. A
general upper bound on on the Waring rank of the permanent follows from the
work of Glynn [9], who developed the formula of Ryser [15] and expressed perd as
a sum of 2d−1 products of linear forms. As explained by Ilten and Teitler [10], this
implies WR(per3) 6 16 because the monomials of degree three have Waring ranks
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not exceeding 4. In particular, an expression of the 3 × 3 permanent as a sum
of three products of linear forms would improve the upper bound on the Waring
rank of per3 to 12, but Ilten and Teitler [10] showed that such an expression is
impossible. So 16 stood as the best known upper bound for WR(per3) until now,
and Theorem 1.1 shows that this bound is tight.

Concerning the lower bounds, the inequality

WR(perd) >
1

2

(
2d

d

)
was proved by Shafiei [16] using the result of Ranestad and Schreyer [14], and the
d = 3 case gives WR(per3) > 10. Landsberg and Teitler [13] used a lower bound
based on the singularities of the hypersurface of a given polynomial and proved that
WR(per3) > 12. Farnsworth [6] improved this bound further to WR(per3) > 14;
his method was based on Koszul-Young flattenings and implied the same lower
bound for the border Waring rank of per3 as well. Boij and Teitler [2] showed that
the so-called symmetric cactus rank of per3 is at least 14, which gave an alternative
proof of the inequality WR(per3) > 14. Conner, Gesmundo, Landsberg, Ventura,
see Theorem 2.1 in [5], showed that the tensor corresponding to per3 has border
rank at least 15, which implies WR(per3) > 15 and hence

15 6WR(per3) 6 16.

Whether the Waring rank of per3 is 15 or 16 remained open until now.
Our approach to Theorem 1.1 can be adapted to give the inequality WR(det3) >

16 as well, but we do not give the details because it is already known that

17 6WR(det3) 6 18,

where the upper bound was proved by Conner–Gesmundo–Landsberg–Ventura [5],
and the lower bound follows from the paper of Conner–Harper–Landsberg [4].

Acknowledgments. The author would like to thank J. M. Landsberg and Zach
Teitler for useful comments on the topic of this paper.

2. Partially symmetric tensors

Our approach to Theorem 1.1 employs the natural correspondence between the
Waring rank and symmetric tensor decompositions [1]. Since the polynomial per3
has degree three, we switch to three-dimensional tensors, and we recall that the
field F is assumed to satisfy either charF = 0 or charF > 5. All matrices and
tensors considered below are supposed to have entries in F, all linear spaces are
assumed to have F as a ground field, and the notation span Φ denotes the F-linear
span of a family Φ of vectors in some F-linear space.

A symmetric tensor T is an n× n× n array of scalars taken in the field F such
that the value of T (i|j|k) remains invariant under a permutation of elements i, j, k
in an indexing set of cardinality n. The symmetric rank of T is the smallest integer
r for which there exist vectors u1, . . . , ur ∈ Fn and scalars c1, . . . , cr ∈ F such that

(2.1) T = c1u
⊗3
1 + . . .+ cru

⊗3
r

with v⊗3 being the tensor whose (i|j|k) coordinate equals vivjvk.
To explain the equivalence between (1.1) and (2.1), we consider an homogeneous

cubic polynomial f ∈ F[x1, . . . , xn] in which a monomial xixjxk has coefficient sijk.
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The corresponding symmetric n× n× n tensor T := T (f) is defined as

T (i|i|i) = siii, T (i|i|j) = siij/3, T (i|j|k) = sijk/6

if i, j, k are pairwise distinct. Now (1.1) is equivalent to (2.1) if the linear form
li = li1x1 + . . .+ linxn corresponds to the vector ui = (li1 . . . lin) for all i.

Now we are ready to write down the tensor corresponding to the polynomial in
Theorem 1.1. An ith slice of a symmetric n×n×n tensor T is the n×n symmetric
matrix whose (j, k) entry equals T (i|j|k). The linear space spanned by the slices of
the 9× 9× 9 tensor corresponding to per3 is

(2.2) L =



x11 x12 x13 x21 x22 x23 x31 x32 x33
x11 0 0 0 0 k h 0 f e
x12 0 0 0 k 0 g f 0 d
x13 0 0 0 h g 0 e d 0
x21 0 k h 0 0 0 0 c b
x22 k 0 g 0 0 0 c 0 a
x23 h g 0 0 0 0 b a 0
x31 0 f e 0 c b 0 0 0
x32 f 0 d c 0 a 0 0 0
x33 e d 0 b a 0 0 0 0


with the first row and first column indicating the labels in the indexing set. The
x11 slice of per3 is obtained by taking the variable a equal to 1/6 and all other
variables equal to 0 in (2.2). Similarly, the variable b corresponds to the x12 slice,
the variable c indicates the x13 slice, and so on.

Definition 2.1. (See [3].) Let L be a linear space spanned by a family of symmetric
n × n matrices. The partially symmetric rank of L is the smallest cardinality of
a family Φ of symmetric rank-one matrices such that L ⊆ span Φ. The partially
symmetric rank of L is denoted by psr(L).

Every slice of a tensor T satisfying (2.1) belongs to span{u1 ⊗ u1, . . . , ur ⊗ ur},
so the symmetric rank of a tensor is greater than or equal to the corresponding
partially symmetric rank. We are going to prove the following result.

Theorem 2.2. We have psr(L) > 16, where L is the linear space in (2.2).

The rest of this paper is devoted to the proof of Theorem 2.2, which implies the
desired lower bound in Theorem 1.1 by the above discussion.

3. Our notation and general observations

We are going to prove Theorem 2.2 by contradiction. Assuming the converse,
we adopt the following conventions.

Assumption 3.1. Taking ρ = 15, we consider a family α1, . . . , αρ ∈ F9 such that
the linear space

(3.1) Λ = span{α1 ⊗ α1, . . . , αρ ⊗ αρ}
has dimension ρ and contains the space L as in (2.2).

Remark 3.2. The assumption ρ = 15 instead of ρ 6 15 does not cause a loss of
generality because a pair of matrices αi⊗αi and αj⊗αj in a spanning set of Λ can
be replaced by a triple of generic matrices of the form (ξiαi + ξjαj)⊗ (ξiαi + ξjαj)
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without breaking the property L ⊆ Λ. In what follows, we do not use the notation
ρ and simply use the number 15 instead.

Notation 3.3. We denote by U the three-dimensional subspace of F9 corresponding
to the (x11, x12, x13) coordinates, which corresponds to taking the three leftmost
columns with respect to the block partition of (2.2). Similarly, we define M as
the six-dimensional subspace of F9 corresponding to the (x11, x12, x13, x21, x22, x23)
coordinates, which corresponds to taking the six leftmost columns. We denote by
ui the projection of αi onto U , and we define mi as the projection of αi onto M .

The following result is proved with the standard substitution method, see Sub-
section 1.2 in [19] or Proposition 3.1 in [12] for recent account. See also Lemma 2
in [7] for an early appearance of a related result.

Claim 3.4. Let P be a subspace of the space Λ as in (3.1). If dimP > 7, then

dimL ∩ P > dimP − 6,

where L is the space (2.2).

Proof. We have dim(L + P ) 6 15 because every matrix in L or P belongs to the
linear span of the 15 matrices αi ⊗ αi as in Assumption 3.1. We get 15 > dim(L+
P ) = dimL+ dimP − dimL ∩ P, and the result follows because dimL = 9. �

We proceed with three easy general observations.

Observation 3.5. If A,B,C are subspaces of some finite dimensional linear space,
then dim(A+B) ∩ C 6 dim(A ∩ C) + dimB.

Proof. Using the formula dimU + dimV = dim(U ∩ V ) + dim(U + V ), we get
dim(A+B)∩C−dim(A∩C)−dimB = dim(A+B)−dim(A+B+C) + dim(A+
C)− dimA− dimB = dim(A+ C)− dim(A+B + C)− dim(A ∩B) 6 0. �

Observation 3.6. Assume V ⊂ W are linear spaces, let w be a vector in W \ V .
If m is a matrix in V ⊗ V , then rank(m+ w ⊗ w) = rankm+ 1.

Proof. The rank of a block-diagonal matrix equals the sum of the ranks of the
diagonal blocks. �

Observation 3.7. Let c1, . . . , cn be a family of non-zero scalars. If vectors
v1, . . . , vn taken from some linear space satisfy

(3.2) c1(v1 ⊗ v1) + . . .+ ck(vn ⊗ vn) = 0,

then dim span{v1, . . . , vn} 6 n/2.

Proof. If vectors vi1 , . . . , vit are linearly independent, then the total of the corre-
sponding t summands in (3.2) has rank t by the previous observation. The remain-
ing summands have rank at most n− t, which implies t 6 n− t. �

4. The upper left 3× 3 block of L

We need several technical statements concerning the vectors u1, . . . , u15 as in
Notation 3.3. We recall that they belong to the subspace called U , which consists
of all vectors with zero coordinates outside x11, x12, x13 as in (2.2).

Claim 4.1. Let ε be a non-zero linear form involving the variables with indexes
(x11, x12, x13). Consider the subspace Lε consisting of all matrices of the form (2.2)
whose row spaces lie in ker ε. Then dimLε 6 5.
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Proof. If we have d 6= 0, e 6= 0, f 6= 0 for a matrix in (2.2), then the bottom-left
block of it is non-singular, so this matrix cannot belong to Lε. This means that one
of these variables should be zero; we assume that d = 0 without loss of generality.
The value of (e, f) cannot be arbitrary as well, because the sum of the row spaces
of all the 3× 3 matrices of the form 0 f e

f 0 0
e 0 0


is the whole three-dimensional space. Therefore, the description of Lε in L should
involve two non-collinear equations involving d, e, f , and the same argument applied
to g, h, k shows that codimLε > 4. �

Claim 4.2. If µ = (µ1, µ2, µ3) is a basis of U , then at least 5 vectors among
u1, . . . , u15 have a non-zero µ3 coordinate over µ.

Proof. Let A′ be the linear span of those αi⊗αi for which the corresponding ui has
a non-zero µ3 coordinate. Assuming that the statement is false, we get dimA′ 6 4.
Since every αi ⊗ αi ∈ A′ has a non-zero µ3 ⊗ µ3 position, the subspace A◦ ⊆ A of
matrices with zeros at the µ3 ⊗ µ3 position satisfies dimA◦ 6 3. We define A′′ as
the linear span of those αj ⊗ αj for which the corresponding vector uj has a zero
µ3 coordinate, and we get Λ = A′ + A′′ for the space Λ as in (3.1). Since both
L and A′′ have zeros at the µ3 ⊗ µ3 position, the inclusion L ⊆ A′ + A′′ implies
L ⊆ A◦ +A′′. According to Claim 4.1, we have dim(A′′ ∩ L) 6 5, which implies

dimL = dim(A◦ +A′′) ∩ L 6 dim(A′′ ∩ L) + dimA◦ 6 5 + 3,

in which the middle inequality is valid by Observation 3.5. The proof is complete
because we get a contradiction to dimL = 9. �

The main technical result of this section is a lower bound of 5 on the dimension
of the linear span of the matrices ui ⊗ ui. This is proved in Claim 4.5 below, and
we record the corresponding space for ease of reference.

Notation 4.3. Let ΦU be the space span{u1 ⊗ u1, . . . , u15 ⊗ u15}.

Claim 4.4. For the space ΦU as in Notation 4.3, we have dim ΦU > 4.

Proof. According to Claim 4.2, we have span{u1, . . . , u15} = U , so we can assume
that u1, u2, u3 are a basis of U up to relabeling the matrices of the decomposition.
So we have dim ΦU > 3, and if it was the case that dim ΦU = 3, then every matrix
ui⊗ui would be collinear to one of u1⊗u1, u2⊗u2, u3⊗u3. According to Claim 4.2,
at least five of the ui⊗ui matrices should be non-zero and collinear to u3⊗u3, and
we can assume that these matrices have indexes 3, 4, 5, 6, 7.

According to Claim 3.4, we can express some non-zero matrix in L as

` = s1(α1 ⊗ α1) + . . .+ s7(α7 ⊗ α7),

but a comparison of the U ⊗U blocks shows that s1 = s2 = 0. So the projection of
the row space of ` onto U is a subspace of span{u3}, and hence it is zero because
the matrices in (2.2) cannot have such a projection of dimension one. So we see
that ` has zeros outside the two 3× 3 blocks corresponding to the variables a, b, c,
and we have rank ` > 4. Assuming without loss of generality that s3 6= 0, we get

`− s3(α3 ⊗ α3) = s4(α4 ⊗ α4) + . . .+ s7(α7 ⊗ α7),
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which is a contradiction because the matrix on the left has rank at least five by
Observation 3.6 while the matrix on the right is the sum of at most four rank-one
matrices. �

Claim 4.5. For the space ΦU as in Notation 4.3, we have dim ΦU > 5.

Proof. Assuming the converse, we have dim ΦU = 4 by Claim 4.4. Up to relabeling
the matrices of the decomposition, we can assume that u1, u2, u3 are a basis of U ,
and we can take u15 = λ1u1 + λ2u2 + λ3u3 with at least two non-zero coefficients
among λ1, λ2, λ3. If λ3 = 0, then the condition dim ΦU 6 4 shows that every vector
ui /∈ span{u1, u2} is collinear to u3. Arguing as in Claim 4.4, we find five non-zero
vectors ui that are collinear to u3, and we assume that their indexes are 3, 4, 5, 6, 7.
We conclude the argument as in Claim 4.4 by showing that

span{α1 ⊗ α1, . . . , α7 ⊗ α7} ∩ L = {0},

which is a contradiction to Claim 3.4.
If λ1, λ2, λ3 are all non-zero, then no rank-one matrix is spanned by u1 ⊗ u1,

u2 ⊗ u2, u3 ⊗ u3, u15 ⊗ u15 except the scalar multiples of these matrices. By the
pigeonhole principle, there are 4 indexes j for which the corresponding uj ’s are
all collinear to the same vector among u1, u2, u3, u15. We assume without loss of
generality that u3, u4, u5, u6 are collinear, and we again conclude the argument
similarly to Claim 4.4 by showing that

span{α1 ⊗ α1, . . . , α6 ⊗ α6, α15 ⊗ α15} ∩ L = {0},

which is a contradiction to Claim 3.4. �

Claim 4.6. If i1, i2, i3 are distinct indexes, then dim span{ui1 , ui2 , ui3} > 2.

Proof. If the statement is false, we can use Claim 4.5 and find four additional
indexes i4, i5, i6, i7 such that the matrices

ui4 ⊗ ui4 , ui5 ⊗ ui5 , ui6 ⊗ ui6 , ui7 ⊗ ui7
are linearly independent and do not belong to the linear span of {ui1 ⊗ ui1 , ui2 ⊗
ui2 , ui3 ⊗ ui3}. According to Claim 3.4, we can express some non-zero matrix in L
as

` = s1(αi1 ⊗ αi1) + . . .+ s7(αi7 ⊗ αi7),

and since the U ⊗ U block in L is zero, we get s4 = s5 = s6 = s7 = 0. This
means that ` has rank at most three, which is a contradiction because, in fact,
every non-zero matrix in L has rank at least four. �

5. The upper left 6× 6 block of L

Now we switch to a consideration of the vectors m1, . . . ,m15 as in Notation 3.3.
We recall that they belong to the subspace called M , which consists of all vectors
with zero coordinates outside x11, x12, x13, x21, x22, x33 as in (2.2). The following
two statements are similar to Claims 4.1 and 4.2.

Claim 5.1. Let ζ be a non-zero linear form involving the variables with indexes
(x11, x12, x13, x21, x22, x33). Consider the subspace Lζ consisting of all matrices of
the form (2.2) whose row spaces lie in ker ζ. Then dimLζ 6 6.
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Proof. The bottom-left 3× 6 blocks of the matrices in L have the form 0 f e 0 c b
f 0 d c 0 a
e d 0 b a 0

 ,

so the sum of their row spaces over all possible a, b, c, d, e, f is the whole space
F6. This shows that we have a non-trivial linear equation involving a, b, c, d, e, f
that needs to be satisfied for the corresponding matrix to belong to Lζ . The same
argument applied to the upper-left 6 × 6 block gives two additional independent
linear equations involving g, h, k, which shows that codimLζ > 3. �

Claim 5.2. If µ = (µ1, µ2, µ3, µ4, µ5, µ6) is a basis of M , then at least 3 vectors
among m1, . . . ,m15 have a non-zero µ6 coordinate over µ.

Proof. Let A′ be the linear span of those αi ⊗ αi for which the corresponding
mi has a non-zero µ6 coordinate. Assuming that the statement is false, we get
dimA′ 6 2. Similarly, we define A′′ as the linear span of those αj ⊗ αj for which
the corresponding vector mj has a zero µ6 coordinate, and we get Λ = A′ +A′′ for
the space Λ as in (3.1). Using Claim 5.1, we get dim(A′′ ∩ L) 6 6, which implies

dimL = dim(A′ +A′′) ∩ L 6 dim(A′′ ∩ L) + dimA′ 6 6 + 2,

in which the middle inequality is valid by Observation 3.5. The proof is complete
because we get a contradiction to dimL = 9. �

The following two claims give lower bounds on the dimension spanned by a
family of the (mi) vectors as a function of the size of a family. Their formulations
are similar to Claim 4.6.

Claim 5.3. If i1, i2, i3 are distinct indexes, then dim span{mi1 ,mi2 ,mi3} > 2.

Proof. Follows from Claim 4.6 because every vector ui is the projection of mi onto
the first three coordinates. �

Claim 5.4. If i1, . . . , i6 are distinct indexes, then dim span{mi1 , . . . ,mi6} > 3.

Proof. If the statement is false, then the vectors mi1 , . . . ,mi6 belong to the linear
span of two vectors µ1, µ2, and then the linear space

W = span{mi1 ⊗mi1 , . . . ,mi6 ⊗mi6}
lies in the linear span of µ1⊗µ1, µ1⊗µ2 +µ2⊗µ1, µ2⊗µ2, so we have dimW 6 3.
This means that there exists a 3-dimensional subspace A′ in

span{αi1 ⊗ αi1 , . . . , αi6 ⊗ αi6}
consisting of matrices with a zero M ⊗ M block, which is, in other words, the
upper-left 6× 6 block in (2.2).

Claim 4.5 allows one to find indexes j1, j2, j3, j4, j5 for which the space

A′′ = span{αj1 ⊗ αj1 , . . . , αj5 ⊗ αj5}
has a five-dimensional projection onto U ⊗ U , and hence a five-dimensional pro-
jection onto M ⊗ M . Since the spaces A′ and A′′ intersect trivially, we get
dim(A′ +A′′) > 3 + 5, and Claim 3.4 shows that dim(A′ +A′′) ∩ L > 2. Since the
U ⊗ U blocks of the matrices in L are zero, we have (A′ +A′′) ∩ L = A′ ∩ L and

(5.1) dimA′ ∩ L > 2.



8 YAROSLAV SHITOV

Now let us recall that the projections of the row spaces of the matrices in W
onto M belong to span{µ1, µ2}, and let us deduce a contradiction. An examination
of (2.2) shows that there are no two-dimensional subspaces L′ ⊂ L such that the
submatrix obtained by the first 6 columns of any non-zero matrix in L′ would have
the row space in a two-dimensional subspace of M fixed in advance. This implies
dimW ∩ L 6 1 and contradicts to (5.1) because A′ ⊂W . �

6. The proof

In this section, we put together the auxiliary results from Sections 3–5 and
complete the proof of Theorem 2.2.

Notation 6.1. We say that an index i ∈ {1, . . . , 15} is a twin if there exists j 6= i
such that mi and mj are non-zero collinear vectors. The non-zero non-twin vectors
are called essential.

Remark 6.2. According to Claim 5.3, there cannot be a family of more than two
collinear twins. Also, at most one vector among m1, . . . ,m15 can be zero, and this
zero vector can exist only if there are no twins.

Claim 6.3. If we have at most two twin pairs, then we can enumerate the vectors
such that

(1) m1, . . . ,m6 are linearly independent,
(2) {m1, . . . ,m6} intersects every twin pair, and
(3) m7, . . . ,m10 are essential and linearly independent.

Proof. Denoting the number of twin pairs by a, we take a total of a representatives
of every twin pair as the first a vectors. Since a 6 2, these are linearly independent,
and, due to Claim 5.2, we can complete them to a basis m1, . . . ,m6 of M . Now the
conditions (1) and (2) of the conclusion of the claim are satisfied; since a 6 2, there
are at least seven essential vectors in m7, . . . ,m15, and their linear span E should
satisfy dimE > 3 by Claim 5.4. If dimE > 4, then we are done, so it suffices to
consider the case dimE = 3. Then we can find an essential index i ∈ {1, . . . , 6}
such that mi /∈ E, which is possible because

dim span{m1, . . . ,m15} = 6,

and the addition of the twins can increase the dimension by at most a 6 2.
Further, we use Claim 5.2 to find an index j ∈ {7, . . . , 15} such that mj has a

non-zero mi coordinate over the basis m1, . . . ,m6. It remains to swap the indexes
of mi and mj to get the desired enumeration of m1, . . . ,m6, because even if mj is
essential, its removal from the family of the essential vectors in m7, . . . ,m15 does
not decrease the dimension of their linear span again by Claim 5.4. So we see that
the linear span of the essential vectors in m7, . . . ,m15 remains equal to E even after
mj gets removed, and then the addition of the essential vector mi /∈ E increases
the dimension. It remains to choose m7,m8,m9,m10 as a basis of E. �

We need two further technical claims.

Claim 6.4. Let µ1 = {m1, . . . ,m6} and µ2 = {m7, . . . ,m10} be two vector families,
and suppose that µ1 is linearly independent. Then there exists a family P with a
vectors in µ1 and b vectors in µ2 such that dim spanP 6 a/2 + b/2, and the pair
(a, b) is one of (0, 4), (1, 3), (2, 2), (2, 4), (3, 3), (4, 4). If the vectors in µ2 are
linearly independent, then the options (0, 4), (1, 3), (2, 4) are impossible.
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Proof. We apply Claim 3.4 to the space

M◦ = span{α1 ⊗ α1, . . . , α10 ⊗ α10},
and we conclude that dimM◦ ∩ L > 4. From (2.2) we see that the restriction of L
to the M⊗M block has dimension three, which means that M◦ contains a non-zero
matrix ` ∈ L which has a zero M ⊗M block. In a decomposition

(6.1) ` = c1(α1 ⊗ α1) + . . .+ c10(α10 ⊗ α10),

we pass to the M ⊗M block to get

c1(m1 ⊗m1) + . . .+ c10(m10 ⊗m10) = 0.

We define the family P as the set of vectors corresponding to the indexes j with
cj 6= 0, and, if the number of such indexes is odd, we remove an arbitrary vector from
P . Now the result follows from Observation 3.7. In fact, the linear independence
of m1, . . . ,m6 implies a 6 b, and if, additionally, the vectors m7,m8,m9,m10 are
linearly independent as well, we should have a = b. It remains to check that the
case a+b 6 2 is impossible because then at most three of the cj ’s would be non-zero
in (6.1), but every non-zero matrix in (2.2) has rank at least four. �

Claim 6.5. One cannot write M as a direct sum of three two-dimensional subspaces
M1, M2, M3 such that the restriction of every matrix in L onto M ⊗M is a block
diagonal matrix formed with the M1 ⊗M1, M2 ⊗M2, M3 ⊗M3 blocks.

Proof. Assuming that this is possible, we take x ∈ {g, h, k} and j ∈ {1, 2, 3}, and we
denote by ρ(x, j) the rank of the Mj ⊗Mj block of the matrix obtained from (2.2)
by taking x = 1 and all the other variables zero. The M⊗M blocks of such matrices
have rank 4, which means that

(6.2) ρ(x, 1) + ρ(x, 2) + ρ(x, 3) = 4.

We have two possible cases up to symmetries.
Case ρ(g, 1) = ρ(g, 2) = 2, ρ(g, 3) = 0. This implies ρ(h, 3) = 0 because other-

wise a matrix obtained by taking g, h generically and all other variables zero would
have a non-zero M3⊗M3 block, so the restriction of such matrix to M ⊗M would
have rank at least 2 + 2 + 1, but, in fact, this rank is 4. We have ρ(k, 3) = 0 for a
similar reason, which implies that the M3 ⊗M3 block is zero on L, so any matrix
in L has the restriction to M ⊗M of rank at most 2 + 2 + 0, but, in fact, a generic
element of L has such a restriction of rank six.

Case ρ(g, 1) = ρ(g, 2) = 1, ρ(g, 3) = 2. The considerations similar to the previous
case imply that the restrictions of the matrices in L to the M1 ⊗M1 block should
all be collinear, and so a generic element of L has the restriction to M ⊗M of rank
at most 1+2+2, which leads to the contradiction as in the previous paragraph. �

Now we are ready to prove that the assumption of Claim 6.3 does not realize,
which means that we should have at least three pairs of twins.

Claim 6.6. There are at least three pairs of twins.

Proof. Assuming the converse, we can find two families µ1 = {m1, . . . ,m6} and
µ2 = {m7, . . . ,m10} satisfying the conclusions of Claim 6.3. Let us say that the
support of a vector mj is the set of those i ∈ {1, 2, 3, 4, 5, 6} for which mj has a non-
zero mi coordinate over µ1. Using Claim 5.2, we assume without loss of generality
that the union of the supports of the vectors in µ2 equals {1, 2, 3, 4, 5, 6}. The
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families µ1, µ2 satisfy the assumptions of Claim 6.4; since µ2 is linearly independent,
the conclusion of Claim 6.4 should realize with a = b.

Case a = b = 4. This means that µ2 is spanned by four vectors in µ1, which is
not possible because the union of all the supports over µ2 equals {1, 2, 3, 4, 5, 6}.

Case a = b = 3. This means that there exist three vectors in µ2 which are
spanned by three vectors in µ1. We can assume without loss of generality that

m7 = s1m1 + s2m2 + s3m3 + s4m4 + s5m5 + s6m6

with s1, s2, s3 non-zero, and
m8 = a4m4 + a5m5 + a6m6,

m9 = b4m4 + b5m5 + b6m6,

m10 = c4m4 + c5m5 + c6m6.

We cannot have a4 = b4 = c4 = 0 because µ2 is linearly independent, and we cannot
have a4 = a5 = 0 because m8 is essential. The symmetry allows us to assume that
each of the pairs {a4, b4}, {a5, b5}, {a6, b6} contains a non-zero number. According
to Claim 5.2, one of the vectors m11, . . . ,m15 should lie outside span{m4,m5,m6},
so it remains to replace m10 by this vector in µ2 and to check that the conclusion
of Claim 6.4 cannot be satisfied with the updated families µ1 and µ2.

Case a = b = 2. This means that there exist two vectors in µ2 which are spanned
by two vectors in µ1. The symmetry allows us to assume that the supports of m9

and m10 are both equal to {5, 6}, and the argument in the first paragraph tells
that the union of the supports of m7 and m8 contains {1, 2, 3, 4}. The projections
of m7 and m8 onto the {1, 2, 3, 4} coordinates are linearly independent because µ2

is linearly independent, and the supports of both m7 and m8 contain at least two
numbers in {1, 2, 3, 4} because otherwise the assumption of the already invalidated
case a = b = 3 applies. Replacing m10 in µ2 with an arbitrary vector in m0 ∈
{m11, . . . ,m15}, we see that the conclusion of Claim 6.4 can only be valid with
(a, b) = (1, 3) or (a, b) = (2, 2) with the new families µ1 and µ2.

Subcase 1. Assume that the obstruction (a, b) = (1, 3) is possible, which means
that the vectors m7,m8,m0 can become collinear after the removal of one of the
coordinates. According to Claim 5.4, this obstruction can arise with at most two
choices of m0. Also, in this case, the vectors m7,m8 should have supports of
cardinality at least three, and the (a, b) = (2, 2) obstruction can only realize when
the support of m0 is a subset of the support of m9, which is possible for at most two
choices of m0 for the same reason as above. Since we have five options to choose
m0, we can avoid both of these obstructions.

Subcase 2. If we know that the obstruction (a, b) = (1, 3) does not arise, then
it suffices to find an m0 whose support is not contained in those of the supports
of m7, m8, m9 which are of cardinality two. In view of Claim 5.4, the only option
when such a choice is impossible is that the supports of m7, m8, m9 are pairwise
disjoint and have cardinality two, and every such support contains the supports of
exactly five vectors in m1, . . . ,m15. In view of Claim 6.5, this is not possible. �

Now let us go back to the expression (2.2). We recall that the upper-left 6 × 6
block of the matrices in L is called the M ⊗M block. Similarly, the upper-left 3×3
block of these matrices is the U ⊗ U block. The bad positions of (2.2) are those
entries which equal zero identically on L.
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Claim 6.7. The space Λ as in (3.1) contains a matrix β such that
(1) β has the zero M ⊗M block,
(2) β has a non-zero bad entry in the bottom-left 3× 6 block.

Proof. Assume the converse. Using Claim 6.6 and the symmetry, we can take
m1 = m2, m3 = m4, m5 = m6. Then the matrices

β1 = α1 ⊗ α1 − α2 ⊗ α2, β3 = α3 ⊗ α3 − α4 ⊗ α4, β5 = α5 ⊗ α5 − α6 ⊗ α6

have zeros at the M ⊗M block, and the rows of the restriction of βi to the bottom-
left 3 × 6 block are collinear to mi, which implies that such restrictions are all
rank-one. However, the linear span of a family of three rank-one matrices with
zeros at bad positions cannot contain a two-dimensional subspace of 0 f e 0 c b

f 0 d c 0 a
e d 0 b a 0

 ,

so we get

(6.3) dimB ∩ L 6 1,

where B = span{β1, β3, β5}.
Now we use Claim 4.5 to find indexes j1, j2, j3, j4, j5 for which the space

A = span{αj1 ⊗ αj1 , . . . , αj5 ⊗ αj5}

has a five-dimensional projection onto U ⊗U , and hence a five-dimensional projec-
tion onto M ⊗M . Since every matrix in B has only zeros in the M ⊗M block,
the spaces A and B intersect trivially, and we have dim(A + B) > 3 + 5. Using
Claim 3.4, we get dim(A + B) ∩ L > 2, but since the U ⊗ U blocks of the ma-
trices in L are zero, we have (A + B) ∩ L = B ∩ L and hence B ∩ L > 2, which
contradicts (6.3). �

We are ready to complete the argument.

Theorem 6.8. Assumption 3.1 is false.

Proof. Using Claim 6.7 and the symmetry, we can take a matrix `1 ∈ Λ with all
zeros in the upper-left 6× 6 block and at least one bad non-zero in the bottom-left
3 × 3 block. Now we apply Claim 6.7 for M equal to the space generated by the
(x11, x12, x13, x31, x32, x33) coordinates instead of (x11, x12, x13, x21, x22, x23), and
we can find a matrix `2 with all zeros in the corner 3 × 3 blocks and at least one
bad non-zero in one of the remaining off-diagonal 3× 3 blocks.

Finally, we are going to apply Claim 4.5 as in the last paragraph of the proof of
Claim 6.7. We find indexes j1, j2, j3, j4, j5 for which the space

A = span{αj1 ⊗ αj1 , . . . , αj5 ⊗ αj5}

has a five-dimensional projection onto U ⊗ U , which is the upper-left 3 × 3 block.
The matrices `1 and `2 have all zeros in the U ⊗ U block, and we can check that
the restriction of the space

spanA ∪ {`1, `2}
onto the bad entries has dimension 7. In particular, this space cannot have a
non-zero matrix in L, which contradicts Claim 3.4. �
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7. Concluding remarks

We showed that both the symmetric rank and partially symmetric rank of the
tensor corresponding to the 3 × 3 permanent are equal to 16. However, we were
unable to generalize our approach to compute the rank or border rank of this tensor.

Question 7.1. What is the rank of the tensor L in (2.2)?

The above mentioned result of Conner, Gesmundo, Landsberg, Ventura [5] im-
plies that the rank of L is at least 15. If we have rkL = 15, then L gives another
counterexample to a recently disproved conjecture of Comon [18] and disproves the
partially symmetric version of this conjecture, which remains open [3, 8, 18].
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