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Abstract

It is shown how the algebra J3[C⊗O]⊗Cl(4,C) based on the tensor
product of the complex Exceptional Jordan J3[C⊗O], and the complex
Clifford algebra Cl(4,C), can describe all of the spinorial degrees of free-
dom of three generations of fermions in four-spacetime dimensions, and, in
addition, to include the degrees of freedom of three sets of pairs of complex
scalar Higgs-doublets {Hi

L,H
i
R}; i = 1, 2, 3, and their conjugates. A close

inspection of the fermion structure of each generation reveals that it fits
naturally with the 16 complex-dimensional representation of the internal
left/right symmetric gauge group GLR = SU(3)C × SU(2)L × SU(2)R ×
U(1). It is reviewed how the latter group emerges from the intersection of
SO(10) and SU(3)×SU(3)×SU(3) in E6. In the concluding remarks we
briefly discuss the role that the extra Higgs fields may have as dark matter
candidates; the construction of Chern-Simons-like matrix cubic actions;
hexaquarks and Clifford bundles over the complex-octonionic projective
plane (C⊗O)P2 whose isometry group is E6.

Keywords: Clifford algebras; Jordan algebras; Division Algebras; Extensions of
the Standard Model; Dark matter; Higgs fields.
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1 Introduction

Dixon [1] many years ago proposed an algebraic design of the fundamental
particles in Physics showing the key role that the composition algebra (the
Dixon algebra) T = R ⊗ C ⊗ H ⊗ O had in the architecture of the Standard
Model. More recently, it has been shown by Furey how the C⊗O algebra
acting on itself allows to find the Standard Model particle representations [2].
A geometric approach to the physics of the standard model and gravity based
on Noncommutative Geometry can be found in [14]. Other original work on the
role of Octonions, Exceptional Jordan algebras in Physics can be found in [4],
[5], [9], [12], [18], [23], [?], [19].

A geometric basis for the Standard Model gauge group based on the real
Cl(7, R) algebra was found earlier on by [15]. Since dim Cl(7, R) = 128 coincides
with the real dimension of the complex Cl(6, C) algebra, it was shown later on
by [2], [16] that the eight minimal left ideals of the algebra of 8 × 8 complex
matrices C(8) ∼= Cl(6, C) contains the 64 elementary fermion states of one
generation of fixed spin, including their antiparticles.

In a recent paper [13] the basis states of the minimal left ideals of the complex
Clifford algebra Cl(8, C) were shown to contain three generations of Standard
Model fermion states, with full Lorentzian, right and left chiral, weak isospin,
spin, and electro-color degrees of freedom. The left adjoint action algebra of
Cl(8, C) ∼= C(16) on its minimal left ideals contains the Dirac algebra, weak
isopin and spin transformations. The right adjoint action algebra on the other
hand encodes the electro-color U(3) symmetries.

These results extend earlier work in the literature that shows that the eight
minimal left ideals of Cl(6, C) ∼= C(8) contain the quark and lepton states of one
generation of fixed spin. The key behind the construction of [13] was the triality
automorphism of the Cl(8) algebra which allows the extension from a single
generation of fermions to exactly three generations. This triality automorphism
of Spin(8) permutes the two spinor and fundamental vector representations, all
three of which are eight-dimensional.

The authors [13] displayed in detail how the sixteen minimal left ideals
(spinors) of the 28 complex-dimensional Clifford algebra Cl(8, C) can be rep-
resented by sixteen column vectors in the isomorphic matrix algebra C(16) of
16× 16 matrices over the complex numbers C. They showed how the action of
left and right matrix multiplication differs. Left multiplication of a minimal left
ideal column-matrix (a square matrix with one non-zero column) interchanges
rows (along the column), and hence produces transformations within the min-
imal left ideals themselves. In contrast, right multiplication of a minimal left
ideal by an arbitrary matrix in C(16) interchanges columns, and hence trans-
forms between different minimal left ideals.

The Cl(8, C) spinor index A in ΨA, 1, 2, · · · , 16 can be decomposed into a
Cl(4, C)⊗Cl(2, C)⊗Cl(2, C) form as follows Ψα,a,b with α = 1, 2, 3, 4; a = 1, 2;
b = 1, 2. The spinorial index α = 1, 2, 3, 4 is associated to the complex Dirac
algebra Cl(4, C). The index a = 1, 2 belonging to the first Cl(2, C) algebra
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corresponds to the weak isospin SU(2); and the index b = 1, 2 belonging to
the second Cl(2, C) algebra labels a family-doublet. There are 3 pairings of

family-doublets among the 3 generations given by the electron/muon Ψ
(e,µ)
α,a ,

electron/tau Ψ
(e,τ)
α,a , and muon/tau Ψ

(µ,τ)
α,a family doublets, respectively. Under

the triality automorphism of the Cl(8, C) algebra, these 3 family doublets are
rotated into each other in a cyclical way. For further details we refer to [13].

Having outlined some key results involving Clifford algebras let us turn now
to the role of Jordan algebras. The authors [17] have shown that the Excep-
tional Jordan algebra J3[O] of Hermitian 3×3 octonionic matrices can describe
the internal space of the fundamental fermions of the Standard Model with 3
generations. An additional conjugate Jordan algebra J̄3[O] must be introduced
in order to describe their antiparticles. The pair of Jordan algebras, J3[O] and
its conjugate J̄3[O], globally behave like the 3, 3̄ dimensional representations of
the complex su(3) algebra.

The Jordan algebra J2[O] of Hermitian 2× 2 octonionic matrices is relevant
for the description of the internal space of the fundamental fermions of one gen-
eration. Once again, triality was instrumental to incorporate the internal space
of the 3 generations which avoids the introduction of new fundamental fermions
and where there is no problem with respect to the electroweak symmetry [17].

The 3 subalgebras Ji, i = 1, 2, 3 of J3[O] isomorphic to J2[O] were asso-
ciated to the 3 complete generations of fundamental fermions. J1 consists of
the matrices of J3[O] having vanishing elements in the first row and the first
column. J2 consists of the matrices having vanishing elements in the second
row and the second column while J3 consists of the matrices having vanishing
elements in the third row and the third column.
J1 is associated to the first generation containing the leptons e and νe. J2

is associated to the second generation containing the leptons µ and νµ, and J3
is associated to the third generation containing the leptons τ and ντ .

The automorphism groups of J3[O] and J2[O] are F4 and Spin(9) respec-
tively. The intersection in F4 of Spin(9) with SU(3) × SU(3)/Z3 is precisely
the Standard Model group GSM = SU(3) × SU(2) × U(1)/Z6 [17]. The first
SU(3) factor is common for all J1,J2,J3 and is the color group SU(3)c. The
second SU(3) factor projects for each of the 3 generations to its electroweak
symmetry U(2). It is why its natural interpretation is that of the extended elec-
troweak symmetry of the Standard Model with 3 generations and was denoted
by SU(3)ew in [17].

In this work we will combine Clifford algebras with Exceptional Jordan al-
gebras and arrive at some interesting results. The main one is that it provides
an algebraic-geometric framework where to accommodate three fermion gener-
ations, Higgs fields, and the group SU(3)×SU(2)L×SU(2)R ×U(1). In doing
so, we extend our earlier work [3] based on Jordan-Clifford algebras and Excep-
tional Periodicity [25], [26], [27]. With this brief introduction we turn next to
our main construction.
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2 The J3[C⊗O]⊗Cl(4,C) Algebra, Three Fermion
Generations and Higgs Fields

We show next that the model described in this letter can account for all the
degrees of freedom of three generations of fermions in addition to the Standard
Model gauge symmetries. Our novel approach in this work is based on the
algebra J3[C⊗O] ⊗ Cl(4,C), where we include explicitly the Dirac spinorial
degrees of freedom of the fermions, and their antiparticles in 4D. Let us denote
the 3× 3 block matrix by J3,ij

J3,ij ≡

 λA1 ΓAij ΦA1 ΓAij Φ̄A2 ΓAij
Φ̄A1 ΓAij λA2 ΓAij ΦA3 ΓAij
ΦA2 ΓAij Φ̄A3 ΓAij λA3 ΓAij

 . A = 1, 2, · · · , 16; i, j = 1, 2, 3, 4

(1)
where each block is comprised of 4×4 matrices belonging to the Cl(4,C) algebra.
The components ΦA1 ,Φ

A
2 ,Φ

A
3 are complex-octonionic-valued, and λA1 , λ

A
2 , λ

A
3 are

complex-valued. A summation over the A index from 1 to 16 is implied in (1).
The bar operation in the entries of the matrix in eq-(1) denotes octonionic

conjugation ea → −ea, a = 1, 2, · · · , 7 associated with the 7 imaginary units
of the octonions. We should emphasize that there is no complex conjugation
appearing in the entries of (1). For example, there is no complex conjugation in
the 16 Gamma matrices ΓAij associated with the 16-dim Clifford algebra Cl(4,C),

nor in the diagonal coefficients λA1 , λ
A
2 , λ

A
3 .

We shall show that the three generations of fermions can be assigned to the
complex-octonionic entries of J3,ij . In order to incorporate their antiparticles
one requires to include the conjugate J̄3,ij matrix which is obtained by taking
the ordinary complex conjugate of the entries of J3,ij in eq-(1). In order to
establish this correspondence one needs to start with the following spinors (one
for each generation) with complex-valued entries such that

(ξ ξT )ij =


ξ1
ξ2
ξ3
ξ4

 (
ξ1 ξ2 ξ3 ξ4

)
↔

16∑
A=1

λA ΓAij (2)

and the spinors (one for each generation) with complex-octonionic entries such
that

(Ψ ΨT )ij =


Ψ1

Ψ2

Ψ3

Ψ4

 (
Ψ1 Ψ2 Ψ3 Ψ4

)
↔

16∑
A=1

ΦA ΓAij (3)

The 4×4 matrix M obtained in the left hand side of eq-(2) (after performing
the product of a column and a row) is of rank-one (its determinant is zero). By
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following the elementary row operations of multiplying the first row of M by
− ξ2ξ1 and adding it to the second row; multiplying the first row by − ξ3ξ1 and

adding it to the third row; and multiplying the first row by − ξ4ξ1 and adding

it to the fourth row, one arrives at a new matrix M′ whose second, third and
fourth rows are zero, and leaving a non-vanishing first row (a rank-one matrix)
whose entries are, respectively,

ξ1 ξ1, ξ1 ξ2, ξ1 ξ3, ξ1 ξ4 (4)

This procedure can also be applied to the four columns instead leading to three
zero columns and a non-vanishing first column; i.e. a rank-one matrix.

By equating the rank-one 4×4 matrix M′ to the 4×4 matrix
∑16
A=1 λ

A ΓAij ,
there will be three rows of zero entries leading to a net number of 3×4 = 12 null
linear conditions imposed on the 16 complex variables λA = {λ1, λ2, · · · , λ16}.
Consequently, out of the 16 complex scalar variables λA, only 16 − 12 = 4 of
them are truly linearly independent. It is precisely these 4 linearly independent
complex scalar variables which will correspond to the 4 complex Higgs scalars
inside the two complex scalar Higgs doublets HL,HR and belonging to an ap-
pealing version of the left/right minimal symmetric extension of the standard
model [6] proposed by [7].

As strongly emphasized by [11] this model proposed by [7] is not only ex-
perimentally viable, but can simultaneously: (i) explain the vanishing of the
Higgs coupling at 1010 GeV; (ii) provide an elegant solution to the strong-CP
problem; (iii) give precise gauge-coupling unification; and (iv) account for dark
matter and the cosmological matter/anti-matter asymmetry.

In the case of the matrix obtained in the left hand side of eq-(3), and whose
entries are products of complex octonions, the above procedure to obtain a rank-
one matrix by multiplying the first row on the left by (ΨiΨ

−1
1 ) with i = 2, 3, 4

will no longer work. Firstly, there is no natural way to define a determinant for
(square) quaternionic, octonionic matrices so that the values of the determinant
are quaternions, octonions. Secondly, due to the noncommutativity of octonions
one has

Ψi Ψj 6= Ψj Ψi, Ψi Ψj 6= −Ψj Ψi, i 6= j (5)

Octonions do not commute (unless their imaginary parts are all zero); nor anti-
commute (unless their real parts are all zero). And due to the nonassociativity
of octonions one has

(ΨiΨ
−1
1 ) (Ψ1Ψj) 6= Ψi (Ψ−11 Ψ1) Ψj = Ψi Ψj , i 6= j (6)

The correct procedure requires now finding the expressions Ai, i = 2, 3, 4
such that

Ai (Ψ1 Ψj) = Ψi Ψj , i = 2, 3, 4; j = 1, 2, 3, 4 (7)

By invoking the key Moufang identity (xy)y−1 = x(yy−1) = x, one finds that
the solution for Ai obeying eq-(7) is given by
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Ai = (Ψi Ψj) (Ψ1 Ψj)
−1 = (Ψi Ψj) (Ψ−1j Ψ−11 ) 6= Ψi (Ψj Ψ−1j ) Ψ−11 = Ψi Ψ−11

(8)
There is no sum over j in eq-(8). Thus after multiplying the first row on the
left by Ai given by the solution (8), and by subtracting the second, third and
fourth rows, respectively, one can perform the required row operations leading
to three zero rows and a non-vanishing first row whose entries are

Ψ1 Ψ1, Ψ1 Ψ2, Ψ1 Ψ3, Ψ1 Ψ4 (9)

In this fashion one obtains a rank-one 4× 4 matrix. By equating it to the 4× 4
matrix

∑16
A=1 ΦA ΓAij in the right hand side of (3), one will have again three

rows of zeros leading to 3 × 4 = 12 null linear conditions imposed on the 16
complex octonionic variables ΦA = {Φ1,Φ2, · · · ,Φ16}. Consequently, out of the
16 complex-octonionic variables ΦA, only 16− 12 = 4 of them are truly linearly
independent, and such that there is a match with the number of 4 complex
octonionic spinor entries Ψi, i = 1, 2, 3, 4 in four-dimensions associated with a
complex-octonionic spinor Ψ.

To sum up, setting aside the trivial zero elements of the complex octonions,
and by following the procedure described above to obtain a rank-one matrix
with a non-vanishing first row, the above relations establish a one-to-one corre-
spondence among the entries of J3,αβ in eq-(1) with the entries of the spinors
in eqs-(2-3). These relations are just a manifestation of the fact that spinors
have a mixed Clifford grade : spinors are made of a Clifford scalar, vectors,
bivectors, trivectors, · · ·.

The linear independence of the 16 gamma matrices ΓA ensures that the 16
components of λA and ΦA are given by independent linear combinations of the
16 fermionic bilinears ξiξj and ΨiΨj , respectively, with i, j = 1, 2, 3, 4. And vice
versa. If ξi = 0, and Ψi = 0, for all i = 1, 2, 3, 4, ⇒ λA = 0 and ΦA = 0, for all
A = 1, 2, · · · , 16. And vice versa, if λA = 0 and ΦA = 0 for all A ⇒ ξi = 0 and
Ψi = 0 for all values of i.

Each spinor Ψj,α, where j = 1, 2, 3 labels the three generations, has 8×2×4 =
64 real components that match the number of spinorial degrees of freedom
of each fermion generation in 4D. Their antiparticles have also 64 spinorial
degrees of freedom bringing the total to 128. Namely, the 16 fermions of the
first generation are νe, e, u

r, ub, ug, dr, db, dg, plus their antiparticles, given by
the electron neutrino, electron, up red/blue/green quark, down red/blue/green

quark, and their antiparticles. The 4 complex entries of the Dirac spinors Ψ
(f)
α

in 4D corresponding to each fermion f = 1, 2, · · · , 8 leads to 8× 4× 2 = 64 real
degrees of freedom. By including their antiparticles yields a total of 128 real
spinorial degrees of freedom for each generation in 4D.

Given the algebra C⊗O ∼= O⊕O one then has two copies of O. The
Hilbert space of the states of the leptons and quarks with three colors red, blue
and green is C⊕C3 [10]. From the correspondence described in [17] C⊕C3 ↔ O
we then have that one copy of O corresponds to the electron neutrino νe and the
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up quarks with three colors ur, ub, ug. And the second copy of O corresponds to
the electron e and the down quarks with three colors dr, db, dg. This will allow us
to find the strict correspondence among the complex-octonionic-valued spinors
Ψ and the Standard Model fermions. In the Clifford algebra based model by
[28] octonions are also used to describe the fermion generations.

Denoting the right/left handed components of the Dirac spinors by R,L,
and spin up/down by 1, 2 =↑, ↓, the one-to-one correspondence among the 8
fermions (particles) of the first generation with the complex-octonionic entries
Ψ of (3) is given by

Ψ(1) ↔
(
νe,R1 urR1 ubR1 ugR1

eR1 drR1 dbR1 dgR1

)
; Ψ(2) ↔

(
νe,R2 urR2 ubR2 ugR2

eR2 drR2 dbR2 dgR2

)
(10)

Ψ(3) ↔
(
νe,L1 urL1 ubL1 ugL1
eL1 drL1 dbL1 dgL1

)
; Ψ(4) ↔

(
νe,L2 urL2 ubL2 ugL2
eL2 drL2 dbL2 dgL2

)
(11)

The correspondence with the antiparticles of the first generation requires
swapping the up ↔ down entries of the SU(2) doublets, the Left ↔ Right
chirality of the spinors [10], and taking the complex conjugation Ψ↔ Ψ∗ :

Ψ∗(1) ↔
(

e+L1 d̄rL1 d̄bL1 d̄gL1
ν̄e,L1 ūrL1 ūbL1 ūgL1

)
; Ψ∗(2) ↔

(
e+L2 d̄rL2 d̄bL2 d̄gL2
ν̄e,L2 ūrL2 ūbL2 ūgL2

)
(12)

Ψ∗(3) ↔
(

e+R1 d̄rR1 d̄bR1 d̄gR1

ν̄e,R1 ūrR1 ūbR1 ūgR1

)
; Ψ

∗(4) ↔
(

e+R2 d̄rR2 d̄bR2 d̄gR2

ν̄e,R2 ūrR2 ūbR2 ūgR2

)
(13)

Since Ψ(1), · · ·, and Ψ∗(1), · · · are complex-octonionic valued, they have 16
real components each, and which match the number of 8× 2 = 16 real compo-
nents associated with each single one of the 8 sets of 8 complex-valued entries
appearing in the right-hand side of eqs-(10-13).

Repeating this assignment with the other complex-octonionic entries of J3,ij ,
and J̄3,ij leads to the correspondence with the 8 fermions, and their antiparticles,
of the second and third generation. Therefore, the basis of quantum states
for the fermions and their antiparticles of the Standard Model, including all
their spinorial degrees of freedom, can be described in terms of the off-diagonal
complex-octonionic entries of the Jordan pair of (J3,ij , J̄3,ij) block matrices.

Furthermore, we also can incorporate the two complex scalar Higgs dou-
blets HL,HR, stemming from the diagonal elements of the Jordan algebra,
as explained earlier. Since there are 3 diagonal elements we will have three
sets of pairs of complex scalar Higgs doublets {Hi

L,H
i
R}, and their conjugates

{H̄i
R, H̄

i
L}, with i = 1, 2, 3, corresponding to each fermion family. The most
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salient features of this construction is that it extends the work of [17] by includ-
ing the antiparticles, the explicit spinorial spacetime degrees of freedom of the
fermions, and the complex Higgs scalars.

This Jordan-Clifford algebraic approach can be contrasted with the Cl(6,C)
algebraic assignment of the fermions of one generation described by [1], [2], [16],
and which was succinctly summarized by [13] via the left and right action of

Cl(6,C) on the primitive idempotent p ≡ γ1γ2γ3γ†3γ
†
2γ
†
1, p2 = p :

Cl(6, C) → p ← Cl(6, C) (14)

The left action of Cl(6, C) on p generates the 8 states of the first ideal P1

and which can be assembled into the 8 entries of the first column. While the
right action on the first column generates the remaining 7 ideals P2,P3, · · ·P8.
The full process will lead to 8 × 8 = 64 entries associated with the 64 states
represented by the 64 complex entries in eqs-(10-13). The latter 64 complex
valued entries amount to the 128 real spinorial degrees of freedom of one fermion
generation, and which match the dimR Cl(6, C) = 2× 26 = 128. More recently,
the authors [13] extended this procedure to the Cl(8,C) case to account for the
three fermion generations via triality.

We continue this discussion by focusing on the Jordan products. The com-
mutative but non-associative Jordan product X ◦ Y of two Jordan matrices is
given by the following anticommutator

X ◦ Y ≡ 1

2
(X Y + Y X) (15)

and obeying the Jordan identity (X ◦ Y ) ◦X2 = X ◦ (Y ◦X2).
If one were to define the Jordan product of matrices given by the tensor

products XA ⊗ ΓA and Y B ⊗ ΓB as

X ◦Y =
1

2
{X, Y} =

1

2
{ XA ⊗ ΓA, Y

B ⊗ ΓB } =

1

4
{XA, Y B} ⊗ {ΓA, ΓB} +

1

4
[XA, Y B ]⊗ [ΓA, ΓB ] =

Z = ZC ⊗ ΓC (16)

this would lead to a 3× 3 matrix

ZC =
1

4
d C
AB {XA, Y B} +

1

4
f C
AB [XA, Y B ] (17)

which is no longer Hermitian because when d C
AB , f

C
AB are the real-valued struc-

ture constants of the Clifford algebra

{ΓA,ΓB} = d C
AB ΓC , [ΓA,ΓB ] = f C

AB ΓC (18)

the 3 × 3 matrix ZC in eq-(12) will be comprised of a Hermitian plus an anti-
Hermitian matrix, respectively, when XA, Y B (for A,B = 1, 2, · · · , 16) are 3× 3
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Hermitian Jordan matrices. The anti-commutator of two Hermitian matrices is
Hermitian, while the commutator is anti-Hermitian. Therefore, the product in
eq-(10) does not lead to a matrix of the form JC3 ⊗ΓC because the 3×3 matrix ZC

is not Hermitian. Furthermore, a careful inspection reveals also that the product
(16) is not consistent with the Jordan identity (X ◦Y) ◦X2 = X ◦ (Y ◦X2).

For this reason one must modify the product (16) so that the 3× 3 matrix
ZC is Hermitian. Given X = XA ⊗ΓA, and Y = Y A ⊗ΓA described by eq-(1),
the modified Jordan product • is now defined as

X •Y ≡ 1

4
d C
AB {XA, Y B} ⊗ ΓC = Z = ZC ⊗ ΓC (19)

where XA, Y B and ZC (for A,B,C = 1, 2, · · · , 16) are 3× 3 Hermitian Jordan
matrices. Despite that one has attained closure in the product X•Y = Z, with
X,Y,Z ∈ JA3 ⊗ΓA, one should point out that this modified product • does not
obey the Jordan identity

(X •Y) •X2 6= X • (Y •X2) (20)

Exceptional Jordan F4, E6 (Chern-Simons-like) matrix models involving sim-
ilar tensor products of Jordan matrices J3[O], J3[C⊗O] with u(N)-valued ma-
trix generators were constructed by [20], [21]. F4 and E6 are the automorphism
groups of the Jordan algebras J3[O], J3[C⊗O], respectively. The large N limit
of these Exceptional Jordan matrix models and its relation to a nonperturbative
bosonic formulation of M -theory in D = 27 was analysed by [22].

Following these findings we shall repeat their procedure and construct an
action by replacing the u(N) algebra with the Clifford Cl(4, C) one. Given the
structure constants dABC , fABC of the Clifford algebra, one candidate action is
given by the Jordan trace of the cubic form

S1 = (XA, XB , XC) dABC = tr3(XA ◦ (XB ×F XC)) dABC (21)

involving the Jordan product ◦, and the symmetric Freudenthal product

Y ×F Z = Y ◦Z − 1

2
tr3(Y )Z − 1

2
tr3(Z)Y +

1

2
tr3(Y ) tr3(Z) − 1

2
tr3(Y ◦Z) 1

(22)
Another candidate action is

S2 = (ρ2(X [A), ρ(XB), XC]) fABC (23)

where ρ, ρ3 = 1 is the cycle mapping based on the triality symmetry of SO(8)
that takes the index I → I + 1 modulo 3. This cycle mapping is essential
otherwise the action (18) would be identically zero due to the fact that the
cubic form is symmetric in its entries while fABC is antisymmetric. A more
general action is given by the sum S1 + S2 of eqs-(21,23).
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Ohwashi [21] has shown that the cubic action (23) (when the structure con-
stants fABC correspond to the u(N) matrix algebra) is invariant under global
rigid E6 transformations which are encoded as automorphisms of the J3[C⊗O]
algebra under the transformations J → αJ, where α is a 3 × 3 matrix whose
entries are numerical constants. The action also posseses the u(N) gauge sym-
metry resulting from fABC = 2TrN (TA[TB,TC]); the cycle symmetry with
respect to the fields, and the matrix translation symmetry with respect to the
diagonal part of the fields. The explicit components of the complex-valued ac-
tion (18) can be found in [21]. The real-valued Smolin action was based on
the trilinear form tr3(X ◦ (Y ◦Z) instead of the cubic form associated with the
Freudenthal product tr3(X ◦ (Y × Z).

It remains to explore further the physical role of the algebra J3[C⊗O] ⊗
Cl(4,C) beyond the mere counting of degrees of freedom associated to a vec-
tor space. Having described how the degrees of freedom of the three fermion
generations, with the inclusion of three pairs of complex scalar Higgs doublets,
plus their conjugates, can be incorporated within the entries of the tensor prod-
uct of the algebras J3[C⊗O] ⊗ Cl(4,C), in the next section we shall explain
how the symmetry groups SO(10);SU(3)×SU(3)×SU(3);SU(3)C×SU(2)L×
SU(2)R ×U(1) emerge from the internal symmetries of the Jordan algebra and
which also account for the standard model gauge symmetries.

3 Emergence of SU(3)× SU(2)L × SU(2)R × U(1)

A close inspection of the fermion structure displayed in eqs-(10-13) reveals that
it fits naturally with the 16 complex-dimensional representation of the internal
left/right symmetric gauge group GLR = SU(3)C × SU(2)L × SU(2)R × U(1)
[6]. The left-handed/right-handed leptons can be assigned to the {1,2,1,−1

2},
{1,1,2,−1

2} representations, respectively. The left-handed/right-handed quarks
can be assigned to the {3,2,1, 16}, {3,1,2,

1
6} representations, respectively. The

assignment of their corresponding anti-particles is obtained by flipping Left for
Right, 3 for 3̄, and changing the sign of the U(1) charges. The latter U(1) charge
(not to be confused with the electromagnetic charge) is defined by B−L

2 , where
B is the baryon number (quarks have 1

3 , anti-quarks have − 1
3 ), and L is the lep-

ton number (leptons have 1, anti-leptons have −1). In addition, there are 3 sets
of pairs (one set for each family) of complex Higgs-doublets Hi

L,H
i
R; i = 1, 2, 3,

and their conjugates.
Next we shall review [5] the geometrical background showing how SU(3)×

SU(2)×SU(2)×U(1) is the intersection of SO(10) with SU(3)×SU(3)×SU(3)
in E6 . The automorphism group of the complex exceptional Jordan algebra
J3(C⊗O) that preserves the inner product < X,Y >= (X∗,Y), and the cubic
form (16) is E6. There are three maximal-rank-6 subgroups of E6 given by

SO(10)× U(1), SU(3)× SU(3)× SU(3), SU(2)× SU(6) (24)
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The significance of the first two subgroups (24) goes as follows. Firstly, as
shown by Yokota [5], Spin(10) is the subgroup of E6 that preserves a rank-one
idempotent of the Jordan algebra, and which can be taken to be

P =

 0 0 0
0 0 0
0 0 1

 (25)

The rank-one idempotents of the Jordan algebra J3(C⊗O) correspond to the
points of the complex-octonionic projective plane (C⊗O)P2 such that the
isometries of (C⊗O)P2 correspond to the automorphisms of the Jordan alge-
bra J3(C ⊗ O). Furhermore, the complex-octonionic projective plane can be
represented as the coset space (C⊗O)P2 = G

H = E6

(Spin(10)×U(1))/Z4
where E6

is the symmetry group G, and H = (Spin(10)×U(1))/Z4 is the subgroup that
stabilizes a point (fixes a rank-one idempotent up to a phase).

Secondly, the subgroup of E6 that preserves the embedding of C into O =
C ⊕C3 is SU(3) × SU(3) × SU(3) [5]. Such embedding permits the following
decomposition of the complex exceptional Jordan algebra J3(C⊗O) = JC3 (C)⊕
MC

3 (C), and given in terms of the direct sum of the complexification of the
Jordan algebra J3(C) of complex hermitian 3 × 3 matrices h3(C), and the
complexification of the 3× 3 matrix algebra M3(C) over the complex numbers.

The embedding of the complex algebra into the octonion-algebra C ⊂ O =
C⊕C3 can be chosen such that C = xo+x4e4 is based on the e4 imaginary unit
of the seven imaginary units of the octonions, and the octonion x = xoeo+xaea
can be rewritten as

x = (xo + x4e4) + e1 (x1 + x5e4) + e2 (x2 + x6e4) + e3 (x3 + x7e4) (26)

The complexification of the octonion algebra, and the exceptional Jordan alge-
bra, is based on the extra imaginary unit i =

√
−1. One may then construct

the idempotents [5]

ι =
1

2
(1 + ie4), ῑ =

1

2
(1− ie4), ι2 = ι, ῑ2 = ῑ, ι+ ῑ = 1, ι ῑ = 0 (27)

which allows to decompose a 3 × 3 matrix V = VRι + VLῑ into a “right” and
“left” component. The bar conjugation V̄ denotes complex conjugation i→ −i.
Whereas V † denotes the matrix transpose followed by e4 → −e4 resulting from
the octonion conjugation of the 7 imaginary octonion units ea → −ea, a =
1, 2, · · · , 7. Thus, given V = VRι+ VLῑ one has V̄ † = V †Rι+ V †L ῑ.

Consequently, given X = y + m ∈ h3(C ⊗ O) = hC3 (C) ⊕MC
3 (C) with

y ∈ hC3 (C), and m ∈MC
3 (C), the automorphisms that preserve such embedding

are of the form [5]

y′ = (VR ι+ VL ῑ) y (V †R ι+ V †L ῑ), m′ = U m (V †R ι+ V †L ῑ) (28)
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and are implemented by the three 3×3 matrices U, VR, VL corresponding to the
group SU(3)× SU(3)R × SU(3)L.

The author [11] has recently pointed out that the automorphisms that simul-
taneously preserve the embedding of C into O, and also preserve the idempotent
P (25) are of the form indicated by eq-(28) with the provision that VR, VL have
the block-diagonal form

VR =

(
ϕ vR 0

0 ϕ−2

)
, VL =

(
ϕ vL 0

0 ϕ−2

)
(29)

with vR, vL ∈ SU(2) and ϕ ∈ U(1) such that the determinant of VR, VL is one.
Thus an element {U, vL, vR, ϕ} belonging to SU(3)× SU(2)L × SU(2)R ×U(1)
determines a transformation in the intersection of SO(10) with SU(3)×SU(3)×
SU(3) in E6. Furthermore, because these transformations are unaffected by
the replacements [11] {U, vL, vR, ϕ} → {U,−vL,−vR,−ϕ}, or the replacements
{U, vL, vR, ϕ} → {ω U, vL, vR, ω ϕ}, and {U, vL, vR, ϕ} → {ω2 U, vL, vR, ω

2 ϕ},
with ω being the cube-root of unity ω = − 1

2 +
√
3
2 e4, the actual intersection

is the left-right symmetric gauge group given by the minimal extension of the
standard model group [6]

[SU(3)× SU(2)L × SU(2)R × U(1)]/Z6 (30)

The intersection of SO(10) with SU(3) × SU(3) × SU(3) in E6 given by
SU(3)×SU(2)×SU(2)×U(1) can also be inferred from the branching rules of
SO(10) [8]

SO(10) ⊃ SU(4)× SU(2)× SU(2) ⊃ SU(3)× SU(2)× SU(2)× U(1) (31)

and

SU(3)× SU(3)× SU(3) ⊃ SU(3)× SU(2)× SU(2)× U(1)× U(1) (32)

From the last terms of eqs-(32) one can simply read-off the sought-after inter-
section of the two groups.

To sum up, we have seen how the first two subgroups of E6 in eq-(24)
play an important role in the exceptional complex Jordan algebra J3(C⊗O)
and their intersection leads to the GLR ≡ SU(3)C × SU(2)L × SU(2)R × U(1)
left/right symmetric group GLR. The Cl(4,C) algebra in the tensor product
J3(C⊗O)⊗Cl(4,C) represents an external four-dim spinorial spacetime sym-
metry compared to the internal space symmetry underlying the automorphisms
of the complex Jordan algebra J3(C⊗O).

It so happens that the 16 complex-dimension of the Cl(4,C) algebra equals
also the 16 complex dimension of the space (C⊗O)2, and which in turn, coin-
cides with the tangent space of (C⊗O)P2. As pointed out by [11] this tangent
space also appears in the Barton-Sudbery decomposition of the e6 Lie algebra
[9]
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e6 = u(1)⊕ so(8)⊕ (C⊗O)⊕ (C⊗O)2 =

u(1)⊕ so(10)⊕ (C⊗O)2 (33)

and which is consistent with the fact that the complex-octonionic projective
plane is the coset space (C⊗O)P2 = E6

(Spin(10)×U(1))/Z4
. Furthermore, the gen-

erators of the tangent space (C⊗O)2 transform as the 16 complex-dimensional
representation of Spin(10), which also matches the 16 complex-dimensional rep-
resentation of the group GLR involving the leptons, quarks, and their antipar-
ticles, as described at the beginning of this section.

The author [11] has argued that the Barton-Sudbery decomposition of the
e6 Lie algebra displayed in eq-(33) requires choosing one copy (C⊗O) (of the
three copies (C⊗O)3) to include inside so(10). Because these three copies
are permuted by the so(8) triality symmetry, the author [11] postulated that
the standard model fermions may inevitably arise in three triality-related ways
when constructing the complex-octonionic projective plane (C⊗O)P2 as the
coset space of E6. This argument should be contrasted with the emergence of
three fermion generations based on the triality symmetry of the Cl(8) algebra
given by [13].

Our construction of the three fermion generations is very different. From the
very start it uses the external four-dim spacetime algebra Cl(4,C) in the tensor
product J3(C⊗O) ⊗ Cl(4,C) leading explictly to three fermion generations
after invoking the construction displayed by eqs-(10-13). The triality symmetry
is just a cyclic symmetry, rotating the already-existing three fermion genera-
tions among each other, rather than generating three fermion generations by
choosing one copy (C⊗O) (out of the three copies (C⊗O)3) in three different
ways.

One should note that if the Cl(4,C) algebra were interpreted as an internal
symmetry, rather than a four-dim spinorial spacetime symmetry, due to the
fact that Cl(4,C) ' M(4,C), where M(4,C) is the 4 × 4 matrix algebra over
the complex numbers and it is also the complexification of u(4) (sl(4,C) is the
complexification of su(4)), then the Cl(4,C) algebra can be decomposed into
two copies of u(4) : Cl(4,C) ' u(4)⊕ u(4). And the latter u(4)⊕ u(4) algebra
is large enough to accomodate the Standard Model and Pati-Salam algebras,
respectively, su(3)⊕ su(2)⊕ u(1) and su(4)⊕ su(2)⊕ su(2) ⊃ su(3)⊕ su(2)⊕
su(2) ⊕ u(1). Once again, one recovers the algebra associated with the GLR
group.

Therefore, it is essential that the Cl(4,C) algebra is interpreted as an exter-
nal four-dim spacetime symmetry and that there is no mixing of external with
internal symmetries are required by the Coleman-Mandula theorem. However
it would be interesting to propose a reciprocal picture where Cl(4,C) is now
an internal space symmetry algebra, and the 27 complex-dimensional Jordan
algebra J3(C⊗O) corresponds to an external space symmetry algebra.

We finalize with a series of concluding remarks. In [22] we showed how the
decomposition 27 = 16 + 8 + 3 = 16 + 11 associated with a compactification of
the 27-dim bosonic M -theory down to 11-dim along an internal 16-dim space
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was connected to the large N → ∞ limit of a matrix model based on the
algebra J3(O) ⊗ SU(N). It incorporated the 3-dim world volume of a bosonic
membrane moving in 27-dimensions. One of the octonionic variables of the 3×3
matrix belonging to the J3(O) algebra represents the 8 transverse dimensions to
a membrane in 11-dimensions. The 3 diagonal entries represent the three-dim
world volume of the membrane. And the remaining two octonionic variables
represent the internal 16 dimensions.

Another possibility is to construct a Yang-Mills-like theory based on a Clif-
ford Cl(4,C)-bundle over (C⊗O)P2. The isometries of the external space
(C⊗O)P2 are given by E6, and the internal gauge symmetry is provided by
the Cl(4,C) algebra. Clifford algebras were instrumental in the Chamseddine-
Connes grand-unified model based on the spectral action in Noncommutative
geometry [14]

One may also ask what is the role of the other maximal-rank 6 subgroup of
E6 given by SU(2)×SU(6). Given the complexified octonions C⊗O ' O⊕O
one can have a 2 + 6 split of the form C2 ⊕ C6 representing 2 longitudinal
directions and 6 transverse directions in C8. The SU(2) acts naturally on C2

and SU(6) acts on C6. It is similar to having 2 light-cone and 6 transverse
directions in a complexified 8D-spacetime. Focusing now on the 8-fermion set
decomposition in eqs-(10-13) one can split the 8 fermions into 2 leptons νe, e,
and 6 quarks ur, ub, ug, dr, db, dg. The SU(2) symmetry acts on the the νe, e
and u, d doublets, whereas the SU(6) rotates the 6 quarks, which is reminiscent
of hexaquarks.

Finally, it remains to explore the matrix Chern-Simons-like cubic actions
displayed in eqs-(16,18). Smolin [20] has already provided important clues how
to provide explicit dynamics by introducing additional dimensions leading to
integrals involving derivatives of the variables inside the entries of the matrices
belonging to the Jordan algebra. All these questions and the possibility that the
extra pairs of complex scalar Higgs-doublets could be dark matter candidates
warrants further investigation.
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