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Abstract—With the disruption produced by extensive au-
tomation of automation due to advanced research in machine
learning, and auto machine learning, even in programming
language translation [Lachaux et al., 2020] the main goal of
this paper is to discuss the following question "Is it still worth
the cost to teach compiling in 2020 ?". Our paper defends the
"Yes answer" within software engineering majors. The paper also
shares the experience of teaching compiling techniques course
best practices since more than 15 years, presents and evaluates
this experience through Hortensias, a pedagogical compiling
laboratory platform providing a language compiler and a virtual
machine. Hortensias is a multilingual pedagogical platform for
learning end teaching how to build compilers front and back-end.
Hortensias language offers the possibility to the programmer to
customise the compiler associativity management, visualise the
intermediary representations of compiled code, or customise the
optimisation management, and the error management language
for international students communities. Hortensias offers the
possibility to the beginner programmer to use a graphical
user interface to program by clicking. Hortensias compiling
pedagogy evaluation has been conducted through two surveys
involving in a voluntarily basis engineering students and alumni
during one week. It targeted two null hypothesis : the first null
hypothesis supposes that compiling teaching is becoming outdated
with regards to current curricula evolution, and the second
null hypothesis supposes Hortensias compiling based pedagogy
has no impact neither on understanding nor on implementing
compilers and interpreters. During fifteen years of teaching
compiler engineering, Hortensias was a wonderful pedagogic
experiment either for teaching and for learning, since vulgarising
abstract concepts becomes very easier for teachers, lectures follow
a gamification-like approach, and students become efficient in
delivering versions of their compiler software product in a fast
pace.

Index Terms—Compiling, Compiler techniques, LL(1), One-
address code pseudocode, Interpreter, Teaching compiling peda-
gogy.

I. INTRODUCTION

According to [Milne and McAdam, 2011], over 12 Scottish
universities offering applied computing or software engineer-
ing degrees, only 3 offer modules which study compiler
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design and implementation. This omission is often justified
from a mistaken perception that the study of compilers is
now irrelevant to modern software engineering practice. Since
computing paradigms, and hardware facilities are increasingly
evolving, new languages are born every month to propose
high level models and hide complexities of distributed data
computing, hardware management, etc.

Teaching compiler engineering, or at least basics of com-
piling mechanisms, remains a pre-requisite to be able to
use 100% of advanced languages syntactic, semantic, and
pragmatic features and benefit from their compiled code run-
time performances. Concepts of regular expression, automa-
ton, grammar, abstract syntactic tree, directed acyclic graph,
control flow graph, virtual machine, memories types, machine
code, and all their algorithms, are more than necessary for
developing software engineering skills, and compiler coding is
a wonderful experience to practice those concepts in realistic
industry-like assignments. Being able to read, understand
and detect drawback of a language grammar is a minimal
skill for every computer engineer. Beside technical aspects
of compiling, understanding and differentiating vocabulary,
structure, semantics and pragmatics levels of a model or a
meta-model is the basis of each information system modeling.

The remainder of this paper is structured as follows :
section II provides paper background, section III presents
followed research method, section IV presents the paper design
artifact : Hortensias compiler in detail from front-end parser,
semantic analyser, pragmatic analyser, IR generator, to back-
end pseudo-code generator, optimiser, and back-end virtual
machine and interpreter, section V presents the evaluation of
Hortensias design artifact and Hortensias based pedagogy ex-
perience through a satisfaction survey approach and a literature
review approach, section VI concludes the paper and provides
some discussions. Finally, appendixes VII and VIII provide re-
spectively Hortensias language formal basis – LL(1) grammar
and Hortensias pseudo-code language language formal basis
– LL(1) grammar.
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II. BACKGROUND

A. Why teaching compiling in computer engineering majors
may be still worthful in 2020 ? - Opportunities

In the digitalisation era and the fourth industrial revolu-
tion, we are observing many IT evolutions accompanying
the new digital/smart governments, companies, organisations,
cities, citizen requirements. Those IT evolutions concern,
among others, new computing scale-in/scale-out capabilities
and architectures, new programming execution environments
paradigm shifts, and last but not least the effervescence of
exciting and innovating frameworks and programming lan-
guages. All this create a healthy biodiversity IT environment.
However, bridging the gap between layers evolving in different
directions is a heavy task that should involve many research,
development, and engineering efforts. Compiling teaching
contribute to providing engineers with a good abstraction
capability and technology independence within this con-
tinuously evolving context (languages, frameworks, execution
environments, hardware virtualisations, architectures, etc.),
and thus insures a good career evolution without getting stuck
and being dependent to some specific language, framework,
execution environment, hardware, or IT architecture.

1) Hardware Change caused by computing scale-in and
rapid evolution and obsolescence of hardware : (i)
Multi-core processor Computing creates new challenges
where classical languages and compilers do not use all
capabilities of the CPU, and the more CPUs are be-
coming complex, the more compiling innovations need
to follow their complexity to optimise the CPU usage.
For instance, [Doerfert et al., 2019] proposes multi-core
code compiling optimisations in OPENMP context. (ii)
Graphical processor unit -GPU- Computing Compil-
ers should discover, and expose sufficient instruction-
level parallelism, find loop-style parallelism for vec-
tor/pipeline units and larger granularity parallelism for
multi-GPU situations. For instance in the context of
computing consuming deep learning models, there is a
real need for compilers to efficiently produce GPU code
for Deep Neural Networks (e.g. Triton language and
compiler [Tillet et al., 2019]). In the same context, new
profiles were born: "Deep Learning Compiler Software
Engineer". (iii) Quantum Computing requires compilers
that should optimise applications (toolflows) and ab-
straction layers and bridge the gap between the hardware
size and reliability requirements of quantum computing
algorithms and the physical machines. [Chong et al.,
2017] discusses potential programming languages and
compiler design for quantum hardware.

2) Computing Architectures Change caused by comput-
ing scale-out (or Cloud to Edge computing transition)
: (i) Distributed Databases (relational or NoSQL or
Blockchain based), Big Data Computing involve clusters
of machine hosting distributed data blocks and parallel
batch processing elements on those data blocks need
continuously evolving compilers in the same evolution
pace of both Big Data analytics languages and com-
puting infrastructures (Hadoop, λ-Architecture, Kappa-

Architecture, Smack-Architecture, IoDA (IoT-Big Data
end-to-end Integrated Architecture) [Hibti et al., 2019],
etc.). [Burdick et al., 2013] illustrates compiling and
optimising execution plan systems and methods of Ma-
chine Learning algorithms high level operations towards
a MapReduce environment low level operations. (ii)
High Performance Computing and Data in motion real
time analysis processing architectures needs optimisa-
tions of every data movement or in memory computing,
and compilers should be aware of the complexity of
those parallel and distributed architectures and APIs (e.g.
MPI, Flink, Akka, Ignite, Storm, Spark Streaming, etc.).
(iii) Cloud Computing, Local Cloud Computing, and
Mobile Computing with rich support of Fog comput-
ing (local digital video processors, digital twins, haze
cascading pattern [Hibti et al., 2019], etc.), Edge and
Mobile computing (mobiles, IoT, smart sensors/actua-
tors, robots/drones, etc.).

3) Baby boom of Programming environments, Con-
tainerisation and Virtualisation diversity : (i) Diver-
sity of new programming frameworks supporting digital-
isation era for IA (e.g. Tensorflow, Keras, Caffe, Torch,
etc.-, for Big Data (Hadoop, Yarn, Akka, Samza, Kudu,
etc.), for IoT (Zetta, DeviceHive, ThingSpeak, Mainflux,
Thinger.io, etc.) requires framework awareness of com-
pilers and optimisers without being framework specific.
(ii) Diversity of compilers target virtual environments
varying from virtual machines (e.g. JVM, CLI), source-
and target-independent optimiser, and universal code
generator (e.g. LLVM), universal/polyglot virtual ma-
chines (e.g. GraalVM, Truffle), Microservices architec-
ture and Devops virtual machines and containers (e.g.
Docker, Kubernetes, and Mesos, Swarm), etc. leverage
compilers to suit softwarisation, reusability and agility
needs of containerisation and virtualisation industry.

4) Cacophony caused by Programming Polyglossia, and
Multilinguism : (i) Multitude of programming lan-
guages and new paradigms C/C++, Clang, Java, Python,
Ruby, Erlang, Scala, Perl, JavaScript, AQL, R, Octave,
etc. supporting new paradigms (object, functional, logic,
actor, aspect, agent, artificial intelligence & machine
learning, neural networks & deep learning, relational,
nosql, etc.) requires machine language compiling and
optimising , inter-language compiling and co-habitation
frames and virtual machines (e.g. LLVM, GraalVM). (ii)
Multitude of database querying languages, data stores,
and data flow languages (e.g. SQL, Neo4J cypher,
HBase, HiveQL, Pig Latin, Jaql, etc.) brings new con-
straints to data flow languages and querying compilers
and interpreter in this context of polyglot data store
querying and persistence [Sellami et al., 2014].

A software engineer who resolved a compiler building
problematics, when confronted to multi-platform complex
architecture, is able to (i) build structured mind represen-
tation meta-models of every as-is and to-be architecture
components, data formats, and languages, (ii) to make better
classifications of evolving tools, and (iii) to learn rapidly
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a new programming environment since he/she will have a
heavy background in terms of language dimensions and layers,
and deeper understanding of what is being the black
box. An software engineer without compiling is a simply a
technology user who will be limited in his/her capabilities of
software development or integration problem diagnosis, and
solving. Compiling is a considerable pre-requisite for Model
Driven Engineering discipline. Moreover, during his career
the software engineer will manipulate languages for data
storage, data visualisation, languages in programming, and
even more natural languages (non/semi structured databases,
text analytics), etc. In a word, compiling teaching is a perfect
introduction to the Science of Text Algorithms.

B. Real world education experience

First author experience in teaching compiler engineering in
ENSIAS engineering school evolves since September 2004.
Many experiments were tested before using Hortensias [Baïna,
2020] in its first integrated version in December 2010. This
paper aims to present and evaluate Hortensias compiling
based pedagogy, a pedagogical language coming with two
components : hensiasc a pedagogical compiler of Hortensias
language towards a simple one-address code, and and hensiasi
a pedagogical interpreter of the generated one-address code.
hensiasc and hensiasi are all written in C language. Pedagog-
ical mean three things : Hortensias is (i) a simple imperative,
not case sensitive, language for beginner programmers inspired
from C, Ada, and other languages, (ii) Hortensias provides
multilingual (for the moment : English, Spanish, French,
and German) error messages for international students, and
(iii) Hortensias code is a complete pedagogical platform for
teaching and learning concepts and techniques for designing
and building a LL(1)1 top down compiler front-end (scaner,
parser, pragmatic analyser, and intermediary representation
-IR- generator), IR, and back-end (pseudo-code generator,
optimiser and pseudo-code interpreter). Hortensias name is
inspired from flowers name, but also contains ENSIAS suffix
which stands for Ecole Nationale Supérieure d’Informatique et
d’Analyse des Systèmes, Mohammed V University in Rabat,
Morocco where Hortensias was built. Hortensias framework
is composed of many software components : a graphical
user interface for young programmers, a compiler, and an
interpreter as shown in figure 2. In a Java-like style, Hortensias
compiler (hensiasc) takes an Hortensias program, compiles
it to an abstract pseudo-code (one address bytecode), then
Hortensias interpreter (hensiasi) reads this generated pseudo-
code to interpret it in a virtual/abstract Hortensias machine.
Hortensias is written in C language based on flex scaner
generator. A Hortensias user may be (i) a beginner pro-
grammer aiming to learn programming without the barrier of
syntactical instructions coding, (ii) a programmer aiming to
discover programming through a simple imperative language,
and a virtual machine interpreter through its simple pseudo-
code (bytecode) artifact, (iii) a compiling course student

1Note that Hortensias analyser has a LALR formalisation and imple-
mentation version too that is not detailed in this paper. This version uses the
same Hortensias APIs.

aiming to learn compiling techniques, their concepts, and
implementations, understand exercises, resolve labworks, and
prepare exams, or (iv) a compiling course lecturer aiming
to teach compiling techniques, design exercises, labworks,
exams, and correct exams. Figure 1 shows Hortensias front-
end, IR generation API, and back-end API Management.

III. RESEARCH METHOD : DESIGN SCIENCE
METHODOLOGY

This paper study is based on real world education ex-
perience. To capitalise this education experience, this paper
research methodology follows Design Science Research Ap-
proach consisting of a rigorous end-to-end scientific process
aiming constructing a Design Artifact (section IV details the
construction of a pedagogical compiler & interpreter Hort-
ensias as a Design Artifact in our case), and evaluating this
design artifact (section V presents the evaluation of Hortensias
and Hortensias based pedagogy experience through a satisfac-
tion survey approach and a literature review approach in our
case). The design science research approach main purpose,
according to Hevner [Hevner et al., 2008], is to achieve
knowledge understanding of a problem domain by building
and applying a designed artifact following seven guidelines.
Guideline 1: Design as an Artifact – producing a viable
artifact in the form of a construct, a model, a method, or an
instanciation. Guideline 2: Problem Relevance – developing
technology-based solutions to important and relevant business
problems. Guideline 3: Design Evaluation – demonstrating
the utility, quality, and efficacy of a design artifact via well-
executed evaluation methods. Guideline 4: Research Con-
tributions – providing clear and verifiable contributions in
the areas of the design artifact, design foundations, and/or
design methodologies. Guideline 5: Research Rigor – apply-
ing rigorous methods in both the construction and evaluation
of the design artifact. Guideline 6: Design as a Search
Process – utilizing available means to reach desired ends while
satisfying laws in the problem environment. Guideline 7:
Communication of Research – presenting to both technology-
oriented as well as management-oriented audiences.

Hortensias compiling pedagogy evaluation has been con-
ducted through two surveys involving in a voluntarily basis
more than sixty engineering students and alumni during one
week. Through 15 questions of 5 different evaluation levels,
these surveys targeted two main null hypotheses : whether
compiling teaching is becoming outdated with regards to cur-
rent curricula evolution ? and whether Hortensias compiling
based pedagogy has no impact neither on understanding nor
on implementing compilers and interpreters ?

IV. DESIGNED ARTIFACT CONSTRUCTION – HORTENSIAS
LANGUAGE COMPILER, AND PSEUDO-CODE

INTERPRETATION VIRTUAL MACHINE

We implement the design artifact construction main step
of Design Science Approach through modeling, and applying
Hortensias pedagogical platform front-end, middle-end, and
back-end artifact components.
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Figure 1: Hortensias API Management

Figure 2: Hortensias Framework Architecture

A. Deriving Design Artifact Requirements

Requirements will be formalised as user stories focused
on the main Hortensias platform user : "Compiling Course
Student" (illustrated in figure 2).

User Story 1 : The user must be able to customize
Hortensias code to program and test his/her own compiler
front-end :

1) scaner.
2) LL(1) parser
3) semantic analyser
4) pragmatic analyser

User Story 2 : The user must be able to customize
Hortensias code to program and test his/her own compiler
middle-end :

1) intermediary representation generator
2) intermediary representation optimiser

User Story 3 : The user must be able to customize
Hortensias code to program and test his/her own compiler
back-end :

1) pseudo-code generator
2) pseudo-code interpreter

B. Hortensias Syntax Analyser (Parser)

Hortensias language parser is a top-down LL(1) analyser

based on Hortensias syntax partially represented graphically2

by the rail road diagrams of table I. The complete formalised
LL(1) grammar is detailed in appendix VII.

Here are two Hortensias language programs examples : a
for and a switch-case examples.

Listing 1: Hortensias for example

1 #spanish
2 #leftassoc
3 #staticoptimiser
4

5 REM this program computes 120!
6 n int 10;
7 facto int 1;
8 i int;
9

10 begin
11

12 for i = 1 to 120 do
13 facto = facto * i;
14 endfor
15

16 print facto;
17

18 end

C. Hortensias Semantic Analyser
1) Semantic Error management: Hortensias handles eleven

semantic errors as follows:
1) Not Declared Variable : Each variable should not be

used in instruction body without pre-declaration in dec-
laration part.

2) Already Declared Variable : Each variable should be
declared once.

3) Not Initialised Variable : Each variable should be ini-
tialised.

4) Badly Initialised Variable : Each typed variable should
be initialised with a value of a type compatible with
declaration type (implicit casting may be possible).

5) Incompatible Assign Type : Each left and right As-
signment expressions should be of the compatible type
(implicit casting may be possible).

6) Incompatible Comparison Type : Each Left and Right
comparison expressions should be of compatible types
(implicit casting may be possible).

7) Incompatible Operation Type : Each Left and Right
operation expressions should be of compatible types
(implicit casting may be possible).

2The syntax visualisation has been done thanks to Railroad Diagram
generator [Rademacher, 2019] clever tool.
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PRE_PROG PROG DECL_LIST

DECL

DECL_AUX

DECL_LIST_AUX TYPE CONST

INST

INST_LIST INST_LIST_AUX IF_INSTAUX

SWITCH_BODY SWITCH_BODYAUX

ADDSUB MULTDIV MULTDIVAUX

ASSIGN_AUX AUX

Table I: Hortensias visual syntax

8) Incompatible For Index Type : Each for loop index
should be integer.

9) Incompatible Switch Index Type : Each switch case
index should be integer.

10) Switch Multiple Values : Each switch case value should
appear one time at most.

11) Division by Zero3 : Each denominator arithmetic expres-
sion evaluation cannot produce a zero value.

2) Type implicit casting: Implicit casting may be possible
in three cases : (1) a typed variable is initialised with a value

3To detect division by zero, Hortensias pseudo-code generator pre-
generates pseudo-code and simulates an execution across the produced
pseudo-code in order to verify safety, and discover null denominators in
compile-time.

of a type different but compatible with declaration type, (2)
a left and a right assignment expressions are not of the same
type but belong to compatible types, and (3) a left and a right
comparison expressions are not of the same type but belong
to compatible types.

1) declaration case : Let [x double v; ] a declara-
tion, with x a variable, and v a numeric value,
[x double v;]∧type(v)=int

[x double (double)v;]
All other different types for x and v will produce Badly
Initialised Variable error for declaration case.

2) assignment case : Let [x ← e; ] an assignment,
with x a variable, and e an arithmetic expression,
[x ← e;]∧type(x)=double∧type(e)=int

[x ← (double)e;]
All other different types for x and v will produce
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Incompatible Assign Type error for assignment case.
3) comparison cases :

Let [if (x == e) then inst_list endif ] a conditional
if instruction,

a) with x a variable, and e an arithmetic expression,
[if (x == e) then inst_list endif ]∧type(x)=double∧type(e)=int

[if (x == (int)e) then inst_list endif ]
b) with x a variable, and e an arithmetic expression,

[if (x == e) then inst_list endif ]∧type(x)=int∧type(e)=double
[if ((double)x == e) then inst_list endif ]

All other different types for x and e will produce
Incompatible Comparison Type error for comparison
case.

3) Type inference: Let e1, and e2 be two arithmetic ex-
pressions, and let e1 op e2 be an arithmetic abstract syntactic
tree (ast), if e1 and e2 are of two different numeric types, the
type of every operations gathering e1, and e2 will be inferred
as the most general type by the semantic analyser. Resulting
AST types are induced by the following inference rules :
•

type(e1)=int∧type(e2)=double
type(e1 op e2)←double where op ∈ {+,−, ∗, /}

•
type(e1)=double∧type(e2)=int

type(e1 op e2)←double where op ∈ {+,−, ∗, /}
All other different types for e1 and e2 will produce Incom-

patible Operation Type error.

D. Hortensias Pragmatic Analyser

Hortensias pragmatic analyser enables the programmer to
customise at compile time four types of pragmatic aspects : (i)
associativity orientation customisation : either left (default) or
right for all arithmetic operations, (ii) compiler optimisations :
either static, dynamic or default (generate code with no optimi-
sation), (iii) intermediary representations visualisation (control
flow graph - CFG, and embedded abstract syntactic trees -
ASTs) and (iv) finally error management language : either
Spanish, French, English or German. Figure 3 shows Horten-
sias pragmatic parser fundamental decisions and interactions
with intermediary representation generator, and pseudo-code
optimiser4. Note that for simple pedagogy, the figure highlights
a fixed order of detecting pragma directives (optimisation
then associativity). In reality, pragma primitives are parsed
by syntactic analyser in a free order (see PRAGMA_LIST
syntactic rules), even each specific pragma detection details
are let to lexical scaner responsibility (see pragma terminal).
Also, a pragma may cancel the effect a previous pragma. That
means, that if many pragma from the same type appear in
the code, the latest mentioned in the code is the one that
the compiler will choose. A pragma may also occur multiple
times without verification. Moreover, neither intermediary
representation visualisation, nor error management pragmatic
customisation pragmas have been mentioned in this figure
without loosing in generality.

4The visualisation of pragma directives consequences on the whole compil-
ing workflow has been done thanks to Bonita tool [Baïna and Baïna, 2013].

Listing 2: Hortensias switch-case example

1 #controlflowgraph
2 #french
3 #dynamicoptimiser
4

5 Saison int ;
6 Automne int 1; Hiver int 2; Printemps int 3;

Ete int 4;
7 Pays int ; Maroc int 1; France int 2;
8 Temperature double;
9

10 begin
11

12 Saison = Hiver; Pays = France;
13

14 switch ( Saison )
15 case 1 : switch ( Pays )
16 case 1 : Temperature = 10.0 ; break;
17 default : Temperature = 3.0 ; break;
18 endswitch break;
19 case 2 : switch ( Pays )
20 case 1 : Temperature = 4 ; break;
21 default : Temperature = 0 ; break;
22 endswitch break;
23 case 3 : switch ( Pays )
24 case 1 : Temperature = 35 ; break;
25 default : Temperature = 28 ; break;
26 endswitch break;
27 default : switch ( Pays )
28 case 1 : Temperature = 35 ; break;
29 default : Temperature = 28 ; break;
30 endswitch break;
31 endswitch
32 Print Temperature;
33 end

1) Pragmas for associativity : Tuning associativity at com-
pile time: Hortensias offers the possibility to the beginner pro-
grammer to customise the compiler associativity management
as follows :
• #rightassoc : selects a semantic analyser with right AST.

This mode assigns a right associativity to all binary
operators : +, -, /, * and enables generation of AST, and
pseudo code related to it.

• #lefttassoc : selects a semantic analyser with left AST.
This mode assigns a left associativity to all binary op-
erators : +, -, /, * and enables generation of AST, and
pseudo code related to it. This associativity mode is by
default.

2) Pragmas for optimisation management : Tuning com-
piler language at compile time: Hortensias offers the possibil-
ity to the programmer to customise the compiler optimisation
management as follows :
• #staticoptimiser : activates the static optimiser (by default

no optimiser is active). The static optimisation targets the
non generation of unused variables, the transformation of
non modified variables to constants, the computing in the
code, the non generation of dead path in pseudo code,
the static optimisation of stack use (left-right-root (post-
order) generation for AST when left associativity, and
right-left-root (reverse post-order) generation for AST
when right associativity), and the non generation of
obvious operations.

• #dynamicoptimiser : insures all #staticoptimiser optimisa-
tions and enhances them with generating the deeper AST
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Figure 3: Hortensias pragmatic parser decisions and interac-
tions

first in arithmetic expressions in all kind of associativity.
By default, no optimisation is activated.
3) Pragmas for multilingual error management : Tuning

compiler language at compile time: Error management is
among functionalities that enhance the learning curve of a
beginner programmer especially when he/she has to decrypt
both programming language, and meta-language used by the
compiler error manager. Hortensias offers the possibility to
the beginner programmer to customise the compiler error
management language as follows :
• #English : switch to English error handler (default one)
• #French : switch to French error handler
• #Spanish : switch to Spanish error handler
• #German : switch to German error handler
The latest pragma mentioned in the code is the one the

compiler will choose for error management. The following
example illustrates error management customisation.

Listing 3: Hortensias error management internationalisa-
tion

1 #spanish
2 x bool 0;
3 x int;
4 f bool;
5 t bool;
6 begin
7 print f;
8 if (x==f) then
9 if (y==7) then

10 x = 90;
11 else
12 t = 120 + f + t;
13 endif
14 endif

Here are errors found by the semantic analyser. The user has
specified #spanish for error management messages, #english
is by default if no language is specified.

Bienvenido al comilador del lingua Hortensias 2.2
l 2: error semantico: x variable mal iniciada
l 3: error semantico: x variable ya declarada
l 8: ..: f variable incompatible con la operacion
l 8: ..: x incompatible con el valor de comparacion
l 9: error semantico: y variable no declarada
l 10: ..: x incompatible con el valor de asignacion
l 12: ..: f variable incompatible con la operacion
l 12: ..: t variable incompatible con la operacion
l 12: ..: t incompatible con el valor de asignacion
l 15: error sintactico: instruccion esperada

4) Pragmas for intermediary representation visualisation:
Hortensias offers the possibility to the programmer to visu-
alise the produced intermediary representations of the code
instead of generating pseudo-code by using #controlflowgraph
pragma which bypasses both Hortensias optimiser and pseudo-
code generator to print textually the whole structure of the
compiler code abstraction built in memory during syntactical,
pragmatic, and semantic analysis phases. The two examples
of table II illustrate multilingual intermediary representation
visualisation.

E. Hortensias One-address pseudo-code generator

Hortensias language is compiled to a portable one-address
pseudo-code (bytecode) by a compiler (hensiasc). This
pseudo-code contains 16 operation codes (opcode). Appendix
VIII details Hortensias pseudo-code language grammar. This
pseudo-code is interpreted by Hortensias interpreter (hensi-
asi) through a simple abstract machine. The pseudo-code is
constituted of (i) a DATA section which presents compiled
variables to the interpreter, as a set of key-value lines, then
(ii) a LIST_INST body which lists compiled pseudo-code one-
address5 instructions as follows : (i) binary four arithmetic
operators are handled by add (addition), mult (multiplication),
idiv (integer division), ddiv (decimal division), sub (subtrac-
tion), (ii) four branching operators : jmp (unconditional jump),
jne (jump if not equal), jg (jump if greater), jeq (jump if equal),
(iii) variable operators : load (evaluates a variable by copying
its value form the virtual machine static memory and pushes it

5One-address operators always suppose the stack containing implicit
operands pushed in the corresponding commutative operation order.
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Hortensias CFG visualisation
sample code #controlflowgraph

#english #german
#rightassoc #leftassoc

value double;
a double;
b double;
c double;
d double;
e double;
f double;
g double;
begin
a = 2;
b = 7;
c = 9;
d = 6;
e = 1;
f = 5;
g = 3;
value =
a * b - c + d
/ e + f * g ;
PRINT value;
end

Visualisation of Control Flow
Graph :
AssignArith a = 2.000000;
AssignArith b = 7.000000;
AssignArith c = 9.000000;
AssignArith d = 6.000000;
AssignArith e = 1.000000;
AssignArith f = 5.000000;
AssignArith g = 3.000000;
AssignArith value =
(- (* a b)

(+ c (+ (/ d e) (* f g)))) ;
PrintIdf value ;

Visualisierung des
Kontrollflussgraphen :
AssignArith a = 2.000000;
AssignArith b = 7.000000;
AssignArith c = 9.000000;
AssignArith d = 6.000000;
AssignArith e = 1.000000;
AssignArith f = 5.000000;
AssignArith g = 3.000000;
AssignArith value =
(+
(+
(-
(* a b)
c

)
(/ d e)

)
(* f g)

) ;
PrintIdf value ;

Table II: Multilingual intermediary representation visualisation

into the virtual machine stack), store (opposite of load operator
: pops the top value of virtual machine stack and copy it as
new value of a name variable in the the virtual machine static
memory), (iv) stack operators : dupl (duplicate the top value of
virtual machine stack), swap (interchange the two top values
of virtual machine stack when the generator encounters a non
commutative operation e.g. / or −), (v) constant evaluation
operator : push (evaluates a constant value by pushing it into
the virtual machine stack), and (vi) printing operators : printi
(print identifier), prints (prints a string constant).

Hortensias pseudo-code generation follows a classical recur-
sive intermediary representation driven generation algorithm.
This algorithm is not detailed in this paper without loosing
in generality. However, its pedagogical particularity is that it
operates a simulation phase to enhance a posteriori semantic
analysis, and also it prepares code optimisation phase. In
fact, the simulation phase consists in pre-generating pseudo-
code and running an anticipated pseudo-code interpretation
(invisible for the end programmer) in order to (1) detect
Division by zero semantic error (by discovering zero value
denominators), (2) mark live execution path to distinguish it
from dead paths useful for the optimisation part.

The example of table III illustrates the pseudo-code result-
ing from compiling a relatively simple Hortensias code (a
factorial code).

F. Hortensias optimiser
Hortensias optimiser operates optimisations with regards to

many aspects : (1) Dead path elimination, (2) Ignoring not
used variables, (3) Transforming non modified variables to
constants, (4) Computing in the code, (5) Stack use optimi-
sation, and (6) More basic optimisations : bypassing code
generation for obvious operation. In the following sections
every optimisation aspects will be detailed.

Hortensias Pseudo-code
sample code

#spanish
#leftassoc

REM this program
REM computes 120!
n int 10;
facto int 1;
i int;

begin

for i = 1 to 120 do
facto = facto * i;
endfor

print facto;

end

n 10.000000
facto 1.000000
i 0.000000
begin:
PUSH 1.000000
STORE i
for0:
PUSH 120.000000
LOAD i
JG endfor0
LOAD facto
LOAD i
MULT
STORE facto
PUSH 1.000000
LOAD i
ADD
STORE i
JMP for0
endfor0:
LOAD facto
PRINTI
end:

Table III: Factorial loop resulting pseudo-code

1) Dead path elimination: The control flow graph ab-
stracted from the code during syntactic/pragmatic/semantic
analysis pass contains the whole workflow execution paths
that the program may take during runtime. Only one path
among all those workflow paths is the executable path. To
detect this executable path, and thus to eliminate all dead paths
pseudo-code generation, Hortensias optimiser pre-generates
pseudo-code and simulates an execution across the produced
pseudo-code in order to mark/distinguish executable pseudo-
code instruction from dead instructions. Hence, Hortensias
optimiser can produce an optimised pseudo-code gathering
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Table IV: Dead path elimination optimisation

Hortensias Pseudo-code with
sample code #staticoptimiser no optimisation

x int;
pi double;
begin
pi = 3.14;
print pi;
end

pi 0.000000
begin:
PUSH 3.140000
STORE pi
LOAD pi
PRINTI
end:

x 0.000000
pi 0.000000
begin:
PUSH 3.140000
STORE pi
LOAD pi
PRINTI
end:

Table V: Ignoring a not used variable optimisation

only executables pseudo-code instructions.
The example of table IV illustrates the pseudo-code re-

sulting from dead path elimination optimisation during code
generation of a simple nested if-the-else Hortensias code.

Hortensias Pseudo-code with
sample code no optimisation #staticoptimiser

a int 1;
b int 2;
c int 3;

begin

if (a==a) then
if (a==b) then
if (a==c) then
print "case 1";
else
print "case 2";
endif
else
print "case 3";
endif
endif

end

a 1.000000
b 2.000000
c 3.000000
begin:
LOAD a
LOAD a
JNE endif0
LOAD b
LOAD a
JNE else1
LOAD c
LOAD a
JNE else2
PRINTS "case 1"
JMP endif2
else2:
PRINTS "case 2"
endif2:
JMP endif1
else1:
PRINTS "case 3"
endif1:
endif0:
end:

a 1.000000
b 2.000000
c 3.000000
begin:
PUSH 1.000000
LOAD a
JNE endif0
PUSH 2.000000
LOAD a
JNE else1
else1:
PRINTS "case 3"
endif1:
endif0:
end:

2) Ignoring not used variables: Many times, programmers
declare variables than never use in their program body. Those
variables cause space wasting both in static, and code memory.
The pseudo-code optimiser detects variables that are declared
and never referenced in any instruction in the code, and ignores
those variables in pseudo-code generation pass.

The example of table V illustrates the pseudo-code resulting
from ignoring a not used variable optimisation during code
generation of a simple Hortensias code.

3) Transforming non modified variables to constants:
During the programming phase, we often declare several
variables to store different data that will be needed during the
program. However, it is possible in many cases that variables
are only declared to store certain values without modification
neither by assignment (as left expression), nor for loop (as
loop index), nor switch statements (as variable). Thus those
variables can be seen as simple constants in the program. So to

Hortensias Pseudo-code with
sample code #staticoptimiser no optimisation

pi double 3.14;
piprime double;
begin
piprime = pi;
print piprime;
end

pi 3.140000
piprime 0.0000
begin:
PUSH 3.140000
STORE piprime
LOAD piprime
PRINTI
end:

pi 3.140000
piprime 0.0000
begin:
LOAD pi
STORE piprime
LOAD piprime
PRINTI
end:

Table VI: Transforming a non modified variable to a constant
optimisation

Hortensias Pseudo-code Pseudo-code
sample code with #rightassoc with #rightassoc

& #dynamicopti-
miser

with no optimisa-
tion

value double;
begin
value =
(
(
(2 * 7)
- 9)

+ 6)
/ (1 + 5) * 3;
PRINT value;
end

value 0.000000
begin:
PUSH 0.611111
STORE value
LOAD value
PRINTI
end:

value 0.000000
begin:
PUSH 2.000000
PUSH 7.000000
MULT
PUSH 9.000000
SWAP
SUB
PUSH 6.000000
ADD
PUSH 1.000000
PUSH 5.000000
ADD
PUSH 3.000000
MULT
SWAP
DDIV
STORE value
LOAD value
PRINTI
end:

Table VII: Computing in the code optimisation impact on
pseudo-code compiling

overcome this problem, the static optimiser intervenes during
the compilation phase to replace all the variables that are never
modified by their real value in the pseudo-code. This allows
us not only to get rid of the expensive loading of variables,
but also to be able to lighten the stack that no longer needs
to store variables unnecessarily.

The example of table VI illustrates the pseudo-code result-
ing from transforming a non modified variable to a constant
optimisation during code generation of a simple Hortensias
code.

4) Computing in the code: When Hortensias pseudo-code
generator parses AST and encounters constants and operations
between constants, instead of generating pseudo-code that
achieve computing operations between those constants, the
pseudo-code optimiser chooses to achieve the computing itself
and to generate the resulting output constant.

The example of table VII illustrates the pseudo-code re-
sulting from computing in the code optimisation during code
generation of a constant computing Hortensias code.

5) Stack use optimisation: When activated, Hortensias op-
timiser adopts three tactics with regards to stack use optimi-
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Hortensias Pseudo-code Pseudo-code
sample code with with

#rightassoc #leftassoc
left-right-root (post-order) code generation

(no stack optimisation)

..
begin
..
value =
a
* b
- c
+ d
/ e
+ f
* g ;
print value;
end

begin:
..
LOAD a
LOAD b
MULT
LOAD c
LOAD d
LOAD e
SWAP
DDIV
LOAD f
LOAD g
MULT
ADD
ADD
SWAP
SUB
STORE value
LOAD value
PRINTI
end:

begin:
..
LOAD a
LOAD b
MULT
LOAD c
SWAP
SUB
LOAD d
LOAD e
SWAP
DDIV
ADD
LOAD f
LOAD g
MULT
ADD
STORE value
LOAD value
PRINTI
end:

Table VIII: Arithmetic association impact on compiling
pseudo-code of a simple Hortensias program with no stack-
optimisation

sation (1) static optimisation for left associativity : left-right-
root (post-order) code generation for left degenerated ASTs
since they are the deeper trees by construction, (2) static
optimisation for right associativity : right-left-root (reverse
post-order) code generation for right degenerated ASTs since
they are the deeper trees by construction, and finally finally (3)
dynamic optimisation for all associativities : generate always
deeper AST child first.

Examples of table VIII illustrates the pseudo-code resulting
from of a simple Hortensias code compiling with no stack op-
timisation (left-right-root (post-order) generation) with regards
to with association orientation.

Examples of table IX illustrate the comparison between
different pseudo-codes resulting from of a simple Hortensias
code compiling with static and dynamic stack optimisations.

6) More basic optimisations : bypassing code generation
for obvious operation: Hortensias offers since its static opti-
miser mode many basic optimisations like short-cutting code
generation for obvious operations : addition of zero, subtrac-
tion of zero, variable subtraction of itself, multiplication by
zero, multiplication by one, division by one, variable division
by itself, , etc.

G. Hortensias Pseudo-code interpretation Virtual Machine

Hortensias pseudo-code interpretation is supported by a
Hortensias Virtual Machine composed of three types of memo-
ries (i) a code memory to store the linear pseudo-code interme-
diary representation produced by the pseudo-code generator,
(ii) a static memory to store the global variables, and their val-
ues extracted for DATA section of the pseudo-code , and (iii) a

stack memory (VM_STACK) to support the runtime semantic
during the one-address pseudo-code interpretation. Note that
no heap memory is supported by Hortensias virtual machine
due to the fact that memory management is basically static
in the current version of Hortensias (no pointer, nor dynamic
allocation, nor tables are proposed, but the community may
extend Hortensias for this). Hortensias pseudo-code interpreter
is independent of previous Hortensias compiler components,
since a programmer (respectively a lecturer), for a pedagogical
purpose of learning (respectively teaching) machine language
programming, may produce manually a pseudo-code program
and use the interpreter to validate and interpret his/her code.

The following algorithm presents the way Hortensias virtual
machine uses its static and stack memory to interpret each
pseudo-code instructions stored linearly in its code memory.

Algorithm IV.1: INTERPRET(pseudo-code_inst)

codop← pseudo-code_inst.codop

switch codop



case DATA: create new variable data by name
and value in VM static memory

case OP ∈ {ADD,SUB,MULT,IDIV,DDIV} :
op1 ← pop(VM_STACK);
op2 ← pop(VM_STACK);
push(VM_STACK,

eval(operator(OP),
eval(op1), eval(op2));

case LOAD:
data ← read variable value from
static memory by name
push(VM_STACK, data);

case STORE:
op ← pop(VM_STACK);
update VM static memory with
popped data to specified variable
name location

case DUPL:
op ← pop(VM_STACK);
push(VM_STACK, eval(op1));
push(VM_STACK, eval(op1));

case SWAP:
op1 ← pop(VM_STACK);
op2 ← pop(VM_STACK);

push(VM_STACK, eval(op1));
push(VM_STACK, eval(op2));

case PUSH: data ← read constant data value
push(VM_STACK, data);

case JMPOP ∈ {JNE,JG,JEQ} :
op1 ← pop(VM_STACK);
op2 ← pop(VM_STACK);
if eval(operator(JMPOP,
eval(op1), eval(op2)) == true

then
{

branching to specified label
case JMP :

branching to specified label
case PRNT ∈ {PRINTS, PRINTI} :

display specified data
else pass. ex. LABEL, etc.
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The example of table X illustrates the pseudo-code resulting
from of a simple Hortensias code compiling and its final
interpretation output.

V. DESIGNED ARTIFACT EVALUATION – SURVEY &
LITERATURE REVIEW APPROACH

We implement the evaluation main step of Design Science
Approach through evaluating Hortensias and Hortensias based
pedagogy experience towards a satisfaction survey approach
enriched with and a literature review approach.

A. Student satisfaction surveys

This student satisfaction surveys aim to assess the satis-
faction of students and alumni about (i) compiling lecture
in general (survey 1), and (ii) Hortensias platform in par-
ticular (survey 2), regarding promoting desired pedagogical
outcomes.

1) Surveys’ Approach: The student satisfaction surveys
were based on a selection of 15 questions divided into two
separate surveys one general survey about compiling lecture
(survey 1 - 5 questions), and one specific survey about Horten-
sias pedagogy supporting platform (survey 2 - 10 questions).
Some questions have been inspired directly (question Q1.1)
or adapted to Hortensias from LISA nine questions context
[Mernik and Zumer, 2003] as a compiling educational survey
reference even if in this latter the survey participants segments
and distribution are unknown. In our surveys, each question
targets one or more Kirkpatrick training outcome 5 levels
[Kirkpatrick, 1975] : level 1 - reactions assessing hot reactions
of trainees to the training curriculum and training process, their
engagement, and contribution, level 2 - learning measuring
what trainees have and have not learned, and how training has
developed their skills, attitudes and knowledge, as well as their
confidence and commitment, level 3 - behaviour measuring
application of learning, ability to teach the new knowledge,
skills or attitudes to other people, and the trainees awareness
of their changed behaviour after the training, level 4 - Results
evaluating long term outcomes, benefits, or final results linked
to the training, and an extra level level 5 - ROI measuring
economic return on investment of the training [Kirkpatrick,
1996].

Levels 1 and 2 can be assessed during or directly after
the training (hot evaluation), while levels 3-5 are generally
conducted a long period after the training to really measure
effectiveness of results (cold evaluation). For this reliable
evaluation purpose, both conducted surveys targeted not only
fresh engineering students in last engineering year (partici-
pants segment 1), but also experimented alumni engineers with
many years’experience (participants segment 2). The common
point between both participants segments : they all followed
compiling lecture or Hortensias pedagogy based approach with
the first author in the past 15 years

Surveys were published online during one week, and par-
ticipants answered anonymously to the survey questionnaires,
and/or to free comments forms.

2) Survey 1 - General compiling lecture student satisfaction
survey:

a) Survey 1 Hypothesis:
The general compiling lecture student satisfaction survey has
the following null hypothesis :

HO1
: In 2020, it becomes not worthful to teach compil-

ing in computer engineering majors. .

which is tested against the alternative hypothesis:

HA1
: Being a relevant introduction to advanced top-

ics (like model driven engineering, [semi/non/]structured
data parsing, text analytics, natural language processing,
chatbots), teaching compiling is still worth the cost in
2020 in computer engineering majors.

.

b) Survey 1 Participants:
63 engineers (21 engineering students -in last engineering
year, and 42 graduated engineers working in industry) were
recruited for the survey in a non-paid voluntarily basis. They
are aged between 23 and 34 years old, and they have all
followed the compiling module between 2008 and 2019 in
their second engineering year when they were 22 years old so
that permit to evaluate their opinion about compiling lecture
experience. Survey 1 participants distribution is shwon in table
XI 6, while figure 4 presents five questions of survey 1, their
Kirkpatrick levels, and results.

Figure 4: Survey 1 agregated participants distribution

c) Survey 1 Questionnaire and Results:
Table XII highlights survey 1 questions and results.

One may remark that 63.49% of compilers interest in the
past (question Q1.1) is close enough to [Mernik and Zumer,
2003] result (69%) with a slight drop in interest. Compiling
has many opportunities (like those stated in section ??) where
compiling lecture side effects 68% (question Q1.2) and return
on investment can be measured (see question survey 2 -
question Q2.10). Notice that compiling is still seen as return
on investment lecture for all majors (88.89% for software
engineering, and 68.25% for other computer engineering in-
cluding embedded systems), however, compiling is seen to be
matching more software engineering majors than other majors
(6.35% No against 17.46% No for embedded systems, and
25.40% No for all computer engineering majors).

d) Survey 1 Interviews:
Among survey 1 questionnaires, participants were asked to

6grad, exp, and distrib stands for year of graduation, years’experience in
industry, and distribution
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give anonymously free comments or constructive proposals
about compiling lecture. In the following, the result of these
interviews will be given as pro and cons testimonials in favour
and against formally expressed null hypothesis HO1

: In
2020, it becomes not worthful to teach compiling in computer
engineering majors.
HO1

Cons testimonials:
1. "My fascination with compiling, which certainly existed
before the course, was greatly fuelled by this experience. Its
effect has been mostly to open my mind to programming
as an expression, alongside programming as a calculation.
Since then, doing syntactic abstraction, or just finding more
expressive ways of representing a domain, has become a
pleasure that has often paid off. In a recent industrial project,
I developed an application to express syntactic rules of ac-
counting calculation where syntactic abstraction is limited to
notation. This notation is chosen because it is already used
by the accountants, thus allowing the professional accounting
expert to contribute executable documents to the project, thus
eliminating the errors that can slip into the comings and
goings with the computer scientists. This use of syntactic
abstraction as a scoring tool, however, tends to be lost, or
to be limited to niche cases in companies, because the ability
of the compiler to output actionable error messages is still
limited, especially when the user is a beginner. This is partly
explained by the great freedom that the medium of the text
offers in the composition of a program, which represents as
many opportunities to produce a wrong program. Companies
tend to move towards specialized graphical data entry inter-
faces, which can make contextual validation more extensive,
with more actionable error messages, precisely because they
severely limit expressive freedom, by report to text. Of course,
this power of graphical interfaces also removes the power
of composition, which is one of the greatest strengths of
the text. Representing the same possible combinations in a
graphical interface, as textual expressivity allows, is already
more complicated. However, more the composition has power,
and more possibilities in the field of general use language
(loops, procedural abstraction, etc.) become necessary, which
explains that the DSLs (Domain Specific Languages) I en-
countered in business are often internal . At my current
employer, these DSLs are often in Scala, which lends itself well
enough with its flexible syntax. Companies, however, generally
remain suspicious of external DSLs, because of the cost of
maintenance.".

2. "Understanding Compilers is an essential part of under-
standing how the machine works and what computer scientists
deal with. It opens our eyes to how to make a good compiler
that works hard to optimize the machine code it generates".

3. "The idea of programming a compiler for a modern
language is good. It allows the student to understand the
mechanism of a compiler/interpreter which remains, in my
opinion, a fundamental component in a computer system. At
the same time the compilation course offers the student the
opportunity to discover a new interesting language (it was
mongo db for my case)".

4. "I think that compilers are very necessary for any
software engineer".

5. "One of the most interesting fundamental lecture in the
computer engineering".

6. "If there any project in ENSIAS that interested me, it
would be the compiling project, and there is no doubt that
it should remain at the curricula because of the huge impact
it has on the understanding of many domains of computer
science".
HO1 Pro testimonials:

1. "Compiling is among technologies of 70s, and we need to
change the way of teaching people and what we are teaching".
HO1 Interviews Conclusions:

Interviews argumentations are in majority against HO1 , affirm-
ing thus that teaching compiling is still worth the cost in 2020
in computer engineering majors.

3) Survey 2 - Hortensias based pedagogy specific student
satisfaction survey:

a) Study Hypothesis:
The Hortensias based pedagogy specific student satisfaction
survey has the following null hypothesis :

HO2
: As a result of the Hortensias platform compiling

based pedagogy, there will be no significant impact nei-
ther on (i) motivating students to understand compiling
nor on (ii) their learning curve in designing and imple-
menting their own compiler/pseudo-code interpreter.

.

which is tested against the alternative hypothesis:

HA2
: Hortensias platform compiling based pedagogy,

will significantly impact (i) students motivation and un-
derstanding of compiling concepts, and (ii) their learn-
ing curve in designing and implementing their own
compiler/pseudo-code interpreter.

.

b) Survey 2 Participants:
46 engineers (19 engineering students -in last engineering
year, and 27 graduated engineers working in industry) were
recruited for the survey in a non-paid voluntarily basis. They
are aged between 23 and 31 years old, and they have all
followed the Hortensias based pedagogy beside compiling
module between 2011 and 2019 in their second engineering
year when they were 22 years old so that permit to evaluate
their opinion about Hortensias pedagogy experience. Survey
2 participants distribution is shwon in table XIV, while figure
5 shows survey 2 participants distribution by age interval.

c) Survey 2 Questionnaire and Results:
Table XIII presents ten questions of survey 2, their Kirkpatrick
levels, and results.

One may remark that for 54.35% of participants, in-
ner working of compilers was difficult before the training
(question Q2.1), which is lower than 72% of [Mernik and
Zumer, 2003] measure since students become more tech-
nology savvy. Understanding and programming compilers,
pseudo code generator/interpreters was impacted positively by
Hortensias based pedagogy for [76.26%, 82.61%] participants
(questions Q2.2 – Q2.5). Notice that only [13.04%, 23.91%]
think that Hortensias based pedagogy was not helpful to
understand compiling, to change their design & programming
behaviour, to develop their own compiler/generator/interpreter,
and that learning Hortensias is not better that without it
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Figure 5: Survey 2 agregated participants distribution

(questions Q2.2 - Q2.9). 17.39% No (programming genera-
tor/interpreter) against 21.74% No (programming compiler)
respectively for questions Q2.4 and Q2.5 can be explained
by the fact that once Hortensias virtual machine provides
one-address pseudo-code generator and interpreter, the student
may neither reprogram nor enrich the VM generator/interpreter
and rather use provided APIs as they are, while the student
will be focused on reading/enriching/adapting more Hortensias
compiler codebase and thus reducing compiler programming
by analogy efforts. Finally, compiling lecture with Hortensias
based pedagogy had good positive impact and return on
investment in understanding and discovering new technology
opportunities according to 71.74% of participants (question
Q2.10) which is aligned with questions Q1.3 – Q1.5.

d) Survey 2 Interviews:
Among survey 2 questionnaires, participants were asked to
give anonymously free comments or constructive proposals
about compiling labworks and assignment based on Hortensias
platform. In the following, the result of these interviews will
be given as pro and cons testimonials in favour and against
formally expressed null hypothesis HO2 : Hortensias platform
compiling based pedagogy will be of no significant impact
neither on motivating students to understand compiling nor
on their compiling programming learning curve.
HO2

Cons testimonials:
1. "With Hortensias, I liked the fact that we didn’t have to
start from scratch, this helped me focus on the core concepts
of compiling".

2. "Honestly, Hortensias codebase is the most properly
writing code in the C language that I have ever read. Because
it is really hard to write a such a proper code with an
imperative paradigm. Keep it going !"

3. "At this very moment, nearly everything we learned in
Hortensias based compiling project is being used in our model
driven engineering project. Moreover, the compiling lecture
course and the project helped me so much to analyse how the
code is being processed in my daily basis".

4. "Programming a compiler with Hortensias platform
helped me a lot to understand compiler concepts".

5. "The compiling assignment based on Hortensias was one
of the projects that I had the most fun developing".

6. "It was a pleasure for me to achieve the compiling
project as I have understood how compilers work internally.
My vision of programming has totally changed after this
course. I highly encourage the teaching of Hortensias project
to software engineering students".
HO2

Pro testimonials:

1. "The Hortensias compiler project can be more beneficial
to students if the design patterns are used to implement
compiler concepts are exposed and explained to students like
the visitor, and interpreter pattern".

2. "I think understanding compiling programming of a
known language such C or Java would be much easier than
a new language Hortensias".

3. "A deep dive into the actual inner workings of modern
languages such as Java, Kotlin, Swift or Scala to develop
Hortensias, instead of C language, would be helpful and bridge
the gap between theory and industry practices to program
compilers.".

4. "I suggest to add advanced compiling towards high
performance computing hardware".
HO2 Interviews Conclusions:

Interviews argumentations are in majority against HO2 hypoth-
esis, affirming thus that Hortensias compiling pedagogy has
impacted not only (i) students motivation and understanding
of compiling concepts, but also (ii) their learning curve in
designing and implementing their own compiler/pseudo-code
interpreter.

4) Surveys’ Conclusion: From the 15 questions and tes-
timonials of both surveys 1 & 2, involving 63 ENSIAS
alumni and students, conducted during one week, results
are clearly in favour of the two alternative hypothesis : (i)
being a relevant introduction to advanced topics (like model
driven engineering, [semi/non/]structured data parsing, text
analytics, natural language processing, chatbots), teaching
compiling is still worth the cost in 2020 in computer engineer-
ing majors general and software engineering and embedded
systems in particular, and (ii) Hortensias platform compiling
based pedagogy, had during 15 years significantly impacted (i)
students motivation and understanding of compiling concepts,
and (ii) their learning curve in designing and implementing
their own compiler/pseudo-code interpreter which is encour-
aging Hortensias compiling based pedagogy experience to be
pursued and continuously improved in the future.

B. Contribution positioning – Literature review

Many works have highlighted the importance and the dif-
ficulty of compiling courses pedagogy [Neto et al., 1999],
[Waite, 2006], [Aho, 2008], [Shehane and Sherman, 2014],
[Kundra and Sureka, 2016], [Subramanian and Natarajan,
2019]. In this section, Hortensias will be positioned both with
pedagogical compiling programming frameworks, and with
pedagogical programming languages. Compiler design is a
beautiful marriage of theory and practice – it is one of the
first major areas of systems programming for which a strong
theoretical foundation has developed that is now routinely used
in practice [Aho, 2008].
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If [Mernik and Zumer, 2003], [Xu and Martin, 2006],
[Henry, 2005], [Sangal et al., 2018] propose a framework
to teach compiling, [Mallozzi, 2005], [Demaille et al., 2008]
advise to use a set of tools without proposing an integrated
framework or core compiler.

What characterises Hortensias in tackling compiling engi-
neering pedagogy is not its used techniques novelty, but its
aptitude to cover concretely all concepts and compiler phases
from scaning to code generation, and interpretation. Table
XV compares Hortensias with languages and frameworks for
teaching compiling.

Moreover, for beginner programmers, Hortensias offers the
possibility to generate the program code by clicking on buttons
instead of writing syntactically and semantically well-formed
instructions. Figure 6 shows a view of Hortensias GUI, and ta-
ble XVI compares Hortensias with languages and frameworks
for teaching languages to beginner programmers.

Figure 6: Hortensias Framework GUI

VI. CONCLUSION AND DISCUSSIONS

Through Design Science Approach, this paper presents real
world education experience in compiling pedagogy based on
Hortensias language, and a pedagogical compiling laboratory
platform as a design artifact. The evaluation of this design
artifact were conducted through two surveys, consisting of
15 questions & testimonials, involving ENSIAS alumni and
students, and conducted during one week, are clearly in favor
of two hypothesis : (i) teaching compiling being a relevant

introduction to advanced topics (like model driven engineer-
ing, [semi/non/]structured data parsing, text analytics, natural
language processing, chatbots), teaching compiling is still
worth the cost in 2020 in computer engineering majors,
and (ii) Hortensias platform compiling based pedagogy, had
during 15 years significantly impacted (ii.1) students moti-
vation and understanding of compiling concepts, and (ii.2)
their learning curve in designing and implementing their
own compiler/pseudo-code interpreter. Moreover, a literature
review has completed the surveys with positioning Hortensias
platform with languages and frameworks for teaching com-
piling on one side, and on the other side with languages and
frameworks for teaching languages to beginner programmers,
before detailing formalised Hortensias defined grammars.

What are the implications of this study on both research
and practice ? In the paper, authors show that teaching
compiling is still worthful in 2020 when many world wide
software engineering majors remove compiling from their
curricula. This Omission is often justified from a mistaken
perception that the study of compilers is now irrelevant to
modern software engineering practice.

The paper states that teaching compiling in 2020 is a pre-
requisite for each software engineers to have a good abstrac-
tion capability and to be technology independent architect,
to build structured mind representation meta-models of every
as-is and to-be architecture, to have deeper understanding of
what is behind black boxes. Compiling is also presented as
a considerable pre-requisite for Model Driven Engineering
discipline, and a perfect introduction to the Science of Text
Algorithms.

This discussion is significant because with computer science
transition to Global IT transitions : Big Data, Data sciences,
Artificial Intelligence, Machine & Deep Learning, Computer
Vision, Internet of Things, etc., many pedagogic instabilities
and uncertainties are born in computer science in general and
software engineering faculties and engineering schools.

The paper presents and evaluates real world education expe-
rience in compiling using Hortensias language, a pedagogical
compiling laboratory platform based on a language compiler
and a virtual machine. Hortensias code is open source and
lecturers and students are all invited to contribute to improve it,
live and enrich the Hortensias lecturer and student experience.

The paper presents an evaluation study based on two sur-
veys targeting more sixty engineering students and alumni to
evaluate impact on compiling course in their day to day needs
and to assess the effectiveness of the tool in promoting desired
pedagogical outcomes.

In fact, IT evolution accompanying the new digital/smart
world requirements (e.g. computing scale-in/scale-out capa-
bilities and architectures, new programming execution en-
vironments paradigm shifts, birth of many frameworks and
programming languages, etc.) create a "healthy biodiversity
IT environment". However, bridging the gap between layers
evolving in different directions is a heavy task that should
involve many research, development, and engineering ef-
forts. Compiling teaching contribute to provide engineers with
a good abstraction capability and technology independence
within this continuously global evolving context, and thus
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insures a good global career evolution without getting stuck
and being dependent to some specific language, framework,
execution environment, hardware, or IT architecture.

What kind of work other researchers may do based on
this study ? This paper states by arguing that teaching com-
piling in 2020 is a pre-requisite for each software engineers
to have a good abstraction capability and to be technology
independent architect, to build structured mind representation
meta-models of every as-is and to-be architecture, to have
deeper understanding of what is behind black boxes. Compil-
ing is also presented as a considerable pre-requisite for Model
Driven Engineering discipline, and a perfect introduction to
the Science of Text Algorithms. The conducted surveys of
this paper, stay at a high evaluation level. For curricula pre-
requisites assessment, other researchers may be interested in
conducting empirical studies to confirm the positive impact of
teaching compiling on :

◦ Computer Sciences skills;
◦ Programming languages skills;
◦ Model Driven Engineering skills;
◦ Text Analytics skills (Science of Text Algorithms, Bag of

Words Techniques, Natural Language Processing, etc.);
◦ Big Data engineering, and analytics skills.

What kind of work open source community may do
based on this paper design artifact ? Hortensias code is
open source. Lecturers and students are invited to contribute to
improve it, live and enrich the Hortensias lecturer and student
experience.

◦ customise Hortensias compiler (front-end parser, seman-
tic analyser, pragmatic analyser, IR generation, and back-
end pseudo-code generator, optimiser, and virtual ma-
chine supporting interpretation) and use it as compiling
pedagogy platform;

◦ customise Hortensias compiler error management inter-
nationalisation layer with a specific community language
preserving languages diversity, and breaking language
barriers for world wide young programmers (some initia-
tives created even programming language with commu-
nity specific vocabulary - see Irish programming language
[Davey, 2020]).

What are limitations of this paper ? There are some
limitations to this paper : (i) Conducting a detailed empirical
evaluation of the effectiveness of each feature of Hortensias
would enrich the pedagogical experience evaluation study,
(ii) Conducting systematic literature review would provide
an important support to the design artifact literature review
evaluation approach, (iii) To address hot and cold evaluation,
the evaluation surveys targeted a huge participants population
from different generations, however, the evaluation survey
approach still suffers from two biases : non-response bias,
and voluntary response bias which may be improved with a
systematic online obligatory periodic survey, (iv) Targeting
several types of design artifact users (1) beginner program-
mers, (2) programmers, (3) compiling course students, and (4)
compiling course lecturers create many other scientific and
positioning problems not yet resolved. The author is aware

of all those limitations, and will address them as interesting
perspectives.
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VII. APPENDIX : HORTENSIAS LANGUAGE FORMAL BASIS
– LL(1) GRAMMAR

A. Hortensias language Terminals

Let H be Hortensias grammar, T is the set of H grammar
terminals constituted of :

• pragma : associativity orientation (#rightassoc or #left-
tassoc (default)), optimisation modes (#staticoptimiser or
#dynamicoptimiser or no optimisation (default)), inter-
mediary representation visualisation (#controlflowgraph),
and error management language customisation primitives
(#english (default), #french, #spanish, #german)

• program delimiters : begin, end
• idf : identifier
• constant terminals : inumber (integer), dnumber (double),

cstring (character array), true, and false
• types terminals : int, bool, double, string
• other : ’;’, ’(’, ’)’, ’:’, ’+’, ’-’, ’*’, ’/’

• ’=’ : initialisation, assignment, and for initial index value
initialisation

• ”==” : equality operator
• conditional control structure : if, then, endif, else
• switch control structure : switch, case, break, default,

endswitch
• for control structure : for, to, do, endfor
• basic standard output printing : print.

B. Hortensias language Non Terminals

Let NT be the set of H grammar non-terminals :
PRE_PROG, PRAGMA_LIST , PROG, TY PE,
CONST , DECL, DECL_AUX , DECL_LIST ,
DECL_LIST_AUX , INST, INST_LIST ,
INST_LIST_AUX , ASSIGN_AUX , IF_INSTAUX ,
SWITCH_BODY , SWITCH_BODY AUX ,
ADDSUB, ADDSUBAUX , MULTDIV ,
MULTDIV AUX , AUX .

C. Hortensias language production rules

The following rewriting rules detail Hortensias H LL(1)
grammar :

PRE_PROG → PRAGMA_LIST PROG
PRAGMA_LIST → pragma PRAGMA_LIST | ε
PROG → DECL_LIST begin INST_LIST end
INST_LIST → INST INST_LIST_AUX
INST_LIST_AUX → INST_LIST | ε
DECL_LIST → DECL DECL_LIST_AUX
DECL_LIST_AUX → DECL_LIST | ε
DECL → idf TYPE DECL_AUX
DECL_AUX → CONST ’;’ | ’;’
TYPE → int | bool | double | string
CONST → inumber | dnumber | cstring | true | false
INST → idf = ASSIGN_AUX ’;’

| if ’(’ idf == ADDSUB ’)’ then INST_LIST
IF_INSTAUX

| print idf ’;’ | print cstring ’;’
| for idf = inumber to inumber do INST_LIST

endfor
| switch ’(’ idf ’)’ SWITCH_BODY default ’:’

INST_LIST break ’;’ endswitch
ASSIGN_AUX → ADDSUB | true | false
SWITCH_BODY → case inumber ’:’ INST_LIST break

’;’ SWITCH_BODYAUX
SWITCH_BODYAUX → SWITCH_BODY | ε
IF_INSTAUX → endif | else INST_LIST endif
ADDSUB → MULTDIV ADDSUBAUX
ADDSUBAUX → ’-’ MULTDIV ADDSUBAUX
ADDSUBAUX → ’+’ MULTDIV ADDSUBAUX
ADDSUBAUX → ε
MULTDIV → AUX MULTDIVAUX
MULTDIVAUX → ’*’ MULTDIV
MULTDIVAUX → ’/’ MULTDIV
MULTDIVAUX → ε
AUX → idf
AUX → inumber | dnumber
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AUX → ’(’ ADDSUB ’)’
Hortensias H grammar was kept incomplete to let the

community complete it for pedagogical purpose. Hortensias
framework developing has preferred rather to focus on deliver-
ing the whole compiling stack architecture compiler-optimiser-
interpreter. In fact, many features can be easily added in the
near future : at syntax and semantic level (e.g. functions,
tables, while statement, more complete boolean expressions,
rich for statement, etc.).

D. Hortensias language LL(1) grammar proof elements

Hortensias H grammar is LL(1) predictive. In
fact, all not nullable non terminals of Hortensias H
grammar are LL(1) predictive since all their right
rules have distinct firsts. We only discuss in this
section nullable non terminals : LISTE_PRAGMA,
LISTE_INSTAUX , SWITCH_BODY AUX ,
LISTE_DECLAUX , LISTE_DECLAUX ,
ADDSUBAUX , MULTDIV AUX

• follow(LISTE_PRAGMA) = { idf },
first(LISTE_PRAGMA) = {pragma}

• follow(LISTE_INSTAUX) = { end, endif, else,
endfor, break },
first(LISTE_INSTAUX) = { idf }

• follow(SWITCH_BODY AUX) =
follow(SWITCH_BODY AUX) = { default },
first(SWITCH_BODY AUX) = { idf }

• follow(LISTE_DECLAUX) = { begin },
first(LISTE_DECLAUX) = { idf }

• follow(ADDSUBAUX) = {′;′ ,′ )′},
first(ADDSUBAUX) = {′−′,′+′}

• follow(MULTDIV AUX) = {′+′,′−′,′ ;′ ,′ )′},
first(MULTDIV AUX) = {′∗′,′ /′}

• ∀X ∈ {LISTE_PRAGMA,LISTE_INSTAUX,
SWITCH_BODY AUX,LISTE_DECLAUX,
LISTE_DECLAUX,ADDSUBAUX,MULTDIV AUX},
follow(X)∩ first(X) = ∅ ⇒ H grammar is predictive
LL(1).

VIII. APPENDIX : HORTENSIAS PSEUDO-CODE LANGUAGE
THEORETICAL BASIS – LL(1) GRAMMAR

A. Hortensias pseudo-code language Terminals

Let P be Hortensias pseudo-code language grammar, T ′ is
the set of P grammar terminals constituted of : delimiters
(begin, end, ’:’), idf (identifier), constant values (inumber,
dnumber, cstring), binary arithmetic operators (add, mult, idiv,
ddiv, sub), branching operators (jmp, jne, jg, jeq), branching
label, variable operators (load, store), stack operators (dupl,
swap), constant evaluation operator (push), printing operators
(printi, prints).

B. Hortensias pseudo-code language Non Terminals

Let NT ′ be the set of P grammar non terminals
: PSEUDOCODE, DATA, DATA_ITEM ,
DATA_AUX , PSEUDOCODE_INST ,
PSEUDOCODE_LISTINST ,
PSEUDOCODE_LISTINSTAUX , and CONST .

C. Hortensias pseudo-code language production rules

The following rewriting rules detail Hortensias pseudo-code
language LL(1) P grammar :

PSEUDOCODE → DATA begin ’:’ PSEU-
DOCODE_LISTINST end ’:’

PSEUDOCODE_LISTINST → PSEUDOCODE_INST
PSEUDOCODE_LISTINSTAUX

PSEUDOCODE_LISTINSTAUX → PSEU-
DOCODE_LISTINST | ε

DATA → DATA_ITEM DATA_AUX
DATA_AUX → DATA | ε
DATA_ITEM → idf CONST
CONST → inumber | dnumber| cstring
PSEUDOCODE_INST →

add | sub | idiv | ddiv | mult
| jmp label | jne label | jg label | jeq label
| label ’:’
| load idf | store idf | push CONST
| dupl | swap
| printi | prints

D. Hortensias pseudo-code language LL(1) grammar proof
elements

Hortensias pseudo-code language P grammar is LL(1)
predictive. In fact, all not nullable non terminals of Hortensias
P grammar are LL(1) predictive since all their right rules
have distinct firsts. We only discuss in this section nullable
non terminals : PSEUDOCODE_LISTINSTAUX , and
DATA_AUX .
• follow(PSEUDOCODE_LISTINSTAUX) = {

end },
first(PSEUDOCODE_LISTINSTAUX) =
first(PSEUDOCODE_LISTINST ) =
first(PSEUDOCODE_INST ) =
{ add, idiv, ddviv, dupl, label, mult, printi, prints,
cstring, sub, swap, store, jmp, jne, jg, jeq, load, push }

• follow(DATA_AUX) = {begin},
first(DATA_AUX) = first(DATA) =
first(DATA_ITEM) = { idf }

• ∀X ∈ {PSEUDOCODE_LISTINSTAUX,
DATA_AUX}, follow(X) ∩ first(X) = ∅ ⇒ P
grammar is LL(1) predictive.
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Hortensias #rightassoc #rightassoc #lefttassoc #lefttassoc
sample code #staticoptimiser #dynamicoptimiser #staticoptimiser #dynamicoptimiser

(degenerated right AST) (degenerated right AST) (degenerated left AST) (degenerated left AST)
(with reverse post-order) (with deeper AST child first) (with post-order) (with deeper AST child first)

(- (* a b ) (+ c (- (/ d (* e f)) (/ g h)))) (- (+ (- (* a b) c) (* (/ d e) f)) (/ g h))

..
begin
..
value =
a
* b
- c
+ d
/ e
* f
- g
/ h ;
print value;
end

begin:
..
LOAD h
LOAD g
DDIV
LOAD f
LOAD e
MULT
LOAD d
DDIV
SUB
LOAD c
ADD
LOAD b
LOAD a
MULT
SUB
STORE value
LOAD value
PRINTI
end:

begin:
..
LOAD f
LOAD e
MULT
LOAD d
DDIV
LOAD h
LOAD g
DDIV
SWAP
SUB
LOAD c
ADD
LOAD b
LOAD a
MULT
SUB
STORE value
LOAD value
PRINTI
end:

begin:
..
LOAD a
LOAD b
MULT
LOAD c
SWAP
SUB
LOAD d
LOAD e
SWAP
DDIV
LOAD f
MULT
ADD
LOAD g
LOAD h
SWAP
DDIV
SWAP
SUB
STORE value
LOAD value
PRINTI
end:

begin:
..
LOAD e
LOAD d
DDIV
LOAD f
MULT
LOAD b
LOAD a
MULT
LOAD c
SWAP
SUB
ADD
LOAD h
LOAD g
DDIV
SWAP
SUB
STORE value
LOAD value
PRINTI
end:

Table IX: Static versus dynamic stack optimised pseudo-codes of a simple Hortensias program

Hortensias Pseudo-code Pseudo-code
sample code generation interpretation output
REM Fibonacci

REM grand pere Fibo(i=0) = 1
gp int 1;

REM pere Fibo(i=1) = 1
p int 1;

REM petit fils
pf int 0;

i int;

begin

REM calcul de Fibo(i=1000)
for i = 2 to 1000 do

pf = p + gp;

gp = p;

p = pf;

rem print pf;

endfor

print pf;

end

gp 1.000000
p 1.000000
pf 0.000000
i 0.000000
begin:
PUSH 2.000000
STORE i
for0:
PUSH 1000.000000
LOAD i
JG endfor0
LOAD p
LOAD gp
ADD
STORE pf
LOAD p
STORE gp
LOAD pf
STORE p
PUSH 1.000000
LOAD i
ADD
STORE i
JMP for0
endfor0:
LOAD pf
PRINTI
end:

70330367711422765322048
72475814164269928270756
57920012118404210516345
91204743218655894597267
83962495787432656641561
08317257606824774039286
32948450005145026398286
23115606591298241251666
66796383563765944827248
64.000000

Table X: Compiled pseudo-code and interpretation output of a simple Hortensias program

grad. 20- NA 09 10 11 12 13 14 15 16 17 18 19 20
age (y/o) NA 34 33 32 31 30 29 28 27 26 25 24 23
exp. (y) NA 11 10 9 8 7 6 5 4 3 2 1 fresh

distrib % 6.35 4.76 1.59 4.76 1.59 3.17 1.59 9.52 4.76 6.35 11.11 11.11 33.33

Table XI: Survey 1 detailed participants distribution



19

L
ev

el

Question Yes No NA

-
Q1.1. Did the working of
compilers interest you in
the past ?

63.49% 36.51% 0.00%

-

Q1.2. Does language com-
piling/interpreting (or re-
lated domains : MDE, text
analytics algorithms, data
parsing scripting, NLP, or
others) interest you now in
your current industry ac-
tivity ?

68.25% 30.16% 1.59%

4/5

Q1.3. Do you think that
it is still worth the cost
to teach compiling in 2020
in Software Engineering
majors ?

88.89% 6.35% 4.76%

4/5

Q1.4. Do you think that it
is still worth the cost to
teach compiling in 2020 in
Embedded System Engi-
neering majors ?

68.25% 17.46% 14.29%

4/5

Q1.5. Do you think that it
is still worth the cost to
teach compiling in 2020 in
all Computer Engineer-
ing majors ?

68.25% 25.40% 6.35%

Table XII: Survey 1 : questions, Kirkpatrick levels, and results

L
ev

el

Question Y N NA

-

Q2.1. Was it difficult to
understand the inner work-
ing of a compiler before
Hortensias based compil-
ing teaching methodology ?

54.35% 41.30% 4.35%

1

Q2.2. Was Hortensias of
any help to a better under-
standing of compiler con-
cepts ?

82.61% 13.04% 4.35%

1

Q2.3. Was Hortensias
important for a better
understanding of compiler
concepts ?

78.26% 17.39% 4.35%

2

Q2.4. Was Hortensias
important for helping you
programming your own
compiler ?

76.09% 21.74% 2.17%

2

Q2.5. Was Hortensias
important for helping
you programming
your own pseudo code
generator/interpreter ?

78.26% 17.39% 4.35%

3

Q2.6. Do you think that
Hortensias has given
you necessary concepts &
methodology to move easily
to other tools for compiling
programming ?

76.09% 21.74% 2.17%

3

Q2.7. Do you think that
your knowledge acquired
thanks to Hortensias will
be long lasting ?

73.91% 19.57% 6.52%

3

Q2.8. Do you think that
learning compiling with
Hortensias is better than
without it ?

73.91% 23.91% 2.17%

3

Q2.9. Do you think that pro-
gramming a compiler with
Hortensias core support
helped you improving your
abstract/virtual machine un-
derstanding, computer sci-
ence problem decomposi-
tion, data structure design,
solution architecture, or pro-
gramming skills ?

71.74% 21.74% 6.52%

4/5

Q2.10. Do you think that
Hortensias helped
you understanding
advanced topics like
model driven engineering,
[semi/non/]structured
data parsing, text analytics,
natural language processing,
chatbots, etc. ?

71.74% 26.09% 2.17%

Table XIII: Survey 2 : questions, Kirkpatrick levels, and results
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grad. 20- 12 13 14 15 16 17 18 19 20
age (y/o) 31 30 29 28 27 26 25 24 23
exp. (y) 8 7 6 5 4 3 2 1 fresh

distrib % 2.17 2.17 2.17 10.87 6.52 6.52 15.22 13.04 41.30

Table XIV: Survey 2 detailed participants distribution

C
ri

te
ri

a
L

is
a

C
hi

rp
G

PL
PA

V
T

H
or

te
n

si
as

[M
er

ni
k

an
d

Z
um

er
,2

00
3]

[X
u

an
d

M
ar

tin
,2

00
6]

[H
en

ry
,2

00
5]

[S
an

ga
l

et
al

.,
20

18
]

[B
aï

na
,2

02
0]

pr
in

ci
pl

e
la

ng
ua

ge
co

m
pi

lin
g

do
m

ai
n

vi
su

al
ex

te
ns

ib
le

sp
ec

ifi
ca

tio
n

fo
r

sp
ec

ifi
c

gr
am

m
ar

co
re

co
m

pi
le

r
ba

se
d

ro
bo

ts
la

ng
ua

ge
si

m
ul

at
or

an
d

A
PI

pr
ov

id
er

fo
rm

al
sp

ec
ifi

ca
tio

n
sy

nt
ax

sy
nt

ax
sy

nt
ax

sy
nt

ax
la

ng
ua

ge
ba

se
d

&
se

m
an

tic
&

se
m

an
tic

&
se

m
an

tic
co

m
pi

le
r

co
de

si
m

ul
at

io
n

ge
ne

ra
tio

n
ge

ne
ra

tio
n

si
m

ul
at

io
n

pr
og

ra
m

m
in

g
co

m
pi

le
r

pr
og

ra
m

m
in

g
x

x
ba

se
d

x
x

en
gi

ne
de

pe
nd

en
t

L
IS

A
to

ol
A

N
T

L
R

D
SL

PA
V

T
to

ol
fle

x
ru

nt
im

e
as

so
ci

at
iv

ity
x

cu
st

om
is

at
io

n
ru

nt
im

e
op

tim
is

at
io

n
st

at
ic

cu
st

om
is

at
io

n
&

dy
na

m
ic

ps
eu

do
-c

od
e

ge
ne

ra
to

r
sp

ec
ifi

ca
tio

n
ro

bo
t

vi
rt

ua
l

po
rt

ab
le

ba
se

d
sp

ec
ifi

c
1-

@
by

te
co

de
pa

rs
in

g
al

go
ri

th
m

x
cu

st
om

is
at

io
n

x
ev

en
tu

al
IR

ba
se

d
x

x
in

te
rp

re
ta

tio
n

x
x

ps
eu

do
-c

od
e

in
te

rp
re

te
r

ro
bo

t
x

APIfor

IR
pr

od
uc

tio
n

x
x

se
m

an
tic

an
al

ys
is

x
x

er
ro

r
m

an
ag

em
en

t
x

co
de

ge
ne

ra
tio

n
x

x
co

de
op

tim
is

at
io

n
x

co
de

in
te

rp
re

ta
tio

n
x

x

Table XV: Hortensias versus languages and frameworks for
teaching compiling
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Table XVI: Hortensias versus languages and frameworks for
beginner programmers


