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Abstract

The belief entropy has high performance in handling uncertain information,
which is the extension of information entropy in Dempster-shafer evidence the-
ory. The Tsallis entropy is an extent of information entropy, which is a nonex-
tensive entropy. However, how to applied the idea of belief entropy to improve
the Tsallis entropy is still an open issue. This paper proposes the nonextensive
belief entropy(NBE), which consists of belief entropy and Tsallis entropy. If
the extensive constant of the proposed model equal to 1, then the NBE will de-
generate into classical belief entropy. Furthermore, When the basic probability
assignment degenerates into probability distribution, then the proposed entropy
will be degenerated as classical Tsallis entropy. Meanwhile, if NBE focus on the
probability distribution and the extensive constant equal to 1, then the NBE
is equate the classical information entropy. Numerical examples are applied to
prove the efficiency of the proposed entropy. The experimental results show
that the proposed entropy can combine the belief entropy and Tsallis entropy
effectively and successfully.

Keywords: Belief entropy, Tsallis entropy, Nonextensive belief entropy, Mass
function

1. Introduction

There are a lot of uncertainties in the real world [I, 2]. In order to deal
with the uncertain information, many mathematical models and theories have
been proposed [3, @], such as belief function [5], networks science [6], Choquet
integral [7], quantum theory [§]. Qin et al [9] proposed a new total uncertainty
measure to solve the issues of decision making in evidential environment. Liu et
al. [I0] used the physarum polycephalum assignment to equilibrate fuzzy user.
Deng and Jiang [II] applied the maximum uncertainty allocation to improve
Dempster—Shafer belief structure. Jaunzemis et al [I2] used the judical eviden-
tial reasoning to gather evidence information of hypothesis resolution. Fei et
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al [I3] 4] applied the soft likelihood functions to solve decision making prob-
lems. Khan and Anwar [15] applied the weighted evidence and Dempster—Shafer
combination rule to improve time-domain data fusion and applied the proposed
model to classify objects. How to measure the uncertainty degree of uncertain
issues is a vital research spot [16]. To measure the uncertain information, many
mathematical methods and theories have been presented [17]. Garg et al. [I8][19]
used entropy theory to improve measurement methods under Pythagorean fuzzy
environment. Vilasini and Colbeck [20] applied the Tsallis entropy to analyse
causal structures. Dragan and Alexandru [2I] proposed the pseudo-entropic
model, which is a reliability model. Ren et al. [22] applied a large cognitive
experiment of Mechanical Turk to estimate the entropy rate of english. Among
these entropies, a belief entropy, named as Deng entropy, is proposed to measure
the uncertainty of BPA [23]. The belief entropy is the most studied entropy at
present [24], which is an extend of information entropy and can evaluate uncer-
tainties more flexible than information entropy [25]. The belief entropy is based
on the evidence theory, which means that the belief entropy can represent the
uncertainties under the frame of discernment effectively [26]. When the basic
probability assignment degenerate into the probability distribution, the belief
entropy is degenerated as classical information entropy [27]. Relying on the
advantages on representing uncertainty, the belief entropy has been widely s-
tudied by scholars at home and abroad [28]. Prajapati and Saha [29] applied
the entropy theory to predict next word in the text with the aid of language
model. Abellan [30] analyzed the properties of belief entropy in evidential en-
vironment. Zhu [3I] proposed the maximum value dimension and power law
of belief distribution of the maximum belief entropy. Kang and Deng proposed
the maximum belief entropy [32], which is a meaningful model. The maximum
belief entropy can obtain the maximum value of belief entropy of basic probabil-
ity assignment. Then, Gao and Deng [33] proposed the Pseudo-Pascal Triangle
form for the maximum belief entropy. Zheng and Tang [34] applied the deng
entropy to obtain weighted risk priority number and used it into failure mode
and effects analysis field.

Tsallis proposed the Tsallis entropy, which can measure the extensibility of
system. Due to the high performance in representing uncertainties, the Tsallis
entropy has been studied widely [35]. Gao et al. [36] proposed a new uncer-
tainty measure with the aid of Tsallis entropy and applied the proposed model
into evidential environment. Sholehkerdar [37] analyzed the theories of Tsallis
entropy under the image fusion environment. Campos et al [38] extended T-
sallis entropy from the research of probability space to the parameter space for
pp and collisions. However, how to combine the belief entropy with the Tsallis
entropy is still an open issue.

This paper proposes the NBE, which has the advantages of the belief entropy
and Tsallis entropy. When the extension constant of the proposed model is 1,
the non-extension belief entropy will degenerate into the classical belief entropy.
In addition, when the mass fucntion is reduced to probability distribution, the
proposed entropy becomes the classical Tsallis entropy. At the same time, if the
NBE is concentrated in the probability distribution, and the extensive constant



is 1, then the NBE is equal to the classical information entropy. In this paper,
some meaningful theorems and proofs of the proposed entropy are given.

The remain of this paper is structured as follows. Section 2 introduces the
preliminary. Section 3 presents the NBE. Section 4 illustrates the flexibility of
NBE. Section 5 summarizes the whole paper.

2. Preliminaries

To handling the uncertainties everywhere, many methods have been present-
ed [39] 40], which were applied in the applications of decision making [41] [42],
pedestrian detection [43], statistical analysis [44], medical diagnosis [45], Emer-
gency alternative evaluation citechen2020emergency. In this section, frame of
discernment [46], [47], mass function [48, 49], maximum belief entropy [50, [51]
are briefly introduced.

2.1. Frame of Discernment

Frame of discernment is an extent of classical probability space. When the
frame of discernment focuses on the single subsets, the frame of discernment is
degenerated as classical probability space [52]. Given a frame of discernment
Q ={x1,x2,...,2,}, the power set of frame of discernment is defined as follows:

Definition 2.1. (Power Set of Frame of Discernment) [53]

2Q - {®7 {‘Tl}a {xQ}a ) {l‘n}, {x17x2}7 ) {$1,x2, s axi}a . aQ} (1)

2.2. Mass Function

Given a frame of discernment Q = {z1,22,...,2,}, the mass function, m,
on 2% is defined as follows:

Definition 2.2. (Mass Function) [53)]

m: 2% —[0,1] (2)

Where, m(0)) = 0 and ¥ geoom(B) = 1 with a focal element, B, of 2. The
mass function is also called basic probability assignment, which was improved
with the aid of complex number [57, [55)].

2.8. Belief Entropy

Entropy theory has the good performance in measuring the uncertainty de-
gree of a given system [56]. As we know, the belief entropy is the most effective
entropy in evidential environment. Given a mass function m on a given frame
of discernment Q = {x1,22,...,2,}. The definition of belief entropy under m
is as follows:



Definition 2.3. (Belief entropy) [23]

Fa=— Y m(B)log, 55 ®)
Be2®

When the mass function is degenerated as a classical probability distribution,
belief entropy will be degenerated into Shannon entropy.

Theorem 2.1. When the m(B) = %, then the belief entropy will
Beg2

obtain the mazimum value [32).

2.4. Tsallis Entropy

The definition of Tsallis entropy under a probability distribution p; is as
follows:

Definition 2.4. (Tsallis entropy) [57]

w
1—> .0}

Sq=h—=5

geR (4)

When k is a conventional positive constant and Zzl p; = 1. It is obvious

that limg_,; Sy = —k EiVLPi Inp;. In this way, the Tsallis entropy is degener-
ated as classical information entropy.

Example 2.1. When the N = 32, ¢ = 2 and the Tsallis entropy conforms to
uniform distribution, the Tsallis entropy as follow:
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3. The proposed model
8.1. Nonextensive belief entropy
Given a frame of discernment © = {x1,x2,...,x,}, the definition of NBE

as follows:

Definition 3.1. (Nonextensive belief entropy)

Si(4) = 1= 3 () 6

Be2®



Theorem 3.1. If the basic probability assignment degenerate into probability
distribution, then the NBE will degenerate into classical Tsallis entropy.

Proof 3.1. Relying on the Eq. , we can obtain the following equation:

Sy(A) = ——(1- 3 (B,

PN

Since the basic probability assignment degenerates into the classical probabil-
ity distribution, then we can get that 2!Bl —1 = 1.
Then, we can obtain the follow ing equation:

1 m(B))?
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Hence, the NBE will degenerate into classical Tsallis entropy.

Theorem 3.2. If the extensive constant ¢ = 1, then the NBE will degenerate
into classical belief entropy.

Proof 3.2. Relying on the Eq. , we can obtain the following equation:

Sy(A) = ——(1- 3 (B,

PN

Since extensive constant ¢ = 1, then we can get that 218l —1 =1.
Then, we can obtain the follow ing equation:

lim S,(A) = lim —— (1 — > (M))
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Hence, the NBE will degenerate into classical belief entropy.



Theorem 3.3. When the probability distribution is uniformly distributed, then
the NBE obtains the mazimum value.

Proof 3.3. Relying on the Eq. , we can obtain the following equation:

1 m(B))?
Sq(A4) = qj(l - BZ ((2(B|(_1)§q_1))
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Now, the Lagrange function can be defined as:
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In this way, we can find that:
1
m(B1) =m(Bz)=...=m(B,)=...=m(Ban) = o

Then the NBE obtains the maximum value.

3.2. Discussion

Unknown information processing is an important issue in all fields, which has
been a long-term concern by scholars [58, [59]. Entropy theory is an effective tool
to handle uncertain information, which has been studied by a lot of scholars [60]
61]. The belief entropy has high performance in representing uncertainty. This
paper proposes the NBE, which is combined with belief entropy and Tsallis
entropy. When the extensive constant equal to 1, then the NBE degenerates
into classical belief entropy. In addition, if the basic probability assignment
degenerates into probability distribution, then the NBE will be degenerated as
classical Tsallis entropy. In the case when the extensive constant equal to 1 and
NBE focus on the probability distribution, then the NBE is the same as the
classical information entropy. The relationship of NBE, belief entropy, Tsallis
entropy and information entropy can be shown in Fig. [I}
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Figure 1: The relationship of four entropies

4. Numerical examples

In this section, plenty of numerical examples will be given to prove the
effectiveness of NBE.

Example 4.1. Assume a mass function m(A) = 1, the associated information
entropy H, belief entropy E, Tsallis entrpy S and NBE NB as follows:

H=—-1xlogs1 =0

1
E=—-1%xloggp——=0

21 1
S=—(1- Y (mB)) = ——(1-1)=0
¢-1 Be2© ¢—1
1 (m(B)" 1 _
NB = q_—l(l—BzE;e((le| —1)q—1)) = q_l(l—l) =0

Example 4.2. Assume a mass function m(A) = m(B) = m(C) = m(D) =
1/4, the associated information entropy H, belief entropy E, Tsallis entropy S
and NBE NB as follows:

1 1 1 1 1 1 1 1
H__z_l*wgzé_l_Z_l*lngz_l_z_l*l092z_1_Z*l092z_1_2
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In this case, the NBE degenerates into the Tsallis entropy. Assume the
extensive constant ¢ =1, the S and NB can be shown as follows:

: : 1 1
élir%s = }Ilir}q_—l(l — 4% (Z)q)) =log, 4 =2

1
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In this case, the NBE degenerates into the belief entropy and classical infor-
mation entropy.

Example 4.3. Assume a mass function m(A, B,C, D) = 1, the associated be-
lief entropy E and NBE NB with ¢ =1 as follows:

1
EF=—-1x lOQQm = 109215

. 1 m(B))?
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In this case, the NBE degenerates into the belief entropy.

Example 4.4. Assume a mass function under a given frame of discernment
with 18 elements, m(2,3,5) = 0.1, m(7) = 0.1, m(B) = 0.6, m(©) = 0.2. Table
lists various NBEs under ¢ = 2 with B changing, which is graphically shown
in Fig.[3



Table 1: Nonextensive belief entropy with B

Cases Nonextensive belief entropy
B ={1} 0.6286
B ={1,2} 0.8686
B =1{1,2,3} 0.9371
B={1,...,4} 0.9646
B={1,...,5} 0.9770
B={1,...,6} 0.9829
B={1,...,7} 0.9857
B={1,...,8} 0.9872
B={1,...,9} 0.9879
B={1,...,10} 0.9882
B={1,...,11} 0.9884
B={1,...,12} 0.9885
B={1,...,13} 0.9885
B={1,...,14} 0.9885
B={1,...,15} 0.9886
B=/{1,...,16} 0.9886
B={1,...,17} 0.9886
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Figure 2: The nonextensive belief entropies as a function of the size of B

The results shows that the NBE of m increases monotonically as the size
of subset B increases. When the proportion of unknown information in a mass
function increases, entropy will increase, which is consistent with human cog-
nition. Fig.[3 shows that the uncertainty degree of basic probability assignment
with four uncertainty measurement models.
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Figure 3: The comparison between nonextensive belief entropy and four
methods

We clearly see that NBE increases monotonically as the size of B increases.
It shows that the proposed entropy is more stable than other models.

5. Conclusion

The belief entropy and Tsallis entropy are the research hotspots at present,
which have been studied by many scholars. To applying the idea of belief entropy
to the Tsallis entropy, this paper proposed the NBE, which has the properties
of Tsallis entropy and belief entropy. When the extensive constant of the pro-
posed model is 1, then the NBE will degenerate into the classical belief entropy.
In addition, when the basic probability assignment is degraded to probability
distribution, the proposed entropy becomes the classical Tsallis entropy. At the
same time, if NBE is concentrated in the probability distribution and the exten-
sive constant is 1, then the NBE is equal to the classical information entropy.
Some theorems and proofs of the proposed entropy has been proposed in this
paper. Numerical examples are applied to prove the efficiency of the proposed
entropy by comparing the proposed model and other models. The experimen-
tal results show that the proposed entropy can combine the belief entropy and
Tsallis entropy effectively and that the proposed entropy is more stable than
other models.
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