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Abstract 

We discuss an exception handling optimization that achieves zero overhead in both space and 

time compared to ordinary C-style error handling control flow when the compiler can see which 

catch block a given throw expression will land in.  The technique brings exceptions more in line 

with the design goals of C++, reducing the need for alternate error handling mechanisms. 
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Introduction 

 
We discuss an exception handling optimization that achieves zero overhead in both space 
and time compared to ordinary C-style error handling control flow when the compiler can 
see which catch block a given throw expression will land in.  The technique brings 
exceptions more in line with the design goals of C++, reducing the need for alternate error 
handling mechanisms. 
 

Motivation 

 
After decades of existing as a supported language feature, exceptions are still not 
universally accepted as C++’s de facto error handling mechanism, despite being carefully 
designed around RAII.  Perhaps the most commonly cited reason for low adoption is that 
exceptions violate the zero-overhead principle.  Early exception handling 
implementations fell far short of achieving this as (among other things) much bookkeeping 
was done to make sure the correct destructors of objects with automatic storage duration 
were called just in case an exception is thrown; this would happen even during the “happy 
path” when no exceptions are occurring.  This led many developers to disable exceptions 
entirely and led to the proliferation of many different styles of error handling in C++, even 
putting pressure on the committee to support different dialects of the language (for 
example with std::error_code in std::filesystem). 

 
While progress has certainly been made on improving the performance of exceptions, 
this has often been in the form of trading off one performance problem for another.  
Earlier, Goldthwaite has done a comprehensive examination of the kinds of runtime costs 
of exceptions and identified three sources of overhead, each in both data and code: (1) 
bookkeeping associated with each try and catch block (to remember to call the correct 
destructors, for example) (2) missed opportunities for optimization in regular functions 
that exceptions prevent us from applying, and (3) overhead associated with the actual 
throwing, for example dynamic allocation of the exception object.  He compares the 
“code” (or stack-based) approach with the “table” approach.  In the table-based approach, 
the best case scenario is that code equipped with exception handling can outperform 
even comparable C code because the “error propagation clutter” of many “if” checks on 
error codes can be omitted from the deeply nested (or telescoping recursive) function 
calls.  [Cline]  Note that this is a negative overhead abstraction, similar to coroutines for 
single-pass Cobol compilation [Nishanov] or matrix multiplication in Fortran [Fridman].  In 
the worst case scenario however, a throw may cause a disk access to load state tables 
from cache-cold virtual memory. 
 
For those like myself who would like more exception handling in the wild, do we simply 
continue trying to convince developers merely not overuse exceptions instead of 



completely abandoning them when so much of the community has valid complaints?  Are 
we stuck with waiting for contracts to be merged into the standard, std::logic_error 

to be deprecated, followed by decades for the industry to refactor away the overuse until 
we are left with exceptions thrown only in truly “exceptional” situations?  Do we then sum 
the negative overhead of the best case with the disk access of the worst, hoping for a 
nonpositive result so we can claim the zero overhead principle is preserved? 

 
Dynamic Difficulties 
 
Part of the difficulty in producing a zero-overhead exceptions implementation comes from 
the fact that C++’s exceptions are actually extremely powerful, and inherently dynamic.  
Objects of any type (including built-ins and polymorphic types) may be thrown, they can 
propagate through virtual function and function pointer boundaries, and the runtime must 
be able to determine whether the exception object’s type matches a particular catch 
clause.  Finding the address of the activation handler (or landingpad) at compile time is 
(in general) not possible and requires whole program information in many cases.  It may 
not be possible to tell what the call graph looks like at compile time if control flow passes 
through these, and a base class catch block must match a thrown derived object, even if 
it is non-polymorphic. 
 
Inherent runtime polymorphic issues aside, it is not enough that a feature simply be 
possible to implement in a zero-overhead manner; the standard has seen dizzyingly 
complex features before (such as exported templates) that are impractical to implement.  
Static exceptions have been proposed as a new mechanism that follows the spirit behind 
the zero overhead principle in a more straightforward way by having the return channel 
do double duty as the exception object’s memory. [Sutter] But there are clearly many 
programs that use dynamic exceptions that need to keep working.  Is it such a pound of 
cure to improve the current mechanism?  Is it really so against the spirit of C++ to use 
optimizations to achieve zero-overhead, or at least try to?  C++ has before mandated 
certain optimizations to happen before, for example return value optimization. 

 
Local Landingpads 
 
The design purpose of exceptions is to signal an error that cannot be handled locally, thus 
decoupling the code that detects it from the code that (attempts to) recover from it.  This 
does not mean all exceptions must be thrown from a different stack frame in which they 
are caught: try blocks that contain throw statements landing in the immediately following 
catch block are also very common.  For most of these throw statements, the thrown 
object’s type is known at compile time, yet modern compilers still generate code for 
dynamic allocation and dynamic dispatch, thus the overhead is higher than what a C 
programmer would write with a goto errorhandler statement to jump to the end of 

the function.  To see a dramatic example of this cost, consider: 
 

int main() try {throw 42;} catch (int e){} 

  



With -O3, clang generates code to dynamically allocate the exception object, look up 
typeinfo, throw it, and does bookkeeping as the catch block begins and ends (even 
when there are no instructions in the catch block): 
  

main:                                   # @main 

        push    rax 

        mov     edi, 4 

        call    __cxa_allocate_exception 

        mov     dword ptr [rax], 42 

        mov     esi, offset typeinfo for int 

        mov     rdi, rax 

        xor     edx, edx 

        call    __cxa_throw 

        mov     rdi, rax 

        call    __cxa_begin_catch 

        call    __cxa_end_catch 

        xor     eax, eax 

        pop     rcx 

        ret 

  

With proper optimization, this should be simply: 
  

main:                                   # @main 

        xor     eax, eax 

        Ret 

 
The case of throwing int is not as niche as it might first appear, as throwing errno when 

mixing C and C++ is a common practice in embedded systems.  Of course, usually we 
have code before (and after) the throw: 
 
void update_warp_factor(float speed) 

{ 
    try { 

        float w = calc_warp_factor(speed); 

        if (w >= 10.0) throw WarpCoreException("bad speed"); 
        if (w <= 1) switch_to_impulse_engine(); 

    } catch (WarpCoreException const& e){ 

        cerr << e.text << '\n'; 
    } 

} 
 
In this case, a sufficiently smart compiler can see that the thrown WarpCoreException 

always lands in the following try block, so there is no need for a dynamic memory 
allocation, and the catch clause is replaced with a landingpad label.  Here is how we 

convert the throw statement: Since the WarpCoreException’s lifetime is limited to this 
function, we can alloca it on the stack, which simply increments the stack pointer by 

sizeof(WarpCoreException) and gives us an area of uninitialized memory in which 

we can construct the WarpCoreException.  (Care must be taken to make sure the 

exception object is not too big to prevent a stack overflow).  Then we goto 



landingpad.  After the throw2goto optimization is applied, we are left with an AST 

describing something like this: 

 
void update_warp(float speed) 
{ 

        WarpCoreException* __ex = nullptr; 

 
        float w = calc_warp_factor(speed); 

 

        if (w >= 10.0) { 

  __ex = static_cast<WarpCoreException*>(alloca(sizeof(WarpCoreException))); 

  new (__ex) WarpCoreException("bad speed"); 

  goto landingpad; 

 } 
 

 if (w <= 1) switch_to_impulse_engine(); 

 return; 
 

landingpad: 

cerr << __ex->text << '\n'; 

__ex->~WarpCoreException();  
} 
 
Here, __ex denotes an arbitrary C++ identifier that is guaranteed to not cause an ODR 
violation.  For now, the optimization can simply be disabled in the presence of language 
idioms that make the transformation difficult to apply correctly, such as throw; for the 

Lippincott pattern, or std::current_exception and std::uncaught_exceptions 

rather than adding one to count the “optimized out” exception with the as-if rule. 

 
More Ambitious Ideas 
 
What if there are multiple throw statements in the try block?  So long as none of the throws 
are polymorphic, we create an additional block that performs the alloca, placement new, 
and goto for each throw, and an additional unique landingpad label for every type. 
 
What if some of the helper functions (with internal linkage) like calc_warp_factor() 

or switch_to_impulse_engines() throw an exception that lands in 

update_warp()’s catch block?  Perhaps we can still optimize this too: one idea is to 

use multiple return addresses.  In addition to the normal return address, the address of 
each landingpad could be pushed onto the stack so the callee functions could restore the 
program counter to different points depending on which throw statement was 
encountered.  If we are several function calls deep and there are no objects with nontrivial 
destructors allocated in between, we need not even worry about bit-blitting [Sutter, 2019] 
the exception object up each of the n frames during stack unwinding, but can catch in 
constant time. 
 
What if a function g() is called from within the catch block and g() also throws?  This is 

known to require whole-program information.  [cfe-dev 042051]  Many of more complex 



cases are like this, but as link time optimization becomes more popular, it is hoped that 
eventually many of them can be applied.   

 
Conclusion 
 
Exception handling is still hotly debated despite being standard C++ and used throughout 
the STL, and many alternative error handling mechanisms exist.  Perhaps the biggest 
complaint is the performance, and while much progress has certainly been made on the 
happy path, the low hanging fruit of optimizing throwing into a local landingpad has not 
yet been implemented.  There is higher hanging fruit as well, but if we begin optimizing 
some common exception phraseologies to be truly zero overhead compared to C-style 
return codes, perhaps we will we less community fragmentation and more developers 
able to use the language’s foremost error handling facility. 
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