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Abstract 

The present view of biological phenomena is based on a biomolecular paradigm that 

development of living organisms is entirely defined by information stored in a molecular form as 

some genetic code. However, new facts and discoveries indicate that biological phenomena 

cannot be reduced to a biomolecular realm alone, but are also governed by mechanisms of other 

nature. These mechanisms, acting in tight cooperation with biochemical mechanisms, define life 

cycles of individual organisms, and, through this, the origin and evolution of the living world. 

Here, we present such a physical mechanism (General growth law), which represents a new 

physical law of nature. It acts at cellular, organ, system and whole organism scale levels, 

directing growth and reproduction together with biomolecular mechanisms by imposing uniquely 

defined constraints on distribution of nutrients between biomass production and maintenance, 

thus defining the composition of biochemical reactions, their change and irreversibility during 

the organismal life cycle. Mathematically, this law is represented by the growth equation. Using 

this equation, we introduce growth models and explain division mechanisms for unicellular 

organisms. High adequacy of obtained results to experiments proves validity of the General 

growth law and of the new physical paradigm of Life based on this law. 
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Preamble: Background and general context of the study 

 
This is by far my the most significant scientific contribution (among over 120 articles and 14 books 

I published). It presents a genuine fundamental physical law of Nature, the General growth law, 

which I discovered, and published the first paper about in 2008. Since then, I accumulated lots of 

proofs of validity of this discovery. The problem with the notion of a law in the present science is 

that many people do not see the difference between the real law of Nature, like the Second law of 

Mechanics, and some regularity, often found through ad hoc technical means, such as regression 

analysis. An example of such a "law" can be the so called Kleiber's law, which, in fact, is the result 

of a regression analysis of experimental data, claiming a particular value of a metabolic allometric 

scaling exponent. Unlike the Second law of Mechanics, it gives no explanation of the observed 

phenomenon, nor it names parameters this exponent depends upon (in fact, even the declared value 

(of 3/4) is not constant but varies a lot depending on many circumstances). The real law of Nature 

produces the required quantitative descriptions from its mathematical formulation, given input 

parameters (like finding a mathematical description of a trajectory of a thrown stone using 

mathematical formulation of the Second law of Mechanics). 

     Another extreme approach, to a certain degree the opposite one, is when every quantitative 

description of natural phenomenon is considered only as a model. This view effectively eliminates 

the notion of a physical law as such. Therefore, we have no more Ohm's law, Newton's laws of 

Mechanics (which, no doubt, are real fundamental laws of Nature), but only Ohm's model and 

Newton's model, but that is ridiculous. 

      In accordance with the philosophical principles of validation of scientific knowledge, one of the 

most important confirmations of validity of a more general theory (or a law) is that in particular 

cases it should converge to the earlier discovered results, which were proved to be true. In case of 

the General growth law, when its mathematical formulation, the growth equation, is applied to 

particular growth scenarios, such as growth of certain cells, it produces less general known results, 

like logistic curves. This class of curves, defined by logistic equation, is presently used on ad hoc 

basis for modeling growth phenomena. However, the growth equation produces such curves 

naturally, given input parameters, without the need to use arbitrary coefficients having no clear 

physical meaning. There is an ultimately beautiful harmony in observing how the general growth 

equation easily, elegantly and naturally produces the whole class of results, each of which, if 

obtained separately, would be considered as a miraculous revelation of Nature's secrets.  

     Besides these proofs, there are many other results of different level of generality, which also 

confirm validity of the General growth law. Of course, as usually this happens in science, I cannot 

publish this article for years. There are several reasons for this very much expected situation, of 

which one is that many people can understand incremental novelty, while the discovery of the 

General growth law is a heuristic one. Understanding heuristic discoveries requires a quite different 

mindset than the conventional one. Heuristic discovery introduces an entirely new area, unknown 

terra incognita. Heuristic knowledge cannot be derived; because, by and large, there is nothing it 

could be derived from. The gap between the prior knowledge and the new heuristic one is too wide 

to just step it over, but requires a really long jump in conclusions, coherently incorporating many 

diverse inputs. With regard to the General growth law, the situation is even much worse than that, 

since it contradicts the main modern biological paradigm that the story of life is created by 

biomolecular mechanisms. This view is true, but only in part. The other part is composed of 

mechanisms, acting (in inherent cooperation with biomolecular mechanisms) at higher than 

molecular scale levels, and the General growth law is one of the major players in this Life game. 

Understanding the General growth law is moderately difficult. Accepting it is the biggest challenge.  
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Annotation. The present view of biological phenomena is based on a biomolecular paradigm that 

development of living organisms is entirely defined by information stored in a molecular form as 

some genetic code. However, new facts and discoveries indicate that biological phenomena cannot 

be reduced to a biomolecular realm alone, but are also governed by mechanisms of other nature. 

These mechanisms, acting in tight cooperation with biochemical mechanisms, define life cycles of 

individual organisms, and, through this, the origin and evolution of the living world. Here, we 

present such a physical mechanism (General growth law), which represents a new physical law of 

nature. It acts at cellular, organ, system and whole organism scale levels, directing growth and 

reproduction together with biomolecular mechanisms by imposing uniquely defined constraints on 

distribution of nutrients between biomass production and maintenance, thus defining the 

composition of biochemical reactions, their change and irreversibility during the organismal life 

cycle. Mathematically, this law is represented by the growth equation. Using this equation, we 

introduce growth models and explain division mechanisms for unicellular organisms. High adequacy 

of obtained results to experiments proves validity of the General growth law and of the new physical 

paradigm of Life based on this law. 

Keywords: General growth law; biological paradigm; physical paradigm of Life, division 

mechanisms; cellular cycle control. 
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1.   Introduction 

1.1.   Biomolecular paradigm of life origin and development. Alternative concepts 

The founding of a biomolecular paradigm in biology is often attributed to famous 

Physicist E. Schrödinger1 and his public lectures delivered in 1943. He was probably the 

first who pronounced the words 'information' and 'code' relative to organismal atomic 

structures, although not exactly in such determinate meaning, which was later canonized 

in textbooks, such as in Ref.2. What he actually said, was "In calling the structure of the 

chromosome fibres a code script we mean that the all penetrating mind, once conceived 

by Laplace, to which every causal connection lay immediately open, could tell from their 

structure whether the egg would develop, under suitable conditions, into a black cock or 

into a speckled hen, into a fly or a maize plant, a rhododendron, a beetle, a mouse or a 

woman. To which we may add, that the appearances of the egg cells are very often 

remarkably similar; and even when they are not, as in the case of the comparatively 

gigantic eggs of birds and reptiles, the difference is not been so much the relevant 

structures".  Compare the meaning of this quote to its transformed version in Ref. 2: "The 

cell-cycle control system is based on a connected series of biochemical switches, each of 

which initiates a specific cell-cycle event. This system of switches possesses many 

important engineering features that increase the accuracy and reliability of cell-cycle 

progression. First, the switches are generally binary (on/off) and launch events in a 

complete irreversible fashion". Even though the concept of a cell-cycle control presented 

in the second quote follows from the Schrödinger's thought, the distance is noticeable. 

However, what is important to understand, both are mere hypotheses, and both are not 

invincible from the known facts and consistent logic - for instance, they do not provide an 

answer to the first question coming to mind - which mechanism triggered the very first 

switch (or the very first switches?), not to say about myriads of other principal questions 

immediately arising in the inquisitive mind.  

The Schrödinger's problem was that he interpreted his assumption as a proven theory, 

while it was not. He says: "For it is simply a fact of observation that the guiding principle 

in every cell is embodied in a single atomic association existing only one copy (or 

sometimes two) - and a fact of observation that it may results in producing events which 

are a paragon of orderliness. Whether we find it astonishing or whether we find it quite 

plausible that a small but highly organized group of atoms be capable of acting in this 

manner, the situation is unprecedented, it is unknown anywhere else except in living 

matter. The physicist and the chemist, investigating inanimate matter, have never 

witnessed phenomena which they had to interpret in this way." (Italics is mine.)  

In fact, the aforementioned observed order could be well guided by other 

mechanisms, why not? The fact that we observe the visible implementation of some 

effect does not mean that this implementation is the primary cause; it very well could be 

an intermediate instrument in the hands of the real, primary cause, of which we just are 

not aware. Unfortunately, Schrödinger disregards such a possibility, without reasons. He 

declares the living matter a special case, ignoring the previous scientific human 
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experience, and in particular the one acquired in physics and chemistry. One of the main 

pillars of this experience is that matter is governed by hierarchical structure of different 

laws of nature cooperatively acting at different scale levels.  

Cutting ties with a macro world and descending into a molecular realm, Schrödinger 

still adheres to physical principles: "We must be prepared to find a new type of physical 

law prevailing in it. Or are we to term it a non-physical, not to say a super-physical, law? 

No. I do not think that. For the new principle that is involved is a genuinely physical one: 

it is, in my opinion, nothing else than the principle of quantum theory over again." Here, 

he contradicts himself: if the principle is on par in generality with quantum theory, then it 

should be applied to all matter, but he already detached the living matter from the rest. 

On the other hand, Schrödinger does not exclude entirely that Life is governed by 

some more conventional law: "We seem to arrive at the ridiculous conclusion that the 

clue to the understanding of life is that it is based on a pure mechanism, a 'clock-work' in 

the sense of Planck's paper, The conclusion is not ridiculous and is, in my opinion, not 

entirely wrong, but it has to be taken 'with a very big grain of salt." He does not explain, 

why "a very big grain of salt" has to be taken, but it is clear from his paper that the only 

"rationale" behind this statement is that he separated living matter from the rest of matter, 

drawing the borderline even for the fundamental properties inherent to both living and  

"inanimate" matter. In any case, even such a strong proponent of a biomolecular 

paradigm of life origin and development - and, to some extent, its founder - could not 

entirely dismiss the possibility that Life is governed by some 'ordinary' physical law. In 

fact, such a physical law was discovered and will be presented in this article. This law de 

facto introduces a new more coherent and realistic paradigm of life development as a 

phenomenon, universally governed by cooperative workings of a physical law and 

biochemical mechanisms, with a leading role of the physical law imposing constraints 

biochemical mechanisms have to comply with. This cooperative working is not on the 

surface, its implementation is often complex, with feedback loops and lots of 

evolutionary adaptations affected by numerous and ever changing factors, but it's there, at 

the core of everything what is happening with living matter. One can use the same 

elevator for years without ever thinking what mechanism produces its motion, just 

accepting the elevator's function as a matter of fact. In the same way, one can see 

dynamics of biochemical reactions in a living organism without ever thinking why 

composition of biochemical reaction changes, what "engine" propels such ordered 

changes? The current answer in biology is 'genetic code', which nobody really knows, 

what does it mean - successive chains of biochemical reactions, epigenetic mechanisms 

and its changes, certain sequences in DNA, or all these things together, or maybe 

something else? 

In this paper, we present a physical law, governing growth and reproduction at a 

cellular, organ, system and whole organism levels, and consider its application to 

modeling growth of unicellular organisms, and understanding their division mechanisms. 

Knowledge of why and how cells grow and reproduce, what kind of fundamental 

mechanisms so universally and persistently govern cellular processes, is of great 
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importance both for the practical needs (medical, crop production, growth and 

productivity of domesticated animals, biotechnological, etc.) and scientific studies 

opening new areas for practical applications and explorations. However, in our case, the 

chore is even more grandeur - we have to introduce a more general new biological 

paradigm - a physical paradigm of Life, which, at the same time, includes all previously 

discovered and yet unknown biochemical mechanisms as its inherent part. This new 

paradigm will change one day the ways biology and all related disciplines develop. 

However, will the discovery remain known till those remote days, or will it disappear in 

vain and somebody rediscover it again, nobody knows.  

1.2.   Studies of cellular growth and division mechanisms 

Most studies on the subject of cell growth and division explore biochemical mechanisms, 

representing chains of biochemical reactions, implementing transitions through 

successive growth and division phases. Examples can be Refs. 3-8.  

Another direction of research was inspired by ideas to find systemic level 

mechanisms responsible for the cell growth and division. In his review9, Mitchison says 

with regret: "It would be satisfying if the main parameters of cell cycle growth had been 

established in the earlier work. Not surprisingly, however, there were still major 

uncertainties left when people moved from this field to the reductionist approaches of 

molecular biology." Review Ref. 7 also accentuates specific properties of cellular growth 

and reproduction, which are unlikely to be resolved exclusively at a biomolecular level.  

Many concepts with regard to general growth and division mechanisms were 

proposed. Such are the "sizing" and "timing" hypotheses, claiming accordingly the 

priority of a cell size and of a certain time as primary factors defining the cell cycle 

progression. P. Fantes10 found experimentally that actually both "sizing" and "timing" 

homeostasis takes place. Note, in most instances, it is implicitly assumed that some 

biochemical mechanisms are at the core of such hypothetical systemic mechanisms, 

sensing the cell size, or time, or other cellular macro-characteristics.  

"Sizing" concept is represented by different, often conflicting, views. For instance, in 

Refs. 11, 12, the authors use an absolute size. Ref. 13 suggests that the cell cycle is driven 

by the "constant size extension". For the bacteria Escherichia coli and Caulobacter 

crescentus they infer that these bacteria "achieve cell size homeostasis by growing on 

average the same amount between divisions, irrespective of cell length at birth". The 

"constant size extension", in fact, is not constant, but noticeably varies. The authors 

acknowledge: "The constant extension mechanism does not need to be precise, with 

experimental CVΔL of 19–26%.", where 'CV' means standard deviation/mean.  

Ref. 14 proposed complex relationship between the size and cell cycle in the form of 

a "noisy map". They say: "noisy linear map implements a negative feedback on cell-size 

control: a cell with a larger initial size tends to divide earlier, whereas one with a smaller 

initial size tends to divide later." However, their inference does not agree with the 

"constant size extension" suggestion; for instance, such are the results shown in Extended 

Data Figures 2 and 10 in Ref. 13. 
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In Ref. 15, the authors came to a conclusion that "The size of the cell at division is 

proportional to the initial size of the cell", studying Caulobacter crescentus cells. This 

result contradicts both the "noise map" and the "constant size extension" hypotheses.  

Authors of Ref. 16 agree with none of the above propositions, but think that, at least 

for E. coli, "size control is effected by changes in the doubling time, rather than in the 

single-cell elongation rate" and "the current size is not the only variable controlling cell 

division, but the time spent in the cell cycle appears to play a role".  

In other words, neither the "sizing" hypotheses, nor the "timing" ones could provide 

convincing proofs of universality of found relationships and explain all known 

observational facts related to a cell cycle control. However, the cited and many other 

works agree that there should be such controlling mechanisms, of which the 

experimentally obtained stable cell size distributions (including the ones in the 

aforementioned works) could be considered as indirect evidence. On the other hand, the 

implicit underlying assumption remains the same - at the core, these "laws" are defined 

by some biomolecular mechanisms. 

1.2.1.   Studies of growth mechanisms acting at higher than molecular level 

Note that the general growth law, which is considered in this article, explains results of 

all models and "laws" reviewed in this section, which present only certain aspects of the 

growth and division phenomena, at certain conditions for particular organisms. From the 

perspective of scientific methodology, the laws of Nature do not work in such a simple 

way as the "sizing" or "timing" hypotheses assume. Fundamental laws of Nature, at the 

least, are: 

(1) Universal;  

(2) Optimal; in the sense that from all possibilities their description requires the least 

possible number, and of the most fundamental, values, which all have to interrelate; if 

this is a mathematical description, then all these fundamental parameters have about 

equally weighed and indispensable and irreplaceable roles;  

(3) Provide the most possible stability of described phenomena without jeopardizing 

the scope of applicability, which has to include all such phenomena;  

(4) Include parameters, which are both necessary and sufficient for the description of 

any phenomenon belonging to the problem domain; 

(5) In the limits, they have to convert to more particular, earlier confirmed and cross 

validated knowledge, mechanisms and laws. 

 

The most known and illustrative examples of such laws of Nature, exhibiting these 

characteristics, are the laws of classical mechanics, electricity, thermodynamics.  

Prominent scholar D'Arcy W. Thompson, in his prolific book "On Growth and 

Form"17 presents considerations why there should be mechanisms, acting at higher than 

molecular levels, responsible for the growth of living organisms. A book "Life's other 

secret"18 presents similar ideas and supporting proofs that the true "Secret of Life" is not 

in biomolecular mechanisms, and DNA in particular (it also narrates that Crick, the 
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discoverer of the double helix structure of DNA, allegedly once said in a pub, that "DNA 

is not the secret of Life!").  

In fact, such a physical mechanism was discovered ten years ago and 

comprehensively verified by experiments and predictions, made on its basis, which later 

found experimental proofs. This mechanism, called the General growth law, indeed, 

works at higher than molecular levels, and, based on supporting experimental data, 

appears to be an influential player in the growth and reproduction of cells19-21, tissues, 

organs22,23 and whole multicellular organisms. The General growth law (a) without a 

single exception reconciles all known facts about cellular growth and division; (b) 

predicts certain growth and reproduction effects, which found experimental 

confirmations; (c) is seamlessly integrated with a cellular biochemical machinery; in fact, 

both work in tight cooperation, with the leading role of the General growth law imposing 

macro constraints the biomolecular machinery has to comply with. 

2.   Forces Shaping Biological Phenomena 

The earlier discussed biochemical paradigm of Life assumes that life cycle of living 

organisms is coded in genes in the sense of successive binary switches (recall a quote 

from Ref. 2 in the Introduction). The known workings of biochemical mechanisms, on 

the other hand, by no means exclude mechanisms of other nature, which could act at 

other scale levels, but rather appeal for some "external" management from higher scale 

levels. Such an arrangement is inherent to a physical world, when a multitude of different 

mechanisms, acting at different scale levels, shapes the same phenomenon. In this regard, 

living organisms rather represent an uninterrupted continuation of an inorganic world 

(such, Tobacco virus self-assembles in the presence of certain inorganic substances18). 

The book by Lane24 presents hypotheses how inorganic matter could eventually produce 

living organisms in hydrothermal vents. By and large, there are no fundamental reasons 

that such a multifaceted phenomenon as Life, including the origin, life cycle and 

evolution of living species, should be defined entirely and exclusively by biomolecular 

mechanisms alone. It is intuitively clear that the objective causes which led to appearance 

of living organisms existed before the biochemical mechanisms, and DNA in particular, 

were created. These "founding" mechanisms belong to an inorganic world. It is much due 

to their action that living organisms originated and progressed through their evolutionary 

paths. Then, why the action of all these forces belonging to inorganic world had to stop 

after the Life origin? For instance, DNA of an evolutionarily developed single cell could 

not contain everything needed for a multicellular structure, like a balanced growth of 

organs and systems in multicellular organisms. There should be other forces of nature, 

which took care of such tasks at appropriate scale levels - besides the workings of 

biomolecular machinery.  

The well defined set of cell shapes, how did it happen? Was it only a random play of 

chemical reactions? Very unlikely, given that the optimal functionality of microbes and 

other microorganisms is supported, besides other macro-characteristics, also by certain 

geometrical shapes, like rods, spheres. What about the level of tissues, organs, systems, 
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whole multicellular organisms? Should we still assume that these multi-scale 

constructions are managed from a molecular level? Maybe the shape of living organisms 

is also defined by some unknown mechanisms at higher than molecular level, in the same 

way as motion of planets, composed of innumerable number of molecules, is defined by 

Newtonian mechanics? Why not? This is how the physical world we know is arranged, 

and the living creatures present an inherent part of the physical world. It is just the belief 

in ultimate power of biomolecular mechanisms alone, which separates us from such a 

step to a more multidimensional and comprehensive understanding of life phenomenon. 

3.   Physical Growth Mechanism - the General Growth Law 

3.1.   Introduction of the General growth law. The growth equation 

Here, we use the General growth law for modeling growth and explaining division 

mechanisms. First, it was introduced in Refs. 25, 26, with the following advancements 

and applications in Refs. 19-23, 27-31 and other publications. The principal role of this 

mechanism is that it uniquely distributes nutrients, acquired by an organism, between the 

biomass synthesis and maintenance needs. In other words, using the mathematical 

representation of this General growth law, the growth equation, we can find how much 

nutrients are used for biomass synthesis, and how much for organism's maintenance 

needs, at each moment of organism's life cycle. The implications such knowledge 

provides are of fundamental value for biology and related disciplines. For instance, one 

of such important consequences is that this way one can directly tie the composition of 

biochemical reactions in both the entire organism and its constituents to the amount of 

produced biomass. 

Understanding this mechanism is rather difficult, for several reasons, such as its 

generality and non-obvious omnipresence in nature - for instance, in plants, because of 

their complex nutrients supply and waste removal structure. However, the greatest 

challenge, in the author's view, stems from the need to accept a new paradigm for the 

biological community that Life, besides biochemical mechanisms, is governed by 

fundamental physical and other laws, acting at different scale levels, thus merging 

physical, biochemical, biological and other possible mechanisms into a single coherent 

concept of organic life, which the community is not ready to do. 

One of the main physical phenomenon, underlying the General growth law, is a 

conflict between the slower increasing abilities of the surface to supply nutrients and the 

nutritional needs of faster growing volume. However, in nature, this conflict is resolved 

not in absolute, but in relative dimensionless transformed form, and the actual 

arrangement is more complicated and more elegant, providing much greater flexibility, 

adaptability, stability and optimality than the surface-to-volume conflict in absolute 

values would allow. This is why all previous explanations involving size of organisms, or 

growth time did not succeed. 

Simplifying the matter for explanation, we can think of a spherical cell growing in 

three dimensions. Its surface increases proportionally to square of a radius (by four times 
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for the radius's increase by two times), while volume increases proportionally to the cube 

of the radius (in our data, by eight times). If the nutrient supply per unit surface remains 

the same, that would mean that the unit volume of a grown cell will obtain twice as less 

nutrients (8/4=2). Organisms normally compensate for that increasing nutrient influx 

through the surface during growth. However, since the cubic function increases faster 

than the quadratic one, and the nutrient supply through the surface is principally 

restricted (by the environment and/or by the cell's membrane capacity), at some point, the 

surface inevitably won't be able supplying the same amount of nutrient per unit volume, 

and so the unit volume won't be able to function as before; then, the organism needs to do 

something, either "inventing" new mechanisms and moving to the next developmental 

phase, or to stop growth. In a nutshell, this is what limits the size of a cell for the given 

evolutionary formed metabolic mechanisms* and available nutrient supply. Of course, 

other factors of lesser influence could modulate the process too. Transportation 

expenditures also take a toll; the longer the communication routes, the more nutrients are 

required for transportation, and the less remains for other activities34. Similarly, the same 

conflict between volume and surface takes place for one- and two-dimensional growth. 

Even if nutrients are supplied through a stem (like in an apple), they are still distributed 

through the surface (internal surface, in this case), so that the surface-volume conflict is 

still there. The central location of a seed-bag in fruits, especially in the ones with short 

vegetation periods, besides other functions also creates an initial surface from which 

nutrient start distributing towards periphery.  

One of the important consequences of such a resolution of the surface-volume 

conflict is that the fraction of nutrients used for biomass production is a value, which is 

uniquely defined by input growth parameters, first of all by geometrical characteristics. 

The rest of nutrients is used for maintenance needs.  

The General growth law explains why cells of the same species can grow large and 

small, depending on different factors. That's because the growth and division 

mechanisms, which act in large and small cells, are the same, and trigger successive 

growth phases and division at the same values of certain parameters regardless of the size 

and growth time (cells trapped in stones during volcano eruptions may have cell cycle 

measured in years, because of few nutrients). 

The growth equation for a simple growth scenario, when nutrients are acquired 

through the cell surface, is as follows. 

           dt
R

R
Sk(t)=t)(X)dV(X,p

V

S
c ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−×× 1            (1) 

where X represents a spatial coordinate, pc is the density of the cell (units of measure  
-3mkg ⋅ ), t is time in sec, k is a specific nutrient influx (amount of nutrient per unit 

                                                            
* Refs. 32, 33 explore factors shaping metabolic properties of organisms from the perspective of a food chain 

creation.  
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surface per unit time) measured in -1-2 sec⋅⋅mkg , S is the total surface (in 2m ) nutrients 

are acquired through; V is volume (in 
3m ). 

 The left part of Eq. (1) is the mass increment. The right part is the product of the 

total influx through the surface (the term Stk ×)( ), by a dimensionless parameter 

( )1/ −VS RR , called the growth ratio (G); it defines which fraction of the total nutrient 

influx is used for biomass production. Thus, the right part represents the amount of 

nutrients used for biomass synthesis in a time period dt. 

 The most important parameter in Eq. (1) is the growth ratio G. Why the nutrient 

distribution between the biomass synthesis and maintenance in nature has to be so 

definitive? The answer is this. The primary evolutionary goal of any living organism is its 

successful reproduction. No reproduction - no organism. For that purpose, the organism 

must use acquired resources optimally. If the biomass synthesis is non-optimal - for 

instance, too slow, then the reproduction process is in jeopardy. If non-optimal 

insufficient amount of nutrients is directed to maintenance, then the organism won't be 

able to produce biomass fast enough, and then the reproduction will be delayed too. Thus, 

nature, as is the case with its other fundamental laws, goes on an optimal path, securing 

the fastest reproduction time for the given conditions.  

 What is also extremely important, this optimal path provides the greatest stability 

possible for a given phenomenon35. (The fundamental stability of the world we know is 

the consequence of such optimality of laws of nature.) This optimality is tied to a certain 

geometrical form. All organisms do have some geometrical form, which is the base of 

why such a nutrient distribution is universal for all species and their constituents, from 

the cellular level to organs to whole multicellular organisms. The growth ratio is a 

mathematical representation of this optimal distribution of nutrients, implemented in 

Nature.  

 In physics, the same principle of maximum stability due to optimality is behind the 

facts that acceleration of a body in mechanics is directly proportional to applied force and 

inversely proportional to mass, or electric current in a circuit is directly proportional to 

applied voltage and inversely proportional to resistance. It was shown in Ref. 35 that 

when relationships between fundamental parameters deviate from such an optimum, the 

world which we know would be unlikely to exist, because of the inherent instability 

brought by these apparently minor changes. The growth ratio and the General growth law 

are from the same category of fundamental parameters and relationships between them, 

although they are more difficult to understand. 

 Note that the growth ratio and the growth equation were discovered heuristically, 

which is the only way for discovering fundamental parameters and relationships between 

them19, since there is nothing yet to derive them from. (Recall famous "Eureka!" by 

Archimedes.) It is defined as follows. Suppose that a cell can grow to a maximum 

volume 
maxV , which has a maximum surface )( maxmax VS=S . Then, the dimensionless 

parameters - a relative surface 
SR  and a relative volume 

VR , are as follows: 

      )(/)( maxVSVS=RS
            (2) 
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max/VV=RV

                      (3) 

While the dimensionless growth ratio is: 

            1−
V

S

R

R
=G                       (4) 

As a function of volume, the growth ratio monotonically decreases when the organism's 

volume increases. According to Eq. (1), it means that the more the organism grows, the 

less nutrients are available for biomass synthesis, and more nutrients are used for 

maintenance. This is understandable, since the growing biomass requires more and more 

nutrients for maintenance. Eventually, this conflict stops the growth. 

The maximum size can change during growth depending on nutrients availability and 

other parameters. Such, a cell that begins to grow in an environment with low nutrient 

content, is destined to have a smaller final size. However, if, at some phase of growth, the 

environment is enriched in nutrients, then the cell grows bigger, which experimental 

observations confirm13,36. In many instances, the maximum size can be known upfront, if 

all growth conditions are defined at the beginning and do not change unpredictably later. 

Otherwise, the maximum size can change. This mathematical specific of the growth 

equation does not mean that it has some defects or it is of approximate nature. This is just 

an adequate mathematical description of the growth phenomena in nature, when the 

change of parameters during the growth alters the final size of a grown organism. 

Similarly, we can compute a trajectory of a thrown stone. However, if the stone 

accidentally hits the tree branch, then its trajectory will change, and we will have to 

recalculate the new one. 

The possible variability of the maximum possible volume can be addressed by adding 

the dependence of its value from other parameters; for instance, from nutrient influx, 

temperature. Below we will discover that in certain types of growth scenarios knowing 

the maximum volume is not required. 

3.2.   Finding nutrient influx 

The next important parameter in Eq. (1) is nutrient influx k, the amount of nutrients per 

unit surface per unit time. Note that the product Sk ×  represents the total nutrient influx 

K. This fact reflects the property of the growth equation that it does not matter which way 

the nutrient influx was acquired. Such, in a growing budding yeast part of nutrients 

comes from the mother cell; in an apple nutrients come through the fruit's stem. 

In Ref. 34, the amount of nutrients required for cellular transportation depending on 

the shape of cells was found, while in Ref. 21 the overall amount of nutrients required for 

the growth of S. pombe and amoeba was obtained. It was discovered in Refs. 37, 38 that 

in some elongated cells, like E. coli, S. cerevisiae, the rate of RNA synthesis is twice the 

rate of protein synthesis. Taking into account this double rate of nutrient consumption for 

RNA synthesis, we can write for the nutrient influx 
minK required for biomass synthesis 

and maintenance (without transportation costs) the following. 
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             ( )2

min )( vC+vCN=vK s

r

s

p
            (5) 

Here, s

rC  and s

pC  are fractions of nutrient influx required for RNA and protein synthesis; 

v is the relative increase of organism's volume (the ratio of the current volume to the 

volume at the beginning of growth, so that 1≥v ); N is a constant.  

For an elongating cylinder-like cell, whose diameter remains constant, volume is 

proportional to the relative increase of length L. Using the same consideration as in Refs. 

21, 34 about proportionality of transportation costs to the traveled distance, and 

substituting 
minK from Eq. (5), we obtain an equation for the total nutrient influx. 

                 dLLKC=LdK t )()( min
            (6) 

where 
tC is a constant.  

Solving (6), we find 

         ( ) ( )3232

1 3)/1(2/1()( LC+LCA=LC+L)CCN=LK rp

s

r

s

pt
          (7) 

where 
1N is a constant; 2/1 tCN=A ; s

pp C=C ; s

rr C=C 3)/2( . 

Similarly, we can find the total required nutrient influx for a disk and a sphere. We 

assume that a disk grows in two dimensions (height remains constant); a sphere increases 

proportionally in three dimensions. 

       ( )2/52/3)( vC+vC=vK rpdisk
            (8) 

      ( )3/73/4)( vC+vC=vK rpsph
              (9) 

Obtaining analytical solutions as (7) - (9) is not always possible. Such, there is no 

analytical solution for an elongating ellipsoid. In this case, the following growth equation 

should be solved numerically19, 31.  

          dt
R

R
rSrrrVkrdVp

V

S
c ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−×××= 1)()/())(()( 0min

               (10) 

Here, 0r  is the beginning radius in the same direction of growth, which is defined by a 

radius-vector r.  

4.   Growth Model of Amoeba and its Division Mechanism 

4.1.   Amoeba's growth model developed on the basis of the General growth law 

We will start from a simpler and, apparently, evolutionarily the earliest growth scenario, 

which is implemented in amoeba. Amoeba might be not the oldest organism, but there 

are no reasons why it cannot use a primordial growth and division mechanism, if it serves 

the purpose; in the same way, we still use an ancient tool, a hammer, because it is 

adequate to our tasks. (As a side note, interesting consideration is presented in Ref. 24 

that the ancestor's root of eukaryotes, including protists, could be much older than it is 
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presently assumed. If this is so, then the basic growth and reproduction mechanisms 

could be the only option for amoeba's ancestor, and more sophisticated mechanisms were 

built later on top of these basic mechanisms.)  

Let us define parameters of the growth equation.  

Density and mass calculation. For all considered microorganisms, we assume the density 

to be constant during the growth and equal to 1 3−⋅ cmg . This assumption is a reasonable 

approximation39. The mass of a grown amoeba used in calculations corresponds to the 

last experimental measurement.  

Maximum possible volume. A parameter "spare growth capacity" (SGC) was introduced 

for the characterization of the maximum possible volume in Refs. 19, 30. It is defined as 

fd VVSGC /1−= . Here, 
dV  is the volume when cell divides; 

fV  is the maximum 

possible volume, which the growth curve asymptotically approaches. For available 

experimental data, SGC value was in the range 1.0 - 2.8%. Two amoebas did not divide 

and, indeed, increased their mass by about 2% after missing division, so that SGC is a 

real value. In calculations, we used the maximum possible volume, which exceeded the 

last measurement by 2%. 

Geometrical form. Amoeba is modeled by a disk whose height H is equal to the initial 

disk radius 
bR . The maximum possible disk radius is 

0R . Such a model was chosen 

based on analysis of amoeba's images from different sources, which indicate rather two-

dimensional increase of this species. (A more sophisticated pinion-like form, accounting 

for amoeba's pseudopods, produced close results.) Substituting the above parameters into 

(2) - (4), we obtain: 

            
)(

)(

00 HRR

HRR
RSd +

+
= ; 

2

0

2

R

R
RVd = ; 1

)(

)(
1

0

0 −
+
+

=−=
HRR

HRR

R

R
G

Vd

Sd
d

        (11) 

where index 'd' denotes 'disk'. 

Nutrient influx. The rate of nutrient consumption for RNA and protein synthesis are 

assumed to be the same for amoeba19, 21, 30, which transforms Eq. (8) into 

              ( )
rpdisk C+Cv=vK 2/3)(           (12) 

Model verification. Using the above parameters, we first computed the growth curves, 

and only then compared them with experimental dependencies. So, this comparison is not 

a data fitting procedure in the usual sense, but actually a principally much more rigorous 

verification of the model's adequacy. (Note that the same verification was used for all 

other models, presented in this article, for which experimental data were available.) 

Solution of the growth equation. Substituting the above parameters into Eq. (1), we obtain 

the following differential equation. 

             dt
RHR

RRRk
dRp

b

3

0

0

)(

)(
4

+
−

=π           (13) 

Solution of this equation is as follows. 
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              ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−+

=
)(

)(
ln

)(2

0

0

0

3

0

RRR

RRR

kR

RHRp
t

b

bbπ
         (14) 

Certainly, we can use (14) to draw the growth curve. However, it would be better to find 

a direct analytical solution for the radius R as a function of time t. The solution, indeed, is 

a remarkable one. 

         
)/exp()1/(

)/exp(

00

00

ctRR

ctR
R

b +−
=              (15) 

where 

0

3

0
0

)(2

kR

RHRp
c b+
=

π . 

The remarkable thing about Eq. (15) is that this is a generalization of a solution 

( ) 1
)exp(1)(

−−+= ttP  of the well known logistic equation )())(1( tPtP
dt

dP
−= , where P 

is the population quantity. However, our solution Eq. (15) has been obtained 

independently, on very different grounds. Unlike the classic solution, which requires 

adding constant coefficients using ad hoc considerations, Eq. (15) produces all 

coefficients naturally, as functions of the model's input parameters, which is a significant 

and qualitative advancement. The fact that the heuristically introduced growth equation 

produced a generalized solution of the known logistic equation (which is also used for 

modeling growth phenomena, both for populations and individual growth), should be 

considered as a remarkable result, a strong argument in favor of validity of the growth 

equation, according to criteria for validation of scientific truths. (Note that the growth 

equation Eq. (1) represents a new type of equation of mathematical physics, so that 

obtaining such an interesting and significant result is a good start for its mathematical 

explorations too.) 
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Fig. 1. Computed amoeba's growth curve versus experiment, and the growth ratio, depending on time. 

Experimental data are from Ref. 39.  

Fig. 1 shows the computed growth curve for amoeba versus experimental data from Ref. 

39, and the corresponding growth ratio. We can see that the computed growth curve 

corresponds to experimental measurements very well. Comparison with other 

experiments shows slightly more dispersion of experimental points relative to the 

computed growth curves. However, the experiment in Fig. 1 was chosen not for the least 

deviation from the computed growth curve, but for the stability of growth conditions 

compared to other experiments, in which nutrient influx was not so stable. If we could 

know the actual nutrient influx, we would compute the growth curves for other 

experiments more accurately too.  

4.2.   Amoeba's division mechanism 

A continuous redistribution of nutrient influx between maintenance needs and biomass 

production, defined and enforced by the general growth law, explains deceleration of the 

growth rate and subsequent stopping of growth. Indeed, growing biomass requires more 

nutrients for maintenance to support it, and so fewer nutrients are available for biomass 

synthesis. The decrease of the growth ratio during growth is a quantitative expression of 

this fact in a mathematical form. This arrangement of the growth phenomena has far 

reaching implications. Here is why. Organismal biochemical machinery represents a 

single unity. There are no separate biochemical machineries for maintenance and for 

biomass production, but all biochemical reactions interrelate; they are arranged in such a 

way that output substances of previous reactions become inputs for the next. Success of 

methods of metabolic flux analysis is based entirely on this arrangement, when through 

such interdependencies, described by a system of stoichiometric equations, it is possible 

to unambiguously find how much of each substance participates in the biochemical 

interchange31, 40.  
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Fig. 2. Growth cycle regulation and progression defined by the General growth law. 

According to works on metabolic flux analysis, the solution of a system of stoichiometric 

equations produces the most adequate results when this solution is optimized for a 

maximum amount of produced biomass. Indeed, evolutionary development shaped the 

composition of biochemical reactions in the direction prioritizing fast reproduction; in 

other words, making the amount of produced biomass a leading parameter, which the 

composition of biochemical reactions is tied to. So, if the amount of synthesized biomass 

changes, the composition of biochemical reactions changes too. In which direction 

though? The answer is: In the direction securing successive transitions through the entire 

growth period, optimized for the fastest reproduction. 

Before proceeding further, we should make the following side note. Nutrients are 

transformed to biomass by chemical reactions, for which the law of conservation of 

matter is fulfilled, so that the mass of nutrients, which are used for biomass synthesis, is 

equal to the mass of synthesized biomass. Therefore, in the following, it is legitimate 

using interchangeably these two notions. 

Let us reiterate how the growth and reproduction is regulated from the standpoint of 

the General growth law using Fig. 2 (it shares most elements with my Fig. I-1 in Ref. 19, 

used here by permission). In nature, a conflict between supplying abilities of the surface 

and the faster increasing demands of volume is resolved through optimization of nutrient 

distribution between biomass synthesis and maintenance. Quantitatively, this optimum is 

expressed as the value of the growth ratio, which is defined by geometry (that is logical, 

since the surface and volume are primary geometric characteristics inherent to all living 

organisms). This way, through the growth ratio, the General growth law imposes 

constraints on the fraction of nutrients that go to biomass production at each moment of 
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growth and reproduction. Biochemical mechanisms comply with this constraint. The 

increasing biomass requires more nutrients for maintenance, and so lesser fraction of 

nutrients is available for biomass synthesis. This continuous nutrient redistribution is 

reflected in the value of the growth ratio, which monotonically decreases during the life 

cycle. Composition of biochemical reactions is tied to the relative amount of produced 

biomass (relative to the total amount of acquired nutrients, meaning all substances used 

by biochemical machinery). Thus, the changes in the relative amount of produced 

biomass, forced by changing geometry, are realized by changes in the composition of 

biochemical reactions, so that the newer composition corresponds to the new relative 

amount of produced biomass. (In particular, such change of composition of biochemical 

reactions forced by the changed amount of produced biomass could be one of the main 

factors triggering cell specialization. However, this hypothesis requires further studies.) 

We know that growth processes and organisms' life cycles are generally irreversible, 

including such phenomenon as aging of multicellular organisms. The described 

arrangement explains irreversibility during growth and reproduction. The decreasing 

relative amount of nutrients diverted to biomass production acts as a ratchet, preventing 

the current composition of biochemical reactions to revert to the previous state, when a 

greater relative amount of biomass was produced. For such a reversion to happen, the 

fraction of nutrients used for biomass production has to increase. However, the grown 

biomass already took for maintenance the part of nutrient influx, which was earlier used 

for biomass synthesis; and the entire biochemical machinery was adjusted accordingly. In 

order to increase the fraction of nutrients for the biomass production, the growth ratio has 

to be increased. It can happen through the size reduction or by substantial change of 

geometrical form, which is not impossible, but would cause certain energetic, functional 

and developmental complications. If the said is true, then at least some simpler organisms 

might be able to "rejuvenate" through the decrease of biomass. Indeed, in Refs. 41, 42, 

the authors acknowledged that by periodically resecting part of amoeba's cytoplasm it is 

possible to indefinitely prevent it from entering division; in other words, making it 

practically immortal. By reducing amoeba's size, the experimenter, in fact, increased the 

growth ratio, which apparently led to adjustment of composition of biochemical reactions 

to a greater value of the growth ratio (in other words, to a new fraction of nutrients that 

could be used for biomass synthesis), or - at the least - led to freezing for some time the 

composition of biochemical reactions existing at the moment of resection. (Attention 

experimenters: Both propositions could be relatively easy to verify experimentally.)  

However, in general, the growth cycle is difficult to reverse for the reason explained 

above, and this is the price for the smooth and persistent proceeding through the entire 

growth and reproduction cycle. (The objection to the said above can be that there are cells 

that divide without growth. However, these cells reside within multicellular organisms, 

whose other parts increase their biomass and can send appropriate signals to other cells, 

forcing them to divide.) The described division process is rather a backbone mechanism, 

which, as usual, can be modulated by nature-virtuoso in many ways, but these 

modifications, still, are built on top of this core mechanism. 
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Quantitatively, the leading role of the growth ratio (or, which is the same, of nutrient 

distribution between biomass production and maintenance) in the rate of change of the 

amount of synthesized biomass can be confirmed as follows. Let us rewrite Eq. (1) to 

explicitly show the amount of produced biomass 
bm . 

              dt
R

R
XStXkdm

V

S
b ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−××= 1)(),(          (16) 

As we will see later, the specific nutrient influx k for amoeba at the end of growth 

changes little, as well as its volume and consequently the surface area. From the three 

terms in (16), the growth ratio ( )1/ −= VS RRG  changes by far the quickest, so that the 

changes in the amount of produced biomass are defined mostly by changes of the growth 

ratio. It is important to understand that it is not the absolute, but the relative changes in 

the amount of produced biomass (relative to the total amount of consumed nutrients), 

which alter the composition of biochemical reactions. 50% decrease of small amount of 

produced biomass affects composition of biochemical reactions more than 25% decrease 

of a bigger amount of synthesized biomass.  

This is common sense that the division mechanism has to satisfy the following 

requirements:  

(1) to be tied  to the most important organismal characteristics;  

(2) rate of change of these characteristics has to be substantial when approaching the 

division phase;  

(3) for the same species (or maybe even for a class of species, having similar, at the 

core, growth and reproduction mechanisms) the values of these characteristics (or a 

characteristic) have to be invariant to all possible growth and reproduction scenarios (at 

least to be invariant with high accuracy). 

 

The growth ratio satisfies all these criteria, while none of the other competing parameters. 

For instance, the other candidate for the role of such a division trigger is often assumed to 

be the size of an organism. Fig. 3 presents graphs of a relative change of the growth ratio 

and volume during the whole growth period for equal time intervals τ , that is the values 

)(/))()(( tVtVtV −+τ  and )(/))()(( tGtGtG −+τ . We can see that relative changes of 

volume before the division are substantially smaller, about sixty times, than the relative 

changes of the growth ratio. Moreover, volume's relative change decreases, while in case 

of the growth ratio the relative change remains constant. Apparently, a triggering 

mechanism, which reacts to a greater and (even better) increasing parameter (which is 

the case for S. pombe, as we will see later), will work more reliably than a trigger reacting 

on a small and decreasing value. 



  

 

Copyright © Yuri K. Shestopaloff 2016. http://doi.org/10.5281/zenodo.3949223 (2020, July 16) 19 

 

Fig. 3. Relative change of volume and growth ratio for amoeba during the growth period. 

The other important factor supporting our hypothesis about the role of the growth ratio as 

a major division trigger is this. Size of the same species varies a lot. Such, the length of a 

grown S. pombe can differ as much as four times; other cells also show wide range of 

grown sizes, at least tens of percent, depending on many factors, like nutrients 

availability, temperature, etc. In individual growth, cells also demonstrate wide variations 

of ratios between the ending and the initial sizes. Small S. pombe or E. coli can grow into 

a big cell, on par with the cells, which started growing being much bigger already. How 

some hypothetical size sensitive division mechanism could determine, at which size it has 

to start the division, given such principal variability of sizes relative to initial sizes, and 

also high variability of the initial sizes too, for the same species? Such a division 

mechanism just has no reference points to be tied too. On the other hand, the growth ratio 

is a well defined value for any growth scenario. For the same species with similar 

geometrical forms, it does not matter, a big cell or a small one, increases it by two or four 

times, the growth ratio will be changing similarly during the entire growth period, always 

reaching a certain value, which is invariant to size, corresponding to a division point. In 

other words, this division point corresponds to the same fraction of nutrients directed 

towards biomass production. In turn, it is namely this fraction, which defines and forces 

changes in the composition of biochemical reactions throughout the life cycle, and, in 

particular, it triggers a division phase. With the growth ratio as a division trigger, all 

known facts are explained, and all affecting factors are tied together. In case of size as a 

possible trigger of a division mechanism, on the contrary, we have conflicting 

considerations; it just has no reference points such a mechanism can be tied too. 

The invariance of value of the growth ratio, corresponding to division, is indirectly 

confirmed by results from Ref. 14: "… a cell with a larger initial size tends to divide 

earlier, whereas one with a smaller initial size tends to divide later." Indeed, according to 

the General growth law, large cells of the same species reach the threshold division value 
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of the growth ratio earlier, since they start with a smaller growth ratio already and so it 

will decrease faster, while smaller cells generally start with a greater value of the growth 

ratio and need to grow - in relative terms - more in order to reach the same small value of 

the growth ratio corresponding to division. Of course, this is only a qualitative reasoning, 

since the growth ratio is defined by geometry at the first place, not by the size alone. 

So, the growth ratio in this competition for the cellular cycle control by far supersedes 

the organism's volume (and consequently other related to size absolute parameters). Thus, 

this is not the size of an organism, which eventually triggers the division and enforces 

ordered changes of compositions of biochemical reactions through the growth cycle, but 

the change in the amount of produced biomass relative to the total nutrient influx, tied to 

a relative size and geometrical form. This arrangement is certainly outside the 

mainstream biomolecular biological paradigm, but unlike other hypotheses, it by far 

supersedes all other hypotheses; it explains all known facts about growth and 

reproduction phenomenon, without a single exception.  

The General growth law also allowed predicting new effects. Such were explanations 

why organisms have certain forms, like a cylindrical or spherical ones, a theoretical 

discovery of a growth suppression mechanism based on change of a geometrical form19, 

21, 30. The last one later found experimental confirmation in cellularization of the syncytial 

blastoderm in Drosophila43 and pigs' blastocysts44 (more on that in subsection 5.3). These 

effects were discovered based on calculating growth time for different geometrical forms 

using the growth equation, and later found experimental confirmation. 

Unlike the other hypotheses, the introduced growth and division model is supported 

by a mathematical apparatus, which produces results very accurately corresponding to 

experiments. None of the other hypotheses about growth and reproduction mechanisms 

has such an adequate and universal mathematical apparatus, and passed such a robust 

verification based on strict scientific methodology. So, although the discovered answer to 

Life development problem resides in the area nobody was expecting it to be at - indeed, 

we discovered that this is rather a classical physical law, acting at higher than molecular 

levels - the discovery should not be discarded on that ground. Important scientific 

breakthroughs, like the military ones, originate in unexpected directions. 

A note about the constant value of the relative change of the growth ratio in Fig. 3. 

This is a surprising result. Its mathematical proof is as follows. Let us substitute the value 

of R as a function of t from (15) into the expression for the growth ratio G in (11).  
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Therefore, the growth ratio as a function of growth time is an exponential function. Recall 

that the growth ratio is the ratio of the relative surface to relative volume (Eqs. (2) and 

(3)) minus one, and none of them, of course, contains even a hint to exponents. Obtaining 

such an unexpected result in the given circumstances rather means that we found some 

important new geometrical property of the real world (which is, in the first place, a 

geometrical one). 
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The first derivative of an exponential function is also an exponential function, so that 

the relative change of the growth ratio (its first derivative) is an exponent. However, for 

illustrative purposes, let us consider equal discrete time intervals τ . Then, we can find 

the relative change of the growth ratio as follows. 

      1)/exp(
)(

)()(
0 −−=

−+
c

tG

tGtG ττ
         (18) 

So, for the equal time intervals the relative change of the growth ratio, indeed, remains 

constant. What is the meaning of this relationship in the real world? It is an interesting 

and a very natural one. It means that at equal time intervals the amount of nutrients that 

is diverted to biomass production is reduced by the same fraction from the ending amount 

of the previous time interval (recall compounding interest on mortgage or annuity, or 

decrease of atmospheric pressure with height, or decrease of current in electrical 

circuits35; mathematically, this is are phenomena of the same class). There are many such 

natural processes defined by fundamental laws of Nature. So, we can say with certainty 

that the heuristic growth equation Eq. (1) and its main parameter, the growth ratio, are 

definitely associated with the realm of natural processes. According to scientific 

methodological criteria of validation of scientific theories, finding such relationships 

should be considered as a one more strong argument in a favor of validity of the growth 

equation and of the General growth law.  

4.3.   Amoeba's metabolic properties 

Once we know the total nutrient influx )(tK  and the growth ratio )(tG , we can find 

separately nutrient influxes  for growth - )(tKg
, and  maintenance - )(tKm

. 

       )()()( tGtKtKg =           (19)  

                ))(1)(()( tGtKtKm −=           (20) 

Also, we can find nutrient influxes per unit surface )(/)()( tStKtks =  and per unit of 

volume )(/)()( tVtKtkv = ; accumulated amount of nutrients used for biomass synthesis 

gM , maintenance
mM , and the total amount of consumed nutrients 

totM during the time 

period ),( 1 tt . We will use units of measure for the influx 1min−⋅pg  ( gpg 12101 −= ), 

except for amoeba, for which the unit of measure is 1min−⋅gμ . Influx )(tks
 is measured 

in 21min −− ⋅⋅ mpg μ ; )(tkv
 in 31min −− ⋅⋅ mpg μ  (for amoeba, accordingly 

21min −− ⋅⋅ mg μμ  and 31min −− ⋅⋅ mg μμ ).  
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Application of Eqs. (19) - (23) to the growth curve in Fig. 1 produces metabolic 

characteristics presented in Fig. 4. 

 

Fig. 4. Nutrient influx and accumulated amount of nutrients for amoeba, depending on time. a - Specific 

nutrient influx )(tks
 per unit of surface ( 21min −− ⋅⋅ mg μμ ) and per unit of volume )(tkv

 

( 31min −− ⋅⋅ mg μμ ). b - Accumulated amount of nutrients used for growth and maintenance, and the total 

amount, in gμ .  

Metabolic properties of studied organisms will be compared in Table 1. For now, note 

that (a) amoeba consumes about 28 times more nutrients for maintenance than for 

growth; (b) we can find amount of synthesized biomass directly, while finding this 

critical for biotechnological applications parameter, in particular by methods of metabolic 

flux analysis, is a big problem today.  

4.4.   Amoeba's growth and division mechanism from the evolutionary perspective  

Geometrical form is an inherent property of any living organism and its constituents, 

down to a molecular level. Since the growth ratio is inherently tied to the geometrical 

form, the growth and division mechanisms based on direct changes of growth ratio are 

probably the most ancient ones. (We will call them as the growth and division 

mechanism of the first type.) Its characteristic features are as follows:  

(1) The growth proceeds almost through the entire possible growth period (corresponding 

to the growth curve described by the growth equation);  

(2) The rates of protein and RNAs synthesis are the same;  

(3) The value of the spare growth capacity is small, about 2%.  

5.   Fission yeast S. pombe. Growth and Division  

5.1.   Modeling growth of S. pombe using the growth equation 
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This model organism represents the second type of the growth and division scenario. 

Such organisms do not go through the whole possible growth cycle, but use only the 

fastest part of the whole growth curve, switching to division much earlier, at the 

inflection point of the growth curve. This evolutionary enhancement secures the fastest 

possible growth time. Evolutionarily, such mechanism was very likely developed on top 

of more basic mechanisms, like the ones studied in amoeba, since it requires a set of 

advanced features, which unlikely appeared simultaneously. 

For illustration, we used experimental data, courtesy of Baumgartner and Tolic-

Norrelykke45. Earlier, in Ref. 21, similar results were obtained for 85 experiments from 

the same study, for the temperatures of C 32 0 , C 28 0  and C 25 0 , and also for 

experimental graphs from Ref. 46. Therefore, the presented results can be considered as 

statistically meaningful. 

We use the same geometrical model of S. pombe as in Refs. 19, 21. The organism is 

modeled by a cylinder with a length l, radius r, with hemispheres at the ends; beginning 

length is 
bl , ending length is 

el . In these notations, using Eqs. (2) - (4), the relative 

surface, relative volume and the growth ratio can be found as follows. 
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where index 'c' denotes 'cylinder'. 

We will also need the relative lengths' increases 
bll=L /  and 

be ll=E / , and a relative 

radius's increase 
blr=R / . Then, the growth ratio from Eq. (25) can be rewritten as 

follows.  

           
)2)(3/4((

)()3/2(

E+RL+)R

LER
=Gc

−
                 (26) 

Volume V of a cylinder with hemispheres is lπr+r=V 23)3/4( π . The differential is 

dlπr=dV 2 . The nutrient influx is defined by Eq. (7). 

Note that Eq. (26) uses the relative length's increase for the cylindrical part of the 

organism, not for the whole length. The rationale is that the cell's volume increases 

through the elongation of the cylindrical part. (This consideration is not critical - using 

the whole length produces close results.) 

Substituting these parameters into Eq. (1), we obtain the following differential 

equation.  

      dt
E)+RL)(+)R((

L))R(E(
)LC+LA(C=dLlpππ rpb

23/4

3/2322 −
        (27) 

The analytical solution of Eq. (27) was considered in Refs. 19, 21, which is as follows. 
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where 

)C(E)+R(pππR=B p

3

b 2/23 ; 
E

R
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3

4
; 

E

fCEf+
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; 
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d)C(h=g −                (29) 

Unlike in amoeba, the rate of RNA synthesis in S. pombe is about double of the rate of 

protein production19, 21. This is why we obtained the cube of length in (26). It is often 

assumed45 that the double rate of RNA synthesis triggers after completing S phase, while 

before that the rates of protein and RNA synthesis are the same. In this case, 

( )
rp

2 C+CAL=LK )( , and the solution of the growth equation is as follows21.  
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where ))C+(C(E)+R(pππR=B rp

3

bS 2/23 ; E)(R=fS 3/4 ; Ef)+(=d=g SS /1 . 

Model's input parameters are listed in Table 1. A diameter and a fraction of nutrients 

used for RNA synthesis were estimated based on the fact of fast growth and analogy with 

other microorganisms, like in Ref. 36, and large initial size of the considered species. 

Unfortunately, these parameters were not measured. 

As we can see from Fig. 5a, S. pombe, unlike amoeba, does not proceed through the 

whole possible growth cycle, defined by the full growth curve, but switches to the 

division phase at inflection point, which secures the minimum growth time at a maximal 

possible rate of biomass production (this can be proved mathematically). This significant 

evolutionary enhancement secures much faster growth. 

The value of the spare growth capacity (SGC) for S. pombe is much greater than 

amoeba's 2%, and resides in the range of 30-40%. However, knowledge of SGC for 

computing growth curves in case of S. pombe and similarly growing organisms 

(including B. subtilis, E. coli) is not required, since comparison with experimental data is 

based on the beginning of division, which coincides with the inflection point. 

As it was the case with amoeba, the relative (to the total nutrient influx) amount of 

produced biomass, defined by the growth ratio, remains the leading parameter, which 

defines composition of biochemical reactions through the growth cycle. However, in S. 

pombe, it triggers the beginning of division phase at the inflection point of the growth 

curve. 
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Fig. 5. S. pombe's growth and metabolic characteristics. a - Full growth curve for S. pombe versus experiment 1 

from C 32 0  dataset from Ref. 45. Maximum of the first derivative of the growth curve corresponds to the 

beginning of division phase and inflection point of the growth curve. b - Change of the growth ratio, and the 

relative changes of the growth ratio versus the relative change of volume, for equal time intervals. c - Nutrient 

influx per unit surface 
sk  (measured in -1-2 min⋅⋅ mpg μ ) and per unit of volume 

Vk  (measured in 
-1-3 min⋅⋅ mpg μ ). d - Accumulated nutrients for maintenance, growth and the total amount, in pg . 

High value of SGC (and accordingly the possibility of continuing to grow beyond the 

inflection point) for S. pombe is not a mathematical ad hoc. Many cells can grow 

substantially bigger than their normal size, when the division is suppressed7. For S. 

pombe, it was confirmed experimentally in Ref. 45. Computations in Ref. 21, on the basis 

of Eq. (30), confirmed this too, and produced a growth curve similar to experimental 

data. 

Metabolic properties of S. pombe were studied using Eqs. (19) - (23). Fig. 5b is 

presenting further evidence that the amount of produced biomass is that leading 

parameter which drives growth and division process of S. pombe, forcing changes in the 

composition of biochemical reactions in such a way that the organism proceeds through 

its life cycle. Indeed, we can see that the relative change of the growth ratio computed at 

equal time intervals is substantially greater than the relative change of volume (by 3.8 

times at the division point). Also, the rate of change of the growth ratio quickly increases 

at the beginning of the division phase, while the relative change of volume decreases. So, 

it is very unlikely that changes in volume (or of any absolute dimensional parameter) 
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could be a factor triggering S. pombe's division, besides the fact that changes in volume 

do not explain, why the same species, which could differ in size at the division point as 

much as four times, divide; or why such organisms continue to grow once the division is 

suppressed, and so on. The General growth law, in this regard, explains all known 

properties and facts about growth and division of such organisms, as well as explains 

why they have certain shapes, allows finding their metabolic properties, etc.  

Fig. 5c shows change of specific nutrient influxes )(tks
 and )(tkv

. Unlike in amoeba 

(see Fig. 4a), the increase of these influxes accelerates all the time. This is also a factor 

contributing to fast reproduction. Fig. 5d shows amount of accumulated nutrients for 

growth and maintenance, and the total amount of consumed nutrients. Note that 

maintenance requires about 18.2 times more nutrients than biomass production, while in 

amoeba this ratio was equal to 28. 

The obtained results also address a long debated issue, is S. pombe's growth curve 

exponential or piecewise linear. Eqs. (28) and (30) answer the question - neither one in a 

pure form. However, given the presence of logarithmic functions, the reverse 

dependences (producing the growth curves in question) are rather closer to exponential 

functions than to piecewise linear dependencies. Ref. 21 presents statistical evidence in 

this regard.  

5.2.   Growth and division mechanism of the second type 

The considered second type of growth and the division mechanisms very much differ 

from the same mechanisms of the first type, used by amoeba. (Note that both types of 

growth also have very different characteristics of population growth47.)  

The following features are characteristic for the second type of growth:  

(1) Species do not go through the entire possible growth cycle, but switch to division 

much earlier, at the inflection point of the growth curve;  

(2) The growth curve has a well expressed inflection point;  

(3) Such species are elongated (the inflection point is better expressed for the elongated 

forms);  

(4) The rate of RNA synthesis is double the rate of protein synthesis (which is also a 

factor contributing to better expression of an inflection point and faster growth); 

(5) If the division is suppressed, such cells continue to grow further (because of the high 

value of SGC, which represents a qualitative measure of unrealized growth potential for 

such organisms). 

5.3.   Dependence of growth rate on geometrical form  

Note that according to the General growth law, among all elongated forms a cylinder has 

the fastest growth time due to a higher value of the growth ratio19, 21. Fig. 6 shows such a 

dependence graphically for a double frustum whose base changes from zero to a base's 

diameter, that is from a double cone to a cylinder. The shortest growth time corresponds 

to a cylinder. The second fastest growing form is a double cone. On the other hand, a 

certain shape of a double frustum has the slowest growth time; in other words, it 
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suppresses the growth. This effect of growth suppression by elongating the form was first 

discovered theoretically, and then experimental confirmations were found43, 44, as it was 

earlier mentioned. 

 

Fig. 6. Growth time for a double frustum depending on the relative upper apex's diameter. Change of apex 

diameter provides transition from a double cone shape to a cylinder. 

Maximizing the growth ratio (in other words, maximizing the amount of produced 

biomass) is one of the reasons why so many elongated microorganisms have a cylinder 

shape. The argument that such a shape is due to the need for a lesser resistance during 

motion does not sustain - many immobile or low motility organisms also have a cylinder 

form, like B. subtilis. Also, the cylinder form is less restrictive with regard to the 

maximum length, since the value of the growth ratio changes slowly towards the end of 

growth for elongated forms. (This effect and the earlier triggering of division, in turn, 

explain large variations in the relative length's increase of S. pombe and other elongated 

organisms.)  

Overall, all known facts about growth of S. pombe, overgrowth and its cylindrical 

form, as well as about similar characteristics of other elongated organisms and cells, are 

well explained by the General growth law. 

 

A side note. Fig. 6 shows that the second fastest growing form is a double cone. Shape of 

a carrot is very likely a consequence of this effect. Even though the nutrient and water 

supply go through a network of interacting xylem and phloem flows, in case of a carrot, 

and plants in general, deposition of sugars into sink cells is done through the surface, 

although this is an internal surface this time (unpublished study).  

A sphere is also a fast growing form. Although its growth curve does not have a well 

expressed inflection point, and such organisms should not enter division prematurely, as 

S. pombe does, the sphere's growth ratio at the beginning is more than two times greater 
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than that of a cylinder with the ratio of length to a diameter of 2 : 1. This is why many 

unicellular organisms have a spherical shape, as well as many fruits and vegetables, 

especially when the vegetation period is short, which is the case for Northern berries, 

apples. Overall, geometry and interaction of relative surface and relative volume, 

reflected in the value of the growth ratio, governs the growth of plants too, although in a 

more complicated, transformed form, influenced by other factors and adaptation 

mechanisms to specific environments.  

6.   Growth and division of B. subtilis, E. coli 

S. pombe, B. subtilis and E. coli exercise the growth and division mechanisms of the 

second type, although the first one is eukaryote, the other two are bacteria. Nutrient 

influx for them is defined by Eq. (7), since, as it was previously discussed, E. coli has a 

double rate of RNA synthesis compared to protein synthesis. There are no such data for 

B. subtilis, but it can be assumed the same, with very high probability, given the 

similarity of geometrical forms of E. coli and B. subtilis and their fast growth. Both 

factors, according to the results for S. pombe, strongly correlate with a double rate of 

RNA synthesis. 

Fig. 7a,b show computed growth curves for E. coli (by Eqs. (28) and (30)) versus the 

two experimental data sets from Ref. 48. Fig. 7c shows a similar growth curve for B. 

subtilis versus the exponential data fit from Ref. 49. In all instances, we see a very good 

correspondence between the computed growth curves and experiments. Model's input 

parameters are listed in Table 1. The fraction of nutrients for RNA synthesis was 

estimated based on the rate of growth (the higher the rate of growth is, the greater this 

fraction) and the possible range of this value (0.035 to 0.246 for E. coli, according to Ref. 

36.) The diameter was estimated based on geometrical proportions of organisms. 
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Fig. 7. Computed growth curves for E. coli and B. subtilis versus experimental data, and the computed growth 

curve for Staphylococcus. Experimental data for E. coli are from Ref. 48. For B. subtilis - from Ref. 49. a - The 

growth curve for E. coli vs. the data the authors suggested to model by a bilinear curve. b - The same for the 

data the authors suggested to model by a tri-linear curve. c - a computed growth curve for B. subtilis versus the 

experimental data. d - a computed growth curve and the growth ratio for Staphylococcus. 

It was suggested in Ref. 48 approximating E. coli's growth curve as a bilinear or tri-linear 

function.  If we take into account rounding of the tip of a divided microbe in the first 

minutes of growth, which is the cause of faster length's increase at the very beginning, 

then, the computed growth curves actually correspond to experiments noticeably better 

than the authors' bi- and tri-linear approximations. The length's increase due to the tip 

rounding at the beginning of growth was proved in Ref. 45, and later was confirmed in 

Ref. 21. 

For E. coli and B. subtilis, metabolic properties (the graphs for nutrient influx and 

accumulated nutrients for growth and maintenance) are similar to ones for S. pombe, that 

is they are quickly increasing convex curves. For Staphylococcus, the appropriate 

metabolic curves resemble the concave curves for amoeba.  

7.   Growth and division model of Staphylococcus  

Staphylococcus's growth was modeled by an increasing sphere. It turned out to be an 

interesting model. The rate of RNA and protein synthesis was assumed the same. 
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(Although, there is a possibility that the rate of RNA synthesis can be greater, similar, for 

instance, to S. cerevisiae37.) Then, Eq. (9) transforms into  

      3/4)()( vCC=vK rps +            (31) 

(index 's' denotes 'sphere'). 

The growth ratio can be found as follows. 
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where R0 is the maximum possible (asymptotic) radius; R is the current radius.  

Substituting 
sG  from (32), and nutrient influx from (31) into Eq. (1), we obtain the 

following differential equation. 
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where 
bR  is the beginning radius of the sphere. 

Solution of (33) is as follows. 
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It is very similar to (14) for amoeba. Denoting )/(4 0

4

0 kRRpc bs π= , and solving (34) for 

radius R,  we obtain a generalized solution, similar to solution of logistic equation, which 

is exactly the same as Eq. (15) for amoeba, save for the constant term 
sc0
. Certainly, thus 

obtained equation has the same interesting properties - close relationship with a logistic 

equation, and the exponential dependence of the growth ratio on time. So, for now, we 

found two geometrical forms, a disk and a sphere, possessing these two interesting 

properties. Both from the mathematical and physical perspectives, these results are of 

great interest, representing some fundamental properties of the real world, including its 

geometry, which so far were unknown. These and previous results allow to conclude that 

the growth equation represents a new type of equation of mathematical physics, whose 

study will undoubtedly provide new important insights to the properties of our world.   

Division mechanism of Staphylococcus is very likely of the first type, as in amoeba. 

The reasons for such a suggestion is that the growth curve of a sphere does not have a 

well expressed inflection point, or other specific features, which could serve as the 

checkmarks for starting an earlier division without going through the whole possible 

growth curve. We can see from Fig. 7d that the growth ratio is much higher in 

Staphylococcus at the beginning of growth (a value of 0.27 versus 0.117 for S. pombe). 

This accordingly means a 2.3 times greater fraction of nutrients going to biomass 

production at the beginning, which apparently compensates for the slower growth at the 

end. Thus, we made a set of predictions regarding growth and division mechanisms of 
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Staphylococcus and other organisms having a spherical shape, based on the General 

growth law, which can and should be tested experimentally.  

8.   Metabolic properties of cells. Allometric scaling  

Table 1 presents the summary of metabolic properties of considered organisms and input 

parameters for their models, which can serve as an additional verification of obtained 

results and of the General growth law and growth equation. If they are correct, then (a) 

we should obtain the allometric scaling coefficient within the experimentally found 

range; (b) the dependence of metabolic rates on volume, presented in logarithmic 

coordinates, should be close to a linear one.  

In addition to the earlier introduced characteristics, the following metabolic 

parameters were calculated: average and maximal metabolic rates per unit surface 
Savk  

and 
maxSk ; average and maximal metabolic rates per unit volume 

Vavk  and 
maxVk ; the 

total maximal, average and minimal nutrient influxes, accordingly 
maxK , 

avK , 
minK . 

Table 1 considers nutrient influxes, but not the actual metabolic rates. We assume that 

the amount of produced energy is proportional to consumed nutrients33. On one hand, 

using nutrients has an advantage over the conventional methods, which may not account 

for all metabolic mechanisms. In particular: (a) it becomes possible to compare the 

consumed amount of food with the measured metabolic output; (b) knowing metabolic 

mechanisms of particular organisms, it is possible to translate the amount of consumed 

nutrients into the metabolic output. On the other hand, metabolic output for the same 

amount of nutrients can differ in different organisms. Besides, different types of nutrients 

could provide different metabolic outputs. 

       Note the large variations of nutrient influxes per unit volume (up to 80 times) 

between different organisms in Table 1, while the nutrient influx per unit surface differs 

little (of about 4 times).  If we think for a moment, this is understandable, since nutrients 

are acquired by considered cells through the surface, from the common nutritional 

environment, and so the differences, indeed, should not be as great, being much 

dependent on the concentration of nutrients in the surrounding environment. It is 

interesting that from this observation a well founded theory of interspecific metabolic 

allometric scaling in unicellular organisms was developed, which exposed fundamental 

causes of this phenomenon and led to far reaching conclusions34. This can serve as a one 

more example of usefulness of the General growth law for diverse biological studies. 

    We can verify the validity of obtained in Table 1 metabolic parameters using a 

metabolic allometric scaling effect33. Fig. 8a presents such a dependence33. The found 

values of metabolic rate, indeed, are located on a straight line, and the value of allometric 

exponent of 0.758 complies with results from Ref. 50, according to which allometric 

exponents for unicellular organisms are in the range from 2/3 to more than one.  
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Table 1. Summary of metabolic properties of considered organisms and input parameters for their growth 

models. 

 B. subtilis Staphylo

coccus 

E. coli,  

3-Linear 

E. coli,  

2-Linear 

S. 

pombe 

Amoeba 

kSav, pg·μm-2·min-1 0.083 0.135 0.1053 0.2194 0.0957 0.493 

kS Max, pg·μm-2·min-1 0.134 0.147 0.284 0.433 0.222 0.545 

kVav, pg·μm-3·min-1 0.672 0.5336 1.0073 0.8933 0.0866 0.01215 

kVmax, pg·μm-3·min-1 1.066 0.552 2.65 1.71 0.195 0.013 

Vmax, μm-3 0.617 2.145 3.999 16.975 325.4 1.88E+7 

Diameter, μm 0.536  0.446 1.09 5  

Diameter beg. μm  1.27    285.7 

Diameter end, μm  1.6    409.5 

Beginning length, μm 1.608  1.003 2.39 10.1  

Ending length, μm 2.915  3.999 4.957 18.24  

Asymptotic length, μm 4.7  6.563 7.641 24.9  

kav , pg·min-1 0.3538 0.98 0.26 2.86 4.984 1.96E+5 

Kmax, pg·min-1 0.658 1.184 1.59 7.34 63.59 2.44E+5 

Kmin, pg·min-1 0.116 0.47 0.025 0.688 4.723 8.28E+4 

Mg (nutr. growth), pg 0.295 1.106 0.472 2.41 160.74 9.95E+6 

Mm (nutr. maint.), pg 6.82 18.49 13.33 43.64 2930 2.77E+8 

Mt (nutr. total), pg 7.12 19.6 13.8 46.05 3091 2.87E+8 

Mm / Mg  23.1 16.72 28.2 18.12 18.23 27.83 

Fraction of nutrients 

for RNA synthesis, % 

12  6 10 60  

Logarithm kVav -0.397 -0.628 0.0073 -0.113 -2.447 -4.41 

Logarithm kVmax 0.064 -0.59 0.97 0.538 -1.64 -4.35 

Logarithm Vmax -0.48 0.76 1.386 2.832 5.785 16.75 

Logarithm Kmax -0.42 0.169 0.465 1.994 4.152 12.405 

 

Fig. 8. Change of metabolic rate and nutrient influx depending on volume, in logarithmic scale. Numbered data 

points from left to right correspond to B. subtilis (1), Staphylococcus (2), E. coli 1 (3), E. coli 2 (4), S. pombe 

(5), amoeba (6). a - Maximal total metabolic rate. b - metabolic influx per unit volume. (Graphs are from Ref. 

33).  

The obtained in Table 1 results are also very important from another perspective. Using 

this result, it was shown in Ref. 33 that the entire food chain is organized in such a way 
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that it preserves its continuity, on one hand, and a dynamic balance between different 

species composing the food chain, so that none of them could have an overwhelming 

advantage, on the other hand. This important result is due to the General growth law as 

well. Thus, we obtained an additional solid proof of validity of the General growth law 

and its high value for studying diverse problems in biology and related disciplines.  

     However, the results in Table 1 are even more revealing. Fig. 8b presents 

dependence of nutrient influx per unit surface for different unicellular organisms 

depending on mass, in logarithmic scale. We can see that except for E. coli, which is a 

highly motile organism, the values of nutrient influx for other microorganisms, which are 

all sedentary, very well fit a straight line. This fact has very important implications, 

resulted in discovery of an evolutionary mechanism of food chain creation, as well as 

obtaining other important results and explaining prior known but not understood facts and 

effects33. Together, these new findings also provide additional proofs of validity of the 

General growth law and the growth equation. 

9.   The New Physical Paradigm of Life as a Comprehensive and Transparent  

Cognitive Framework 

Every new development brings new questions. Scientific ideas, by definition, are 

prohibited to be carved in stone. Given its generality and omnipresence, the discovery of 

the General growth law brings lots of questions, which have to be answered in order to 

move forward. The main idea behind such questioning is to have a clear and entirely 

transparent understanding of fundamental mechanisms defining Life, and clear vision of 

fundamental concepts underlying such both known and yet undiscovered mechanisms. 

There should not be blank spots filled with "obvious" assumptions (which in most 

instances actually turned out to be beliefs), similar to an idea about the all-managerial 

role of some genetic code responsible for everything. The new physical paradigm of Life 

provides directions for such studies and all sorts of opportunities to make them 

meaningful, efficient and successful.   

For that, Life should be understood as an entirely automated autonomous process and 

mechanism at the same time, in which all details fit together and each one is fully 

exposed to the observer in its principles, appearance and action. One should be able to 

understand why, not only to see how (as it often happens now) this mechanism takes raw 

materials in certain conditions as an input, and, passing them through the process, 

delivers a living organism at the output. The analogy could be a flight of a thrown ball: 

we know that before the flight it was accelerated with certain force acting at a certain 

distance, and so the launching speed is described by such and such equation of classical 

mechanics. Then, the ball starts slowing its motion. Yes, that's right, says one - that 

because of the force of gravity, which acts on it, pulling it approximately to the center of 

the Earth, which is for this latitude defined by such and such formulas. Then, yes, friction 

of the air has to be taken into an account, which is defined by such and such equations, 

whose parameters we can find using such and such measurements. And so on. At every 
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moment of flight, we know what laws of nature act, why and how they work, and what 

quantitative apparatuses describe them, leaving no gaps for unfounded assumptions.  

One may not know some things, but there should be the right conceptual framework 

to move to such understanding. Does the present biochemical paradigm allow doing so? 

The answer is 'No', since it apriori excludes possible mechanisms, which might act at 

higher than molecular levels, while such mechanisms, indeed, could exist, given the 

known physical arrangement of the world. Thus, there is definitely a need in a new, more 

comprehensive and more transparent cognitive and methodological paradigm, based on 

right fundamental principles, and this is exactly what the proposed physical paradigm of 

Life provides. 

10.   Conclusion  

The article began with a discussion of a fundamental question - What is Life? Different - 

often opposing - views of different level of generality on possible mechanisms governing 

Life origin and development were considered. We followed arguments of E. Schrödinger 

in his famous lectures and found, what led him to make the assumptions, which 

presumably influenced so much on the following course of the entire discipline. The truth 

is that Schrödinger did not exclude an idea that Life is governed by an 'ordinary' physical 

law, although gave such a possibility low priority, while giving higher preference to the 

idea that living matter is special from the rest, and, accordingly, is governed by  some 

very special - although still physical - law. His reflections, as it was shown, had some 

principal flaws, which were the reasons of his inaccurate judgments.  

    There is nothing wrong with that when it comes to solving so complicated 

fundamental level problems. The scientific progress is by definition an iterative and 

incremental endeavor. It's just important to continue moving forward, whatever the state 

of affairs is, regardless of how final, perfect and satisfying it might look at a first glance. 

Motion is an inherent property of matter as such; it never stops. No paradigm, no concept 

can be final, representing the end of story. When such a situation happens, it just means 

that the paradigm or idea became a dogma, which from that moment becomes an obstacle 

in the following development. That's it. It does not mean that such a paradigm has to be 

necessarily rejected, by no means. Normally, the right things become foundations for the 

following progress. In case of theories or paradigms, such prior developments, whole or 

in part, are included into the newer more general theories and paradigms, thus securing 

the succession and continuity of knowledge. If this does not happen, than the discipline is 

in trouble, as it happens with philosophy, once the classic German philosophy, the jewel 

of human intelligence and reasoning, was rejected as the basis for the following 

development, and numerous opportunists began proposing their new "philosophies" from 

scratch. In case of the physical paradigm of Life, all known biochemical mechanisms are 

included into it, presenting its inherent, inseparable part. It's just that they play a 

somewhat different role.  

    From all possibilities that Schrödinger considered, eventually the idea of 

fundamentally special properties of living matter was accepted, and then it was amplified 
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and modified to the status of an exclusively biochemical paradigm of Life origin and 

development. (The essence of this paradigm, as we discussed, is that all properties of 

living matter, at all scale levels, are entirely defined at a molecular level by information 

stored in a molecular form as some genetic code, which is implemented by biochemical 

mechanisms, successively triggering one after another according to this code, thus 

defining the life cycle  progression.) The idea, apparently, appealed to the way of human 

thinking many people adhere to, which is extracting one aspect from a multifactor 

phenomenon, and stick with it, ignoring the rest of factors and evidences. Despite some 

opposition, de facto, the biochemical paradigm of Life quickly became the main 

biological idea, favored by grants, high ranking publications, prestige awards, etc.  

The opponents, accordingly, were suppressed through the same means. It was easier 

to do so, since they could not present real mechanism, which could support their ideas. 

Now, the situation is different in this regard: Such a fundamental physical law of nature, 

the General growth law, was discovered, studied and validated from different 

perspectives. However, the biochemical paradigm is now so solidly established - 

organizationally, educationally, businesswise and in people's mentality, including the 

general public, that it is very difficult to change it. 

This new physical biological paradigm was comprehensively verified using both high 

level philosophical considerations and discovered concrete growth and division 

mechanisms for particular unicellular organisms, while previous works22, 23 proved the 

validity of this approach for organs. It is important to note that this physical paradigm by 

no means rejects, but seamlessly incorporates all biochemical mechanisms discovered 

within the biochemical paradigm of Life. In this regard, one should not consider the new 

paradigm as an alternative. In fact, this new physical paradigm is a more general, of the 

next qualitative level, concept of Life origin and development, which includes all 

previous knowledge. It accommodates and reconciles all previous studies, while opening 

new horizons and providing conceptual and methodological frameworks for the 

following studies, as well as perspectives and guidance. 

The core of this new physical paradigm is a general growth mechanism, the General 

growth law, which is a fundamental law of nature; on par - in generality - with laws of 

classical mechanics. In the same way as laws of classical mechanics are valid in the entire 

Universe, the General growth law is also an inseparable attribute of the Universe. It 

works at a cellular scale level and above, up to the whole organisms, in tight cooperation 

with biochemical mechanisms, by imposing uniquely defined constraints on the 

distribution of nutrients between the maintenance needs and biomass production (as well 

as performing some other tasks we did not discuss here). The physical foundation for this 

law is a geometrical conflict between the slower growing surface and the (principally!) 

faster growing volume.  

Using this real physical law and its mathematical representation the growth equation, 

we developed and validated by experimental data and other means growth and division 

models for unicellular organisms. In addition, we briefly considered metabolic 

characteristics of the studied organisms, using the General growth law, and found that (a) 
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obtained values, indeed, are located on a straight line in logarithmic coordinates, as it 

should be if the General growth law and the growth equation are valid, (b) the value of 

the allometric exponent complies with experimental observations. Besides, we discovered 

that the nutrient influx through the surface also scales as a straight line in logarithmic 

coordinates for sedentary microorganisms, which entirely agrees with findings and 

properties of food chains considered in Refs. 32, 33. These results, on one hand, one 

more time confirm the validity of the General growth law and its mathematical 

representation, the growth equation. On the other hand, they effectively demonstrate the 

role of the General growth law as an efficient scientific tool, which allows solving 

difficult problems and explaining known puzzling facts. (The problem of metabolic 

allometric scaling is still considered as unsolved, although the actual mechanisms were 

discovered and presented in Refs. 32-34. The reason is the recent fixation in this area, the 

so called phylogenetic correction. However, such a correction should not be applied to 

organismal metabolic properties, which are much defined by the environment, and on a 

much shorter time scales than the phylogenetic trees consider. Fortunately, this dogmatic 

view meets more conflicting facts and growing distrust51.) 

Another important problem, the General growth law certainly will be very useful for, 

and actually without which the problem cannot be completely solved in principal, is a 

much debated topic of safety and consequences of consuming genetically modified food 

by people and domesticated animals. We won't discuss the issue here, but even at the 

present stage the General growth law can provide principal insights for this problem, 

indicate the optimal directions and methods for its study and - to some extent - foresee 

the results of such studies. 

Next area of application, for which the new physical paradigm of Life would be 

extremely useful, is the terrestrial Life, like evaluating probabilities of its origin in 

different environments, on different time scales, possible development scenarios, etc, not 

mentioning the answering the main question - is terrestrial Life possible? - which is still 

unknown. The General growth law already can give a definitive answer - absolutely 'Yes'.  

It might seem embarrassing finding so many important characteristics and 

explanations from a single growth equation. However, this is how fundamental laws of 

nature always work. What is needed to compute the trajectories of a thrown stone or a 

planet? By and large, only the Newton's Second law of mechanics - represented by a 

simple equation with three linear terms, a = F/m (acceleration, force and mass). The 

general growth law is also a law of nature from the same category of fundamental laws, 

so that such "fertility" should not come as a surprise. The only difference is that the 

General growth law is somewhat more complicated and more difficult for understanding 

(otherwise, it probably would be discovered already). 

One more argument in favor of the General growth law and other similar possible 

physical mechanisms is that there are many biological phenomena, which originate at a 

higher than biomolecular level. Ref. 32 gives an example of how the cell size matters for 

the metabolic properties of multicellular organisms - the result, which cannot be derived 

from biomolecular mechanisms. The results on livers and liver transplants' growth in 
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dogs and humans, obtained by the General growth law, principally cannot be obtained on 

a biomolecular basis. 

Besides the presented proofs and considerations, there are lots of other intricate 

interconnections, facts and effects, common sense and philosophical considerations, 

which add to the validity of the General growth law, but which were impossible to 

discuss here. Ten years of work, done in spare time, preceded this article; about seven 

hundred thousand words, only in final versions of books and articles, were written; 

several hundred of final graphs and diagrams were calculated and plotted, all to describe 

the essence and numerous subtleties of the General growth law and its applications. It's 

difficult to convey such knowledge in a relatively short article. So, the emphasis was 

made on concrete results, on correspondence of obtained growth curves and metabolic 

properties to experimental data. Some critics said that such conformity is the result of 

fitting and manipulations by equation's parameters. Indeed, some models include 

approximate parameters - for instance, a diameter of fission yeast, for which only average 

values were estimated. However, such estimations are realistic. Previous works show that 

variations of such parameters within the estimated ranges of errors affect the shape of 

growth curves little21.  

Apart from the experimental data, the second stream of proofs relates to mathematics 

and rather philosophical criteria used for verification of scientific theories. One of the 

most powerful criteria of validity of general theories is that they should provide 

convergence to prior obtained more particular results and less general theories. Indeed, 

we obtained the generalized solution of the growth equation for a particular growth 

scenario, which includes a known logistic formula as a particular case of the growth 

equation Eq. (1), when it was applied to two geometric forms - a disk and a sphere. 

According to the theory of verification of scientific knowledge, this is a very strong 

evidence of validity of the General growth law. Furthermore, we found that the growth 

ratio for these forms is an exponential function of time, which is also the result important 

from the validation perspective - many natural processes, indeed, are described by 

exponential functions, like the attenuation of waves in absorbing media, transitional 

electric processes, etc. In this, of especial importance is the fact that the input data - the 

relative volume and the relative surface of a disk and a sphere - contain no exponential 

functions. The fact that this result is not an abstract mathematical interplay, but the 

property of real physical and biological processes, the property of a real world, makes 

the results even more valuable. Their fundamental meaning is yet to be understood, but it 

is already clear that some important feature of the real world was discovered, related to 

its fundamental geometrical properties. 

It takes time and efforts to understand the value of the General growth law, which 

proves that biological phenomena, indeed, are driven by physical laws guiding 

biomolecular machinery in a feedback manner. The idea of the General growth law is 

against only the unilateral understanding of life origin and development as an entirely 

biomolecular affair, as the only possible cause. However, it does not dismiss biochemical 

mechanisms, but includes them into a new physical paradigm of Life as an inherent 
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component. In this regards, the physical paradigm of Life is a qualitatively more general 

concept, or theory, which includes the previous biochemical paradigm. According to the 

theory of verification of scientific knowledge, this fact, the inclusion of the older theory 

into a new one, is of great importance that provides strong support in favor of validity of 

the General growth law and of the new theory - the physical paradigm of Life.  

The General growth law, in fact, makes understanding of life mechanisms much 

simpler; it removes the aura of mystery surrounding the notion of preprogrammed genetic 

codes - never discovered, thus reducing the entire phenomena to transparent workings of 

physical laws. On phenomena of such scales as Life, Nature works on simpler, more 

elegant, and much more reliable and optimal principles than relying on particular 

molecular events. By and large, biochemical mechanisms are executors - very active, 

persistent, sending feedbacks, with lots of possibilities and workarounds, tireless and 

absolutely indispensable foundation of life. But not the only and, by and large, not the 

leading ones, however heretically this statement could sound now. 

At some point, the presently fragmented biochemical mechanisms have to be united 

on a more general basis (or bases). The General growth law and the new physical 

paradigm of Life, proposed here, include and unify these mechanisms, as well as all other 

known facts and knowledge, at all scale levels. In short, this physical paradigm states: 

Life is governed by physical laws of nature acting at different scale levels, from 

molecules to cells to organs and systems to whole organisms. The physical law - the 

General growth law, acting at cellular level and above, imposes macro-constraints, tied 

to geometry of organisms, defining the relative amount of produced biomass (relative to 

the total nutrient influx). Biomolecular mechanisms comply with the imposed constraints 

at each moment of growth and reproduction. The major constrain, the relative amount of 

produced biomass, defines composition of biochemical reactions, while the biomass 

increase, in a feedback manner, causes the change of the constraint. This change, in turn, 

alters the composition of biochemical reactions and secures their irreversibility. This 

way, organisms are forced to autonomously and automatically proceed through different 

phases of their life cycles. 
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