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Abstract. We generalize several integrals studied by Glaisher. These ideas are then applied to obtain
an analog of an integral due to Ismail and Valent.

1. Introduction

The following integral
∞∫
0

sinx sinh(x/a)

cos(2x) + cosh (2x/a)

dx

x
=

tan−1 a

2
(1.1)

can be deduced as a particular case of entry 4.123.6 from [4]. The case a = 1 of this integral can be found
in an old paper by Glaisher [2]. More recently, symmetric cases were also stated in [3] and [8]. We are
going to generalize the above integral as

Theorem 1. Let n be an odd integer, then
1∫

0

sin
(
n sin−1 t

)
sinh

(
n sinh−1(t/a)

)
cos
(
2n sin−1 t

)
+ cosh

(
2n sinh−1(t/a)

) dt

t
√
1− t2

√
1 + t2/a2

=
tan−1 a

2
. (1.2)

When n is large, then the main contribution to the integral 1.2 comes from a small neighbourhood around
t = 0 and the integral reduces to 1.1.

Another integral by Glaisher reads (equation 24 in [2])
∞∫
0

cosx coshx

cos(2x) + cosh (2x)
x dx = 0. (1.3)

It would be generalized as

Theorem 2. Let n be an even integer, then
1∫

0

cos(n sin−1 t) cosh
(
n sinh−1 t

)
cos(2n sin−1 t) + cosh

(
2n sinh−1 t

) tdt√
1− t4

= 0. (1.4)

Unfortunately there doesn’t seem to be any nice parametric extensions similar to that in Theorem 1.
A particularly interesting integral is

∞∫
−∞

dt

cos(K
√
t) + cosh

(
K ′
√
t
) = 1,

studied by Ismail and Valent [5]. Here K = K(k) and K ′ = K(
√
1− k2) are elliptic integrals of the

first kind. Berndt [1] gives a generalization of this formula and as an intermediate result proves that (see
Corollary 3.3)

∞∫
0

x4s+1dx

cosx+ coshx
= (−1)sπ

4s+2

22s+1

∞∑
j=0

(−1)j (2j + 1)4s+1

cosh π(2j+1)
2n

(1.5)

for positive integer s. The next theorem gives an elementary analog of 1.5.

Date: January 19, 2024.
1



2

Theorem 3. Let s and n be a positive integers such that s <
⌊
n
2

⌋
. Then

1∫
0

t2s

cos(2n sin−1
√
t) + cosh

(
2n sinh−1

√
t
) dt√

1− t2

=
π(−1)s

22s+1n

n/2∑
j=1

(−1)j−1 tan π(2j−1)
2n

cosh
(
n sinh−1 tan π(2j−1)

2n

) (sin2 π(2j−1)2n

cos π(2j−1)2n

)2s

. (1.6)

Kuznetsov [6] proved that

1

2

∫
R

sin(
√
xu)√
x

· dx

cos(
√
xK) + cosh(

√
xK ′)

=
sn(u, k)dn(u, k)

cn(u, k)
. (1.7)

By differentiating with respect to u one can deduce

1

2

∫
R

cos(
√
xu)

cos(
√
xK) + cosh(

√
xK ′)

dx = k2cn2(u, k) +
1− k2

cn2(u, k)
. (1.8)

RHS of this formula has a Fourier series expansion which can be obtained using fundamental relations
and the expansion of sn2(u, k) given in [9]:

π2

4K2 cos2 πu
2K

+
π2

K2

∞∑
j=1

j(−1)j−1
({

tanh
πjK ′

2K

}(−1)j

− 1

)
· cos πju

K
. (1.9)

Stated in this way, symmetric case K = K ′ of Kuznetsov’s formula admits a finite analog of the form

Theorem 4. Let n and u be integers such that |u| < n. Then
1∫
−1

cos
(
2u sin−1

√
t
)

cos
(
2n sin−1

√
t
)
+ cosh

(
2n sinh−1

√
t
) dt√

1− t2

=
π

2n

2n∑
j=1

(−1)j−1 sin πj
2n√

1 + sin2 πj
2n

{
tanh

(
n sinh−1 sin

πj

2n

)}(−1)j

· cos πju
n

The finite analog of the term with sec2 πu
2K in 1.9 is accounted for by the sum valid for integer u

2n∑
j=1

(−1)j−1 sin πj
2n

cos
πju

n
=

sin π
2n

cos π
2n + cos πun

.

Proofs of these theorems are given in the subsequent sections 2, 3, 4, and 5. In section 6, some
discussions of the theorems are give. In particular, it will be explained that the form of the integral in
Theorem 3 is not arbitrary. Its form has been chosen to reflect a certain kind of symmetry satisfied also
by integrals in Theorems 1 and 2. Some open questions will be discussed in section 7.

2. Proof of Theorem 1

We break the proof into a series of lemmas.

Lemma 5. Let n be an odd integer. Then we have the partial fractions expansion

sin
(
n sin−1 t

)
sinh

(
n sinh−1(t/a)

)
cos
(
2n sin−1 t

)
+ cosh

(
2n sinh−1(t/a)

) 2n
t2

=

n∑
j=1

i(−1)j−1

sin π(2j−1)
2n

·

(
a cos π(2j−1)2n + i

)(
a+ i cos π(2j−1)2n

)
t2
(
a2 − 1 + 2ia cos π(2j−1)2n

)
− a2 sin2 π(2j−1)2n

. (2.1)

Proof. When n is an odd integer, the expressions

2n sin
(
n sin−1 t

)
sinh

(
n sinh−1(t/a)

)
/t2, cos

(
2n sin−1 t

)
+ cosh

(
2n sinh−1(t/a)

)
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are polynomials in t2 of degrees n− 1 and n, respectively:

sin
(
n sin−1 t

)
sinh

(
n sinh−1(t/a)

)
cos
(
2n sin−1 t

)
+ cosh

(
2n sinh−1(t/a)

) 2n
t2

=
Pn−1(t

2)

Qn(t2)
.

Let us find the n roots of the denominator polynomial Qn(x). Qn(x) can be written as

Qn(x) = cos
(
n sin−1

√
x+ in sinh−1(

√
x/a)

)
cos
(
n sin−1

√
x− in sinh−1(

√
x/a)

)
,

and thus its roots can be found from the equations

sin−1
√
x± i sinh−1(

√
x/a) =

π(2j − 1)

2n
, j = 1, 2, ..., n,

or equivalently from the equations
√
x

√
1 +

x

a2
± i
√
x

a

√
1− x = sin

π(2j − 1)

2n
, j = 1, 2, ..., n,

One can get rid of the radicals to come to a quadratic equation with respect to x:

x2
(
(1− a2)2 + 4a2 cos2

π(2j − 1)

2n

)
+ 2xa2(1− a2) sin2 π(2j − 1)

2n
+ sin4

π(2j − 1)

2n
= 0, j = 1, 2, ..., n.

One can easily deduce from this that the n roots of the denominator polynomial are

xj =

(
a2 − 1 + 2ia cos

π(2j − 1)

2n

)−1
a2 sin2

π(2j − 1)

2n
, j = 1, 2, ..., n. (2.2)

Now we can find the partial fractions expansion

Pn−1(t
2)

Qn(t2)
=

n∑
j=1

Pn−1(xj)

Q ′n(xj)

1

t2 − xj
. (2.3)

A simple calculation shows that

Q
′
n(xj)

Pn−1(xj)
=

√
xj

a2 + xj

cosh
(
n sinh−1(

√
xj/a)

)
sin
(
n sin−1

√
xj
) −

√
xj

1− xj
cos
(
n sin−1

√
xj
)

sinh
(
n sinh−1(

√
xj/a)

) .
The equation cos

(
2n sin−1

√
xj
)
+ cosh

(
2n sinh−1(

√
xj/a)

)
= 0 implies

cosh
(
n sinh−1(

√
xj/a)

)
= µj sin

(
n sin−1

√
xj
)
, cos

(
n sin−1

√
xj
)
= iνj sinh

(
n sinh−1(

√
xj/a)

)
,

where µj = ±, νj = ±. To determine the signs µj , νj , one can consider the limiting case a >> 1. We
have

√
xj = sin

π(2j − 1)

2n
− i

a
sin

π(2j − 1)

2n
cos

π(2j − 1)

2n
+O(a−2).

This means
sin−1

√
xj =

π(2j − 1)

2n
− i

a
sin

π(2j − 1)

2n
+O(a−2).

From this it follows that µj = νj = (−1)j−1 and thus

Q
′
n(xj)

Pn−1(xj)
= (−1)j−1

(√
xj

a2 + xj
− i
√

xj
1− xj

)

= i(−1)j
sin π(2j−1)

2n

(
a2 − 1 + 2ia cos π(2j−1)2n

)
(
a cos π(2j−1)2n + i

)(
a+ i cos π(2j−1)2n

) .
Substituting this into 2.3 we get the desired result. �

Lemma 6.
1∫

0

1

t2
(
a2 − 1 + 2ia cos π(2j−1)2n

)
− a2 sin2 π(2j−1)2n

t dt√
1− t2

√
1 + t2/a2

=
tan−1 a+ i tanh−1 cos π(2j−1)2n

i
(
a cos π(2j−1)2n + i

)(
a+ i cos π(2j−1)2n

) . (2.4)
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Proof. Composition of two substitutions t2 = 1 − (1 + 1/a2) sin2 φ, (0 < φ < tan−1 a) and tanφ = s,
(0 < s < a) reduces this integral to an integral of a rational function. �

Lemma 7. For n odd, one has
n∑
j=1

(−1)j−1

sin π(2j−1)
2n

= n.

Proof. Put t = 1, a = i in Lemma 5. �
From the three lemmas above it follows immediately that

1∫
0

sin
(
n sin−1 t

)
sinh

(
n sinh−1(t/a)

)
cos
(
2n sin−1 t

)
+ cosh

(
2n sinh−1(t/a)

) dt

t
√
1− t2

√
1 + t2/a2

=
tan−1 a

2
+

i

2n

n∑
j=1

(−1)j−1

sin π(2j−1)
2n

tanh−1 cos
π(2j − 1)

2n
.

To finish the proof, note that the sum in this formula is 0 because (since n is odd) j-th and (n+1− j)-th
terms cancel each other out.

3. Proof of Theorem 2

Lemma 8. Let n be an even integer. Then

cos(n sin−1 t) cosh
(
n sinh−1(t/a)

)
cos(2n sin−1 t) + cosh

(
2n sinh−1(t/a)

) =
(−1)n/2

2

an

1 + a2n

+
n∑
j=1

(−1)ja2 sin π(2j−1)
2n

2n
(
a2 − 1 + 2ia cos π(2j−1)2n

) ·
(
a cos π(2j−1)2n + i

)(
a+ i cos π(2j−1)2n

)
t2
(
a2 − 1 + 2ia cos π(2j−1)2n

)
− a2 sin2 π(2j−1)2n

.

Proof. When n is even, the functions cos(n sin−1 t) and cosh
(
n sinh−1(t/a)

)
are a polynomials in t2 of

degree n/2. This means we can write

cos(n sin−1 t) cosh
(
n sinh−1(t/a)

)
cos(2n sin−1 t) + cosh

(
2n sinh−1(t/a)

) = C +
Rn−1(t

2)

Qn(t2)
,

where Rn−1 is a polynomial of order n− 1 and Qn was defined in the proof of the Lemma 5. Qn(x) has
n roots given by 2.2.

To find the constant C consider the limit t→ +∞ assuming that a > 0. In this case

sin−1 t =
π

2
− i ln(2t) +O(t−1), sinh−1(t/a) = ln(2t/a) +O(t−1),

and we get

C =
(−1)n/2

2

an

1 + a2n
.

Since the order of the polynomial Rn−1 is smaller than the order of the polynomial Qn we can write the
partial fractions expansion

Rn−1(t
2)

Qn(t2)
=

n∑
j=1

Rn−1(xj)

Q ′n(xj)

1

t2 − xj
.

A calculation similar to that in Lemma 5 shows that

Q
′
n(xj)

Rn−1(xj)
=

2n

xj

(√
xj

a2 + xj

sinh
(
n sinh−1(

√
xj/a)

)
cos
(
n sin−1

√
xj
) −

√
xj

1− xj
sin
(
n sin−1

√
xj
)

cosh
(
n sinh−1(

√
xj/a)

))

= (−1)j−1 2n
xj

(√
xj

a2 + xj
− i
√

xj
1− xj

)

=
2n(−1)j

(
a2 − 1 + 2ia cos π(2j−1)2n

)2
a2 sin π(2j−1)

2n

(
a cos π(2j−1)2n + i

)(
a+ i cos π(2j−1)2n

) .
This completes the proof of the lemma. �
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Using Lemmas 6 and 8 we find
1∫

0

cos
(
n sin−1 t

)
cosh

(
n cosh−1(t/a)

)
cos
(
2n sin−1 t

)
+ cosh

(
2n sinh−1(t/a)

) t dt√
1− t2

√
1 + t2/a2

=
(−1)n/2

2

an+1

1 + a2n
tan−1(1/a) + a2

n∑
j=1

(−1)j
tanh−1 cos π(2j−1)2n − i tan−1 a

2n
(
a2 − 1 + 2ia cos π(2j−1)2n

) sin
π(2j − 1)

2n
,

and in particular when a = 1

1∫
0

cos(n sin−1 t) cosh
(
n sinh−1 t

)
cos(2n sin−1 t) + cosh

(
2n sinh−1 t

) tdt√
1− t4

=
π

16
(−1)n/2 −

n∑
j=1

(−1)j
π + 4i tanh−1 cos π(2j−1)2n

16n cot π(2j−1)2n

=
π

16n

(
(−1)n/2n−

n∑
j=1

(−1)j tan π(2j − 1)

2n

)
.

To calculate the sum in this expression we use Lemma 8 with t = 1 and a→∞ to get
n∑
j=1

(−1)j tan π(2j − 1)

2n
= (−1)n/2n.

This completes the proof of the theorem.

4. Proof of Theorem 3

Here we restrict the consideration to the symmetric case a = 1.

Lemma 9. The following partial fractions expansion holds for positive integers s and n such that k <
⌊
n
2

⌋
t2s

cos
(
2n sin−1

√
t
)
+ cosh

(
2n sinh−1

√
t
)

=
(−1)s

22sn

n/2∑
j=1

1

4t2 +
sin4

π(2j−1)
2n

cos2
π(2j−1)

2n

(−1)j−1 tan π(2j−1)
2n

cosh
(
n sinh−1 tan π(2j−1)

2n

) 1 + cos2 π(2j−1)2n

cot2 π(2j−1)2n

(
sin2 π(2j−1)2n

cos π(2j−1)2n

)2s

.

Proof. From consideration of the limit t → +∞ once can see (similarly to that in Lemma 8) that the
leading coefficient of the polynomial Qn(t) = cos

(
2n sin−1

√
t
)
+ cosh

(
2n sinh−1

√
t
)
is 22n−1(1 + (−1)n)

and thus that Qn(t) is an even polynomial of degree 2
⌊
n
2

⌋
. Its roots are (see 2.2)

xj = −
i sin2 π(2j−1)2n

2 cos π(2j−1)2n

, yj =
i sin2 π(2j−1)2n

2 cos π(2j−1)2n

, j = 1, 2, ...,
⌊n
2

⌋
.

For further calculations, we will need explicit values of sin−1√xj and sinh−1
√
xj , where the principal

branches of the multivalued functions are implied. First, one can write

sin−1
√
xj = ξj − iηj , sinh−1

√
xj = ϕj − iψj ,

with ξj , ηj , ϕj , ψj > 0. Further, from elementary identities 1 − 2t = cos(2 sin−1
√
t) and 1 + 2t =

cosh(2 sinh−1
√
t) one can see that

cos(2ξj) cosh(2ηj) = cosh(2ϕj) cos(2ψj) = 1,

sin(2ξj) sinh(2ηj) = sinh(2ϕj) sin(2ψj) =
sin2 π(2j−1)2n

cos π(2j−1)2n

.

These equations can be easily solved to yield

ξj = ψj =
π(2j − 1)

4n
, ηj = ϕj =

1

2
sinh−1 tan

π(2j − 1)

2n
.

Thus
sin−1

√
xj =

π(2j − 1)

4n
− i

2
sinh−1 tan

π(2j − 1)

2n
,
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sinh−1
√
xj =

π(2j − 1)

4ni
+

1

2
sinh−1 tan

π(2j − 1)

2n
.

Similarly

sin−1
√
yj =

π(2j − 1)

4n
+
i

2
sinh−1 tan

π(2j − 1)

2n
,

sinh−1
√
yj = −

π(2j − 1)

4ni
+

1

2
sinh−1 tan

π(2j − 1)

2n
.

For s <
⌊
n
2

⌋
we have the partial fractions expansion

t2s

Qn(t)
=

n/2∑
j=1

(
x2sj

Q ′n(xj)

1

t− xj
+

y2sj
Q ′n(yj)

1

t− yj

)
.

Calculations using the formulas above yield

Q
′
n(xj) = −Q

′
n(yj) =

4ni(−1)j cos2 π(2j−1)2n

sin π(2j−1)
2n

(
1 + cos2 π(2j−1)2n

) .
Now substitute this into the formula above. �

Using Lemma 9 and the following consequence of Lemma 6
1∫

0

1

4t2 +
sin4

π(2j−1)
2n

cos2
π(2j−1)

2n

dt√
1− t2

=
π

2

cot2 π(2j−1)2n

1 + cos2 π(2j−1)2n

,

one can easily complete the proof of Theorem 3.

5. Proof of Theorem 4

Both cos
(
2u sin−1

√
t
)
and cosh

(
2u sinh−1

√
t
)
are polynomials in t when u is an integer. Therefore,

proceeding exactly as in the previous section one obtains that the integral in question is

π

n

n/2∑
j=1

(−1)j−1 tan π(2j − 1)

2n

cosh
(
u sinh−1 tan π(2j−1)

2n

)
cosh

(
n sinh−1 tan π(2j−1)

2n

) cos
π(2j − 1)u

2n
.

Using
cosh (uz)

cosh (nz)
=

1

n

n∑
y=1

(−1)y−1 sin π(2y−1)
2n

cosh z − cos π(2y−1)2n

cos
π(2y − 1)u

2n

and the trivial identity cosh
(
sinh−1 tan π(2j−1)

2n

)
= 1/ cos π(2j−1)2n , one can rewrite this sum as a symmetric

double sum

π

2n2

n∑
j,y=1

(−1)j+y
sin π(2j−1)

2n sin π(2y−1)
2n

1− cos π(2j−1)2n cos π(2y−1)2n

cos
π(2j − 1)u

2n
cos

π(2y − 1)u

2n
.

After some simple algebra the summand can be transformed as

1

2
(−1)j+y

sin2 π(j+y−1)2n − sin2 π(j−y)2n

sin2 π(j+y−1)2n + sin2 π(j−y)2n

(
cos

π(j + y − 1)u

n
+ cos

π(j − y)u
n

)
.

j − y and j + y have the same parity. Taking into account this fact and periodicity of the summand, the
summation can be performed independently over j − y and j + y to yield

π

4n2

n∑
x,s=1

sin2 π(2x−1)2n − sin2 πsn

sin2 π(2x−1)2n + sin2 πsn

(
cos

π(2x− 1)u

n
+ cos

2πsu

n

)
.

Because of trivial identities
n∑
y=1

cos
π(2y + 1)u

n
=

n∑
x=1

cos
πxu

n
= 0
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valid for integer 0 < u < n, and the summation formulas
n∑
x=1

sinh2 z

sinh2 z + sin2 πxn
=
n coth(nz)

coth z
,

n∑
x=1

cosh2 z

sinh2 z + sin2 π(2x−1)2n

=
n tanh(nz)

tanh z
,

the sum under consideration becomes
n∑
y=1

coth
(
n sinh−1 sin π(2y−1)

2n

)
coth

(
sinh−1 sin π(2y−1)

2n

) cos
π(2y − 1)u

n
+

n−1∑
x=1

sin2 πxn
1 + sin2 πxn

tanh
(
n sinh−1 sin πx

n

)
tanh

(
sinh−1 sin πx

n

) cos
2πxu

n
.

Now it is easy to bring this to the form stated in the theorem.

6. Discussion

(i) A different proof of theorem 1 was given by P. Teruo Nagasava in a Math Stack Exchange post [7].
By using a clever substitution he was able to reduce the integral to an integral of a meromorphic function
over the real line, and then use contour integration to evaluate it. From his solution one can also easily
understand why the integral is independent of n.

(ii) When u = 0, the sum in theorems 3 and 4 is simplified as

n/2∑
j=1

(−1)j−1 tan π(2j−1)
2n

cosh
(
n sinh−1 tan π(2j−1)

2n

) =

n∑
y=1

coth
(
n sinh−1 sin π(2y−1)

2n

)
coth

(
sinh−1 sin π(2y−1)

2n

) − n

2
.

(iii) Theorem 4 implies the integration formula

1

π

1∫
−1

sin
(
2n sin−1

√
t
)

cos
(
2n sin−1

√
t
)
+ cosh

(
2n sinh−1

√
t
) √

t dt(
t− sin2 πj2n

)√
1 + t

= 1−
sin πj

2n√
1 + sin2 πj

2n

{
tanh

(
n sinh−1 sin

πj

2n

)}(−1)j

,

where j is an integer.
(iv) We briefly discuss the motivation behind the theorems presented in this paper. Let us introduce

the notation
αz = 2n sinh−1 sin

πz

2n
, (6.1)

where we assume the principal branches of the multivalued functions. With this definition one can rewrite
the integral in Theorem 1 with a = 1 as

1∫
0

sin
(
n sin−1 t

)
sinh

(
n sinh−1 t

)
cos
(
2n sin−1 t

)
+ cosh

(
2n sinh−1 t

) dt

t
√
1− t4

=
π

n

n∫
0

sin πx
2 sinh αx

2

cosπx+ coshαx

dx

sinh αx
n

.

As we will now show, the last integral has an interesting symmetry.
When y is real, then αiy is purely imaginary. Let us define y∗ by the equation

αiy∗ = πin,

and consider the integral over an interval on the imaginary axes

J =

0∫
iy∗

sin πz
2 sinh αz

2

cosπz + coshαz

dz

sinh αz
n

=

y∗∫
0

sinh πy
2 sin

αiy
2i

cosπy + cos(αiy/i)

dy

sin
αiy
in

.

Making change of variables αiy = πis in 6.1 we get

sin
πs

2n
= sinh

πy

2n
,

which implies that
πy = αs.
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Since cos πsn + cosh πy
n = 2, it is easy to show that

dy

sin πs
n

=
ds

sinh αs
n

.

Thus the integral under consideration becomes

J =

n∫
0

sin πs
2 sinh αs

2

cosπs+ coshαs

ds

sinh αs
n

.

To recap what we have just showed:
0∫

iy∗

sin πz
2 sinh αz

2

cosπz + coshαz

dz

sinh αz
n

=

n∫
0

sin πs
2 sinh αs

2

cosπs+ coshαs

ds

sinh αs
n

, y∗ =
2n

π
ln(1 +

√
2).

In words, the integral of the function
sin πz

2 sinh αz
2

cosπz + coshαz
taken over a certain segment of the imaginary axis, turns out to be equal to the integral of this function
taken over a segment of the real axis.

The integral in theorem 1 has been chosen to have the same kind of symmetry:
1∫

0

t2k

cos(2n sin−1
√
t) + cosh

(
2n sinh−1

√
t
) dt√

1− t2
=
π

n

n∫
0

(
sin πx

2n

)4k+2

cosπx+ coshαx

dx

sinh αx
n

,

0∫
iy∗

(
sin πz

2n

)4k+2

cosπz + coshαz

dz

sinh αz
n

=

n∫
0

(
sin πx

2n

)4k+2

cosπx+ coshαx

dx

sinh αx
n

, y∗ =
2n

π
ln(1 +

√
2).

7. Some open questions

First question is concerned with an extension of theorem 4 to the non-symmetric case a 6= 1.
The second question is concerned with some integration formulas similar to 1.1 and 1.3. By contour

integration it is fairly easy to prove the integration formula
∞∫
0

Im

{
1

cosh (e−iαx) cosh (e−iβx)

}
dx

x
=
α+ β

2
. (7.1)

For this, we take the function
{
cosh

(
eiαz

)
cosh

(
eiβz

)}−1 and integrate it along the contour composed of
two rays arg z = 0, arg z = α+ β, and two circular arcs, one around the origin, and the other around the
complex infinity. The integrals over the rays combine to the integral in 7.1 multipled by 2i. The integral
over the arc at infinity vanishes, while the arc around the origin gives the contribution −i(α + β). The
final step is to notice that there are no poles inside the contour.

Writing out the integrand explicitly and taking the sum of two integrals with ±β one obtains
∞∫
0

sin(x sinα) sinh(x cosα) cos(x sinβ) cosh(x cosβ)

{cosh(2x cosα) + cos(2x sinα)} {cosh(2x cosβ) + cos(2x sinβ)}
dx

x
=
α

8
.

Although this formula was derived for real α and β it can be continued analytically to complex values.
The question is to find a finite analog of this integral similar to the one in theorem 1. Direct naive
extension does not work, even for the integral with α = β

∞∫
0

sin(x sinα) sinh(x cosα)

{cosh(x cosα) + cos(x sinα)}2
dx

x
=
α

2
.

It might be worth mentioning the sum closely related to these integrals
∞∑
n=1

χ(n)

n
·

cos
(
πn cos θ

2

)
cosh

(
πn sin θ

2

)
cos(πn cos θ) + cosh(πn sin θ)

=
π

16
,
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where χ(n) = sin πn
2 is Dirichlet character modulo 4.
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