
Note: This page is added by viXra Admin – See requirements/instructions on the submission form.

Throw2goto: An exception handling optimization

Jeff Linahan

Abstract

We discuss an exception handling optimization that achieves zero overhead in both space and

time compared to ordinary C-style error handling control flow when the compiler can see which

catch block a given throw expression will land in. The technique brings exceptions more in line

with the design goals of C++, reducing the need for alternate error handling mechanisms.

Throw2goto: an exception handling optimization

Jeff Linahan

Introduction

We discuss an exception handling optimization that achieves zero overhead in both space
and time compared to ordinary C-style error handling control flow when the compiler can
see which catch block a given throw expression will land in. The technique brings
exceptions more in line with the design goals of C++, reducing the need for alternate error
handling mechanisms.

Motivation

After decades of existing as a supported language feature, exceptions are still not
universally accepted as C++’s de facto error handling mechanism, despite being carefully
designed around RAII. Perhaps the most commonly cited reason for low adoption is that
exceptions violate the zero-overhead principle. Early exception handling
implementations fell far short of achieving this as (among other things) much bookkeeping
was done to make sure the correct destructors of objects with automatic storage duration
were called just in case an exception is thrown; this would happen even during the “happy
path” when no exceptions are occurring. This led many developers to disable exceptions
entirely and led to the proliferation of many different styles of error handling in C++, even
putting pressure on the committee to support different dialects of the language (for
example with std::error_code in std::filesystem).

While progress has certainly been made on improving the performance of exceptions,
this has often been in the form of trading off one performance problem for another.
Earlier, Goldthwaite has done a comprehensive examination of the kinds of runtime costs
of exceptions and identified three sources of overhead, each in both data and code: (1)
bookkeeping associated with each try and catch block (to remember to call the correct
destructors, for example) (2) missed opportunities for optimization in regular functions
that exceptions prevent us from applying, and (3) overhead associated with the actual
throwing, for example dynamic allocation of the exception object. He compares the
“code” (or stack-based) approach with the “table” approach. In the table-based approach,
the best case scenario is that code equipped with exception handling can outperform
even comparable C code because the “error propagation clutter” of many “if” checks on
error codes can be omitted from the deeply nested (or telescoping recursive) function
calls. [Cline] Note that this is a negative overhead abstraction, similar to coroutines for
single-pass Cobol compilation [Nishanov] or matrix multiplication in Fortran [Fridman]. In
the worst case scenario however, a throw may cause a disk access to load state tables
from cache-cold virtual memory.

For those like myself who would like more exception handling in the wild, do we simply
continue trying to convince developers merely not overuse exceptions instead of

completely abandoning them when so much of the community has valid complaints? Are
we stuck with waiting for contracts to be merged into the standard, std::logic_error

to be deprecated, followed by decades for the industry to refactor away the overuse until
we are left with exceptions thrown only in truly “exceptional” situations? Do we then sum
the negative overhead of the best case with the disk access of the worst, hoping for a
nonpositive result so we can claim the zero overhead principle is preserved?

Dynamic Difficulties

Part of the difficulty in producing a zero-overhead exceptions implementation comes from
the fact that C++’s exceptions are actually extremely powerful, and inherently dynamic.
Objects of any type (including built-ins and polymorphic types) may be thrown, they can
propagate through virtual function and function pointer boundaries, and the runtime must
be able to determine whether the exception object’s type matches a particular catch
clause. Finding the address of the activation handler (or landingpad) at compile time is
(in general) not possible and requires whole program information in many cases. It may
not be possible to tell what the call graph looks like at compile time if control flow passes
through these, and a base class catch block must match a thrown derived object, even if
it is non-polymorphic.

Inherent runtime polymorphic issues aside, it is not enough that a feature simply be
possible to implement in a zero-overhead manner; the standard has seen dizzyingly
complex features before (such as exported templates) that are impractical to implement.
Static exceptions have been proposed as a new mechanism that follows the spirit behind
the zero overhead principle in a more straightforward way by having the return channel
do double duty as the exception object’s memory. [Sutter] But there are clearly many
programs that use dynamic exceptions that need to keep working. Is it such a pound of
cure to improve the current mechanism? Is it really so against the spirit of C++ to use
optimizations to achieve zero-overhead, or at least try to? C++ has before mandated
certain optimizations to happen before, for example return value optimization.

Local Landingpads

The design purpose of exceptions is to signal an error that cannot be handled locally, thus
decoupling the code that detects it from the code that (attempts to) recover from it. This
does not mean all exceptions must be thrown from a different stack frame in which they
are caught: try blocks that contain throw statements landing in the immediately following
catch block are also very common. For most of these throw statements, the thrown
object’s type is known at compile time, yet modern compilers still generate code for
dynamic allocation and dynamic dispatch, thus the overhead is higher than what a C
programmer would write with a goto errorhandler statement to jump to the end of

the function. To see a dramatic example of this cost, consider:

int main() try {throw 42;} catch (int e){}

With -O3, clang generates code to dynamically allocate the exception object, look up
typeinfo, throw it, and does bookkeeping as the catch block begins and ends (even
when there are no instructions in the catch block):

main: # @main

 push rax

 mov edi, 4

 call __cxa_allocate_exception

 mov dword ptr [rax], 42

 mov esi, offset typeinfo for int

 mov rdi, rax

 xor edx, edx

 call __cxa_throw

 mov rdi, rax

 call __cxa_begin_catch

 call __cxa_end_catch

 xor eax, eax

 pop rcx

 ret

With proper optimization, this should be simply:

main: # @main

 xor eax, eax

 Ret

The case of throwing int is not as niche as it might first appear, as throwing errno when

mixing C and C++ is a common practice in embedded systems. Of course, usually we
have code before (and after) the throw:

void update_warp_factor(float speed)

{
 try {

 float w = calc_warp_factor(speed);

 if (w >= 10.0) throw WarpCoreException("bad speed");
 if (w <= 1) switch_to_impulse_engine();

 } catch (WarpCoreException const& e){

 cerr << e.text << '\n';
 }

}

In this case, a sufficiently smart compiler can see that the thrown WarpCoreException

always lands in the following try block, so there is no need for a dynamic memory
allocation, and the catch clause is replaced with a landingpad label. Here is how we

convert the throw statement: Since the WarpCoreException’s lifetime is limited to this
function, we can alloca it on the stack, which simply increments the stack pointer by

sizeof(WarpCoreException) and gives us an area of uninitialized memory in which

we can construct the WarpCoreException. (Care must be taken to make sure the

exception object is not too big to prevent a stack overflow). Then we goto

landingpad. After the throw2goto optimization is applied, we are left with an AST

describing something like this:

void update_warp(float speed)
{

 WarpCoreException* __ex = nullptr;

 float w = calc_warp_factor(speed);

 if (w >= 10.0) {

 __ex = static_cast<WarpCoreException*>(alloca(sizeof(WarpCoreException)));

 new (__ex) WarpCoreException("bad speed");

 goto landingpad;

 }

 if (w <= 1) switch_to_impulse_engine();

 return;

landingpad:

cerr << __ex->text << '\n';

__ex->~WarpCoreException();
}

Here, __ex denotes an arbitrary C++ identifier that is guaranteed to not cause an ODR
violation. For now, the optimization can simply be disabled in the presence of language
idioms that make the transformation difficult to apply correctly, such as throw; for the

Lippincott pattern, or std::current_exception and std::uncaught_exceptions

rather than adding one to count the “optimized out” exception with the as-if rule.

More Ambitious Ideas

What if there are multiple throw statements in the try block? So long as none of the throws
are polymorphic, we create an additional block that performs the alloca, placement new,
and goto for each throw, and an additional unique landingpad label for every type.

What if some of the helper functions (with internal linkage) like calc_warp_factor()

or switch_to_impulse_engines() throw an exception that lands in

update_warp()’s catch block? Perhaps we can still optimize this too: one idea is to

use multiple return addresses. In addition to the normal return address, the address of
each landingpad could be pushed onto the stack so the callee functions could restore the
program counter to different points depending on which throw statement was
encountered. If we are several function calls deep and there are no objects with nontrivial
destructors allocated in between, we need not even worry about bit-blitting [Sutter, 2019]
the exception object up each of the n frames during stack unwinding, but can catch in
constant time.

What if a function g() is called from within the catch block and g() also throws? This is

known to require whole-program information. [cfe-dev 042051] Many of more complex

cases are like this, but as link time optimization becomes more popular, it is hoped that
eventually many of them can be applied.

Conclusion

Exception handling is still hotly debated despite being standard C++ and used throughout
the STL, and many alternative error handling mechanisms exist. Perhaps the biggest
complaint is the performance, and while much progress has certainly been made on the
happy path, the low hanging fruit of optimizing throwing into a local landingpad has not
yet been implemented. There is higher hanging fruit as well, but if we begin optimizing
some common exception phraseologies to be truly zero overhead compared to C-style
return codes, perhaps we will we less community fragmentation and more developers
able to use the language’s foremost error handling facility.

Acknowledgement

Many thanks to Emil Dotchevski for helpful discussions on how exception handling is
implemented, feedback on the ideas presented here, and proofreading. Inline assembly
generated by Compiler Explorer: https://godbolt.org/

References

Cline, Marshall. C++ Super-FAQ: Exceptions and Error Handling.
https://isocpp.org/wiki/faq/exceptions#exceptions-avoid-spreading-out-error-logic

Fidman, Lex & Stroustrup, Bjarne. C++ | Artificial Intelligence Podcast.
https://www.youtube.com/watch?v=uTxRF5ag27A

Goldthwaite, Lois. Technical Report on C++ Performance. WG21/N1666 J16/04-0106.
2004-7-15. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1666.pdf

Luehring, Dennis. Why does clang(llvm) not optimize static throw/catch constructs?
http://lists.llvm.org/pipermail/cfe-dev/2015-March/042051.html

Koenig, Andrew. Exception Handling for C++. http://www.stroustrup.com/except89.pdf

Nishanov, Gor. C++ Coroutines – a negative overhead abstraction.
https://www.youtube.com/watch?v=_fu0gx-xseY

Sutter, Herb. Zero-overhead deterministic exceptions: Throwing values. P0709 R0.
2018-05-02. http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p0709r0.pdf

Sutter, Herb. De-fragmenting C++: Making Exceptions and RTTI More Affordable and
Usable. CppCon 2019. https://www.youtube.com/watch?v=ARYP83yNAWk

https://godbolt.org/
https://isocpp.org/wiki/faq/exceptions#exceptions-avoid-spreading-out-error-logic
https://www.youtube.com/watch?v=uTxRF5ag27A
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1666.pdf
http://lists.llvm.org/pipermail/cfe-dev/2015-March/042051.html
http://www.stroustrup.com/except89.pdf
https://www.youtube.com/watch?v=_fu0gx-xseY
http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p0709r0.pdf
https://www.youtube.com/watch?v=ARYP83yNAWk

