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Abstract— Vivo confocal microscopy allows scientists to bet-
ter understand eye health and systemic diseases. Microneuro-
mas could play a role, however, monitoring their growth from a
mosaic of images is error prone and time consuming. We used
automated image stitching as a solution; focusing on accuracy
and computational speed of three different feature detection
algorithms: SIFT, SURF and ORB. The results illustrated that
SURF was computationally efficient with our data. Future
investigation is to create a global solution that can replace the
need for manual image stitching in this application.

I. INTRODUCTION

The Heidelberg Retinal Tomograph [1], HRT, (Figure 1)
produces hundreds of 400x400 micron area images that each
capture a small section of the eye’s posterior segment. It is
used for examining the nerves in the eye that allows for
easier diagnosis of glaucomas - damages to the optic nerve
[2]. To map the eye, however, the small images must be
stitched together and requires hours of manual work from the
researcher. Many of these images are not perfectly matched
and discarded, resulting in gaps of the stitched output (Figure
2). While we were unable to create an algorithm that acts
globally, we created a model on how automated image stitch-
ing would take place locally. Experimentally, we evaluated
three popular feature detection algorithms on the basis of
their speed (by computational time) and accuracy (by image
similarity) after applying this method on two locally stitched
images.

Fig. 1: Heidelberg Retinal Tomograph

II. METHODOLOGY: IMAGE STITCHING MODEL

Image stitching can be achieved by 1) direct techniques,
or 2) feature based techniques [3]. Direct technique does
not work when images differ in scale and rotation. It is
also a complex computational task because of the need to
compare each individual pixel densities of different images
before matching overlapping regions.
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Fig. 2: Manually stitched image of eye’s posterior segment

Feature-based techniques detect features in images and
match them together. Features are mathematical represen-
tations of key areas which include colour, texture, shape,
edges, lines, corners, etc. It is appropriate in our experiment
as feature matching is unaffected by rotation and other
transformations. The steps of the feature-based technique [4]
are shown in Figure 3 and are explained in the series of steps
A to E that include example outputs.

The manually stitched image (Figure 4) consists of 79
layers and has all been numbered. We tested three different
scenarios and the following samples were chosen: 1) Layers
69 and 70 due to its high area of overlapping regions. 2)
Layers 76 and 77 which have major overlaps but consist of
some noise and will test the rigor of the algorithms, and
3) layers 71 and 73 where image stitching may not work as
effectively or is not even possible due to the small portion of
overlapping regions. The methodology will include examples
of each process using layers 69 and 70. The other outputs can
be found in the results. Furthermore, different layers (23/24)
will also be evaluated with a similarity index however will
not be shown as images.

A. Input Images

Our images are in greyscale and many of them are
differently scaled, have affine transformations or are rotated
in different ways. Acquire two local images and check for
size parameters (height and width in pixels) ensuring they
are the same size.



Fig. 3: Model showing the stages of image stitching using
feature-based techniques

B. Feature Detection

The three algorithms used for this experiment, to pick out
key points that represent a feature, are SIFT, SURF and ORB.

SIFT (Scale-Invariant Feature Transform) [5] detects key
points on an image by finding the differences in Gaussian. It
is able to pick our key points using colour gradients and
finding the greatest contrast between them. It is popular
due to its robustness, however, the slight disadvantage is
that it exerts a high computational cost for it’s detection
[6]. SIFT is an incredible candidate in this application due
to it’s remarkable robustness and the fact that our images
have great contrast between the white spots of the neurons
and the darker surroundings of the cornea. Additionally, the
downside in SIFT is negligible given the fact that the images
are small in size and do not appear to have many key points.

SURF (Speeded-Up Robust Features) [7] blurs it’s images
using a box filter then uses a “blob detector” to repeatedly
sample key pixel groups of interest. It is faster, requires less
computation and storage space compared to SIFT compro-
mising for its lower accuracy in detecting features.

ORB (Oriented Fast and Rotated Brief) [8] uses a centroid
detector which recognises points which have high contrast
with other points. It is a combination of FAST keypoint
detector and visual descriptor BRIEF. It is the fastest in

Fig. 4: Location of the layers on the full collage

detecting key features but requires less computational power
than SIFT or SURF[6]. However, it has the inability to detect
features of images of different sizes, has poorer ability to
filter out noise and is not very robust, especially when images
have undergone a rotation[6], making it a key difficulty with
recommending ORB for this application as many images
have different orientations.

For a more detailed explanation on how each algorithm
achieves feature detection refer to Appendix 1.

(a) Cropped section of layer 69 showing a clear single curve

(b) SIFT

(c) SURF

(d) ORB

Fig. 5: Figure 5a shows a segment of the original image
and Figure 5b-d show the same segment with circles that
represent a feature detected by each algorithm. These key
points can be used to match features together.

C. Feature Matching

Once all the features are detected in the two images,
use feature matching algorithms to find corresponding key
point descriptors in two similar datasets and create linear
regression lines matching them together [14]. Brute-Force
matcher [9] (Appendix 2) was used and the results can be
seen in Figures 6 which shows a series of lines that the
computer registers as matched key points. There are some
incorrect matches and the next stage accounts for them.

D. Estimating Homography

Before aligning the images together, we need to find a
statistical model of the lines matching the key points together.
A perfect match between the points detected is rare because
the images taken are often distorted through transformation.
We used RANSAC (Appendix 3) which is a statistical model
used to separate features detected into ‘inliers’- i.e, feature
points that match the model - and ‘outliers’- i.e, feature
points that do not match the model. RANSAC is robust to
noise and is accurate in circumstances where the number of
outliers is less than inliers - even in circumstances where
outliers appear in very high frequencies (Figure 6). The



matched lines are compared and the one with the greatest
number of inliers is computed (Figure 7a,7b,7c).

Once the best regression line is chosen, the homography
matrix (Figure 8), H, is calculated and used to translate one
image onto the other. H is a 3x3 matrix of the vector that
was determined to be the best matching line by RANSAC.

Fig. 6: Brute force matching on keypoints detected by ORB
in layers 69 and 70 without RANSAC

(a) SIFT

(b) SURF

(c) ORB

Fig. 7: Feature matching with RANSAC applied on layers
69 and 70 using different keypoint detectors.

Fig. 8: Example homography output: Using ORB, Brute-
force matcher and RANSAC

E. Image stitching

Using H, we can stitch the image together by using
Opencv’s WarpPerspective function which is a geometric
image transformation[10][14]. One image is translated onto
the other and results in a combined image (Figure 9).

Fig. 9: Warped image of layer 69 and 70 using ORB

F. Image blending

Further steps can be taken to blend the images together,
however this was not implemented on our images. This is
because part of the evaluation is to compare the stitched
image to the ground truth, in this case it is the collage of all
the layers that has been manually stitched. The ground truth
images have not been blended and the same is implemented
to ours, making the comparison a fair test. Blending the
scans, however, could be a future investigation as it would
allow us to see the microneuromas much more clearly and
with less noise and interruptions. Current literature of blend-
ing strategies include feathering, gradient domain blending
and image pyramid blending.

III. EVALUATION METHOD

With these results, evaluations must be performed to test
for their speed and accuracy. Speed was measured by finding
the computation time in seconds. Computation time was
calculated by importing the Time module in Python and
recording the difference between start and end time[12]. All
programs were run on one MacBookAir6,2 (OS 10.15.4,
Dual-Core Intel Core i5, 1.3 GHz, 4 GB) to obtain com-
parable data.

The chosen evaluation method of accuracy was to compare
the computed stitched image to the ground truth image
(manually stitched image) via a pixel by pixel similarity
index. To objectively compare the images, a quantitative
approach was taken. Mean squared error (MSE) is a simple
mathematical method to calculate the degree of similarity
between images[11]. MSE is given by the following formula
where x and y are the images, N is the number of pixels
and xi, yi, are the ith values in each respective image:

The higher the MSE, the less similar the images. Identical
images have an MSE of zero.

While simple, MSE does have its drawbacks. Given two
identical images, a small change in the one image might
result in a large MSE even though the perceived change to
the human eye is negligible. To supplement, the structural
similarity (SSIM) index was adopted [15][17].



The formula above details the methodology of SSIM.
Given two images x and y, SSIM measures the similarity
of the pixel brightness l(x, y), the similarity of the pixel
contrasts c(x, y), and the similarity of the structures s(x, y).
Also, x and y give the means while x and y give the standard
deviations. Each C represents a small constant. Two identical
images would have a SSIM of one and the most dissimilar
images would have a SSIM of negative one [11].

Fig. 10: Comparison of ground truth and stitched image
(using SIFT)

IV. RESULTS

As mentioned earlier, a lower MSE and higher SSIM
indicate greater similarity. Computation time was the fastest
with ORB, followed by SURF then SIFT in all cases, except
layers 71 and 73 as they could not be matched together
(Appendix 4). However, ORB had the largest MSE and
smallest SSIM which illustrates that the stitched image was
the least similar to the ground truth, when compared to SIFT
and SURF. As for accuracy between SIFT and SURF, the
similarity index depends on the different scenarios. Layers
69/70 and layers 76/77 are more similar to the ground truth
when SIFT is being used. However, SURF is more accurate
on layers 23/24 as well as faster than SIFT in all cases.

Layers SIFT ORB SURF
69 and 70 0.471 0.211a 0.411
76 and 77 0.661 0.311ab 0.571
71 and 73 N/A N/A N/A
24 and 23 0.746 0.177a 0.573

TABLE I: Comparison of Computation Time (seconds)

Layers SIFT ORB SURF
69 and 70 1588.814 2550.391 1034.197a

76 and 77 3000.835 5658.131b 2512.979a

71 and 73 N/A N/A N/A
24 and 23 2086.145a 4702.831 2166.108

TABLE II: Evaluation of ground truth and output stitched
image using MSE similarity index

Layers SIFT ORB SURF
69 and 70 0.33006 0.24434 0.38324a

76 and 77 0.16768 0.16102b 0.18194a

71 and 73 N/A N/A N/A
24 and 23 0.19126a 0.14116 0.17416

TABLE III: Evaluation of ground truth and output stitched
image using SSIM similarity index

a: Represent best value
b: Partially stitched together
N/A: Stitching was not possible because not enough matching
keypoints were detected (Appendix 4)

Graph I. Comparison of accuracy using different feature
detectors

Graph II. Comparison of computation time using different
feature detectors



Fig. 11: Stitched image comparison to ground truth for layers
69 and 70

Fig. 12: Stitched image comparison to ground truth for layers
76 and 77

V. DISCUSSION
We assessed the accuracy of our automatic image stitch-

ing methodology against manually stitched images and in
many cases obtained similar results. However, our pioneering
attempt to automate the manual image stitching process is
limited to stitching images locally. Therefore one area of
further investigation is using the techniques found in this
paper and applying it globally. That process would consist
of expanding the methodology proposed in our paper to stitch
a multitude of images and create a panorama of many images
instead of one with only two.

A potential limitation in our methodology presents itself
when extracting the manually stitched images. These images
have been extracted from photoshop [16] and it is unknown

whether issues with the extraction have contributed to the
pixel difference; issues such as cropping, rotation, shading.
Furthermore, issues with image blending and other strange
unidentified issues may interfere with the pixel difference
(Figure 11 and 12, “Ground Truth”).

Future work could also focus on locating the where the
differences are located between an automatic and manually
stitched image. Using MSE to find the degree of similarity
fails to give us an idea of what and where the actual differ-
ences are located. It would indeed be useful for optimization
purposes to find the precise differences in transformations
in order to more accurately apply this methodology in the
biomedical field. Finally, image blending techniques which
would create a less noticeable seam between each image
could be implemented, especially if a global solution is
created, as the resulting image would be more aesthetic.

VI. CONCLUSION
Image stitching has multifarious applications and to im-

plement this into vivo confocal microscopy in the field of
ophthalmology gives rise to considerable significance. The
automatic process of stitching images taken from the Heidel-
berg Retina Tomograph would save considerable amounts of
time and manual work from the researchers. It would allow
clinicians to be able to examine growth and development
of microneuromas in the eye’s posterior segment, making it
easier to diagnose certain eye diseases e.g. glucomas or dry
eye syndrome. We found SURF to be the best feature detector
and therefore our recommendation for this application as it
had a fast computation time without compromising accuracy
as is the case with ORB, and had a high level of accuracy
without being too computation heavy like SIFT. A potential
next step is applying what we found when working with local
images and upscaling this application globally.
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APPENDIX
1) SIFT, SURF, ORB

SIFT was proposed by David Lowe in 1999 as a method
of resolving the problems regarding affine transformation,
scale changes, and image rotation in feature matching. It
detects key points by finding differences in Gaussian which
is a technique used to find points on the image that have the
darkest of lightest hue, called the local extrema. After the
image is blurred using a Gaussian convolution - a filter that
drastically reduces the resolution image - the colour gradient
is used to find points with the greatest contrast with the
rest of the image while eliminating points that cannot be
reliably used for feature detection i.e. filtering out noise.
[6] SIFT is the most popular feature detection algorithm
for its robustness; robustness being the ability to detect key
features despite the contortions of the image such as. A
disadvantage of SIFT is that it exerts a high computational
cost for it’s detection; the increased robustness, the ability to
capture multiple key points and complexity in its algorithm
means that it requires the most processing power and is
one of the slowest image detection algorithms. SIFT is not
recommended to be used for images with lots of key points,
or are large.

SURF blurs it’s images using a box filter to find the
differences in Gaussian [6]. The image is iteratively blurred
and uses a “blob detector” to repeatedly sample key pixel
blobs (rather than points with SIFT) of interest. The pixel
blobs are then used to find the contrast between the gradients
in order to detect the interest points. The advantage of SURF
iteratively sampling lies in its ability to use blob detectors
of different filter size, which could increase the speed of the
feature detection if the contrasts of the image is very strong.
This iterative method also has advantages in finding features
in images with different sizes. SURF however does not filter
noise as well as the other two feature detection algorithms,
and in many applications do not appear to detect as many
features as SIFT. The reduction in computational cost and
storage also appears minimal for most applications relative
to SIFT [7].

ORB, developed in 2011, is a combination of the FAST
keypoint detector and the visual descriptor BRIEF. FAST
(Features from Accelerated and Segments Test) takes an
intensity threshold of the central pixel and compares it
with its circular neighbours. If the intensity passes a certain
threshold it is considered to be a key point. FAST does not
have an orientational component, so ORB was developed
to resolve this issue. BRIEF (Binary Robust independent
elementary feature) takes the key points detected by FAST
and combines them together to form larger features that
are represented by feature vectors [13]. In ORB, centroid



detectors are used and it detects points which have high
contrast with other points [6].

2) Brute-force matcher

Brute-force matcher is an algorithm that uses the basis
of Euclidean distance to evaluate the matches between the
two key points. It first stacks the images next to each other
horizontally and draws the Euclidean distance, which is a
straight line between two points in a Euclidean space. In this
instance, the Euclidean distance of every keypoint in image
A is calculated with every keypoint in image, showing the
best matches. This algorithm is considered slow as it checks
all the matches of every feature [Mahendran, 2013].

3) RANSAC

RANSAC randomly picks points in subsets, and by ran-
dom chance, reduces the number of outliers picked. After
a model, i.e, a linear regression line, is created from those
randomly picked points. The final step is called the verifi-
cation step: by using a threshold of that linear regression
line, we count the number of points within the threshold-
these becomes the inlier. We continuously refit the model
by resampling points many times until we find the most
number of inliers within the threshold. RANSAC however
performs badly if the number of outliers is greater than the
number of inliers and is also an inefficient method in terms
of computer cost and processing because it is an iterative
process that continuously generates models until it finds
an optimal solution. The number of data points increases
its inaccuracy. And because this is a random sampling
technique, it is reliant on chance, and with data with a huge
number of points an optimal solution may not be accurate
as well. Another issue with RANSAC is in data where there
may be more than one best model, and in such data, it cannot
find either. These limitations are however mitigated by the
fact that our dataset appears small, and there is only one

optimal way of fitting images together. RANSAC’s major
drawback, the computational time, however is reduced by
trying to remove outliers because it would produce a smaller
number of data sets.

There are basically two ways of achieving this: a method
called guided sampling that guides which subsets to use
rather than randomly selecting samples and a method called
partial evaluation, where it gets rid of verification steps that
are not promising. Unfortunately many of these improved
RANSAC algorithms are still in their development phase,
and therefore are difficult to find open source codes for
these algorithms. Alternatives to RANSAC include the least
squares method and Hough transform, though they have
major drawbacks compared to RANSAC. The least squares
method is very simple requiring very little computational cost
but is incredibly sensitive to significant outliers-something
that is abundant in our images. The Hough transform detects
and indexes simple lines and sometimes curves, but is
not applicable to our images since neurons are not easily
simplified to simple lines and curves.

4) Ratio Test

One such method to improve accuracy in matches, is a
ratio test proposed by Lowe [5]. By his methodology, a given
keypoint is only considered accurate, if the distance ratio
between its two nearest matches is below a certain value.
Given a keypoint A, the distance between A and the first
nearest keypoint A1, as well as the distance between A and
its second nearest keypoint A2 are measured and divided
by each other. If the quotient value is below a set ratio
threshold, A is considered an accurate keypoint. Based on
Lowe’s results, the methodology used in this paper set the
ratio to 0.75.


