Analysis of PV/Wind systems by integer linear programming by taking into account intermittency of power production

Victor Christianto & Florentin Smarandache

Abstract

While in literature, there are many discussion on linear programming for various cases, there is only few discussion to take into account the uncertainties involved in the power production of PV/Wind system. In this paper, we consider integer linear programming by considering bi-level values as suggested by Pramanik and Pratim Dey. The purpose of this study is to show that it is possible to consider uncertainties in energy production in the linear programming model.

Introduction

Hybrid renewable energetic systems are systems that integrate more than one renewable energy sources. As they are time, environment and site dependant, one expects that their judicious and complementary combination may overcome some limitations which are inherent to every individual system used alone. Hybrid systems may also reduce the need for energy storage which is very costly and space consuming.[1]

In real cases, sometimes it is of need to consider integrating renewable energy sources in order to build up economical hybrid energetic systems in the case where each type of energy are only available as specific units. For instance, we may need to combine photovoltaic panels and wind turbines with specific capacities to meet an energetic demand in a specific site with a lowest cost. Therefore, determining the optimal energy to be installed leads of determining the number of units from each source. This problem is formulated as an integer linear programming where the objective function to be minimized is the initial capital investment and where the decision variables are the numbers of units which should be pure integer numbers.

While this problem has been discussed in Zaatri and Allab [1], there is only few discussion to take into account the uncertainties involved in the power production of PV/Wind system. As it is

1

known, PV and Wind energy production involves a certain level of intermittency, which makes the power production rather uncertain.

In this paper, we consider integer linear programming by considering bi-level values as suggested by Pramanik and Pratim Dey [3]. The purpose of this study is to show that it is possible to consider uncertainties in energy production in the linear programming model.

Basics of Linear Programming

Linear programming deals with problems such as maximising profits, minimising costs or ensuring you make the best use of available resources. From an applications perspective, mathematical (and therefore, linear) programming is an optimisation tool, which allows the rationalisation of many managerial and/or technological decisions. An important factor for the applicability of the mathematical programming methodology in various contexts, is the computational difficulty of the analytical models. With the advent of modern computing technology, effective and efficient algorithmic procedures can provide a systematic and fast solution to these models.

A Linear Programming problem is a special case of a Mathematical Programming problem. From an analytical perspective, a mathematical program tries to identify an extreme (i.e., minimum or maximum) point of a function, which furthermore satisfies a set of constraints. Linear programming is the specialisation of mathematical programming to the case where both, function f, called the objective function, and the problem constraints are linear. Mathematical (and therefore, linear) programming is an optimisation tool, which allows the rationalisation of many managerial and/or technological decisions required by contemporary applications. An important factor for the applicability of the mathematical programming methodology in various contexts, is the computational tractability of the resulting analytical models.

Discussion on the problem in question

In this paper, we consider the same scenario of estimates of annual power production by PV and wind systems as discussed by Zaatri and Allab [1].

2

The two equations of constraints in integer linear programming can be expressed as follows [1]:

N1, N2 = integers Constraint 1 min=130 x N1 + 100 x N2 Constraint 2 66.N1 + 84.N2 >= 3000

This problem can be solved using MS Excel (goal seek/solver), and the result is shown in the following table 1.

0.0	Book (25)Ay000 (nativita - Miconoli Exal													7 IE - 5 X		
HLF	HONE	INSERT PAGE LAYOU	T FORMULA	E DADA R	EAIEM, AIE	M									Sign in Pul	
		The Party	17 formala	w Q	2 0	FR F	101	Split 111	Veen Side by 5	Sale	-5					
Merrial	Page Break	Page Custorn @ Gridling	en 🗵 Handrig	Zoom 10	10% Zoon to	New Arra	rga freeze	Hide	Synchronius 5	seeing 1	witch Macro	18				
	Printing	Layout Viewi	Chana		Selection	Window: A	 Elevel.* 	Minda	marrel Versilory	W	ndoes.*	2				
-			, street		Carlett1						. 50001					
np:	- Nor	(22)	0455	2.8	58	1440	63					07		10232	1.	
- A.	A	В	C	D	E	F	G	н		1	K	1	M	N	0 *	
2		Integer linear progr	amming exa	ample for P	V and Wins	d energy su	pply									
3		VC	-													
4		21-Jul-20).													
2																
0		N1, N2 = integers														
-		Constraint 1	100								-					
		min=130 x NI + 100	IX NZ								-					
10		Constraint 3														
		CONSTRAINT 2	200													
12		00.114 - 01.114 34														
13			PV	Wind												
14		number to make	6	31												
15					power	reg. power	Ş.,									
16		produced power	66	84	3000	3000										
17																
18					total cost	(\$)										
19		unit cost	130	100	3880											
20																
1.1	55	oit1 Sheet2 Sheet2	(2) Sheet2	周围					11.0						1 H (
READY															+ 122%	

Table 1. Result of goal seek (MS Excel) for integer linear programming

The result is : it is found that optimal number of PV cells is 6, and 31 wind systems. And the total cost is found to be \$3880.

Now, by simplifying procedures in Pramanik & Pratim Dey [3], we can include uncertainty parameters due to intermittency of energy production by PV/wind systems, so we will include an extension:

a. Upper bound limit:

(66+1.64*5).N1 + (84+1.64*7).N2 >= 3000

Which comes from setting $X = x' + \sigma k$

Where we take for simplicity: σ =1.64, k = 5 for PV systems, and k=7 for wind systems. Actual values of k should be determined by observations.

The result is shown in table 2 as follows:

0 G 5-	CT	TT EDRAGEA	S DATA A	native sate	Hook 1,25	uly2020_1	Veltala - Micro	eaft Excel						7 0E = 5 X
Normal Page Bit Princip	ak Page Cattern Grade A Laport Views	i formula nes ⊇ Heading Dise	Rar Q Zoom H	NW Zoom to Selection	Naw Array Window All	tions	□Split (11) □Hide (12) □Unide (22) Webs	Vees Side by S Synchroneus S Ranat Window	nte insling 5 Resilier Wy	ettoh Mato down Mato				
H11 -	$\pi \sim f_{\rm b}$													
A A	В	C	D	E	F	G	н	1	1	ĸ	4	М	N	0 *
2	Integer linear prog	ramming ex	ample with	upper and	lower cases									
3	VC													
4	21-Jul-2	0												
5	Marine VI -													
6	N1, N2 = integers													
7	Constraint 1	2 Carter												
8	min=130 x N1 + 10	0 x N2												
3	Constraint 2													
10	(CONSTRAINT 2 (CONSTRAINT 2 (CONSTRAINT 2	PALT 64871	17 ~= 2000											
12	Tool For Shirt + P	044.8704 110	11 30000				-							
13		PV	Wind											
14	number to make	6	26,75744											
15				power	req. power									
16	produced power	74,2	95,48	3000	3000									
17														
18				total cost	(\$)									
19	unit cost	130	100	3455,744										
20														-
-	short1 short2 sheet2	z (z) Sneetz	(4) 団					110					-	
HEADY			_									an in i		

Table 2. Integer linear programming with uncertainties taken into account (upper bound limit).

The result is : it is found that optimal value is 6 PV sets, and 27 wind systems. The total cost is found to be: \$3455.74

a. Lower bound limit:

(66-1.64*5).N1 + (84-1.64*7).N2 >= 3000

The result is as shown in table 3.

🕮 🙀 🃷 🖓 📷 📩													7 III - II X		
HIE Barread Pag	PONE REENT	PAGE LAVOUT	FORMULA Formula Formula Formula Formula Formula	ar Cann 1	Evitew ME	New Area	ge Freeze Pares	Split (1) Hide (1) Unitatio (2) With	Vana Sida by S Synchronia S Paret Wirebox	nte institute Realities Wa	sitch Mapr down	2			Sign in K
C14 -	1 8 4 5	6													
4	A	в	c	D	E	F	Ģ	н	- 0 -	- F	ĸ	4	М	N	0
2	Integer I	inear progra	amming exa	mple with	upper and	lower cases	2								
3	VC														
4	21-Jul-20														
5															
6	N1, N2 =	integers													
7	Constrain	nt 1													
В	min=130	x N1 + 100	x N2												
9															
10	Constrain	nt 2													
11	(66-1.64	*5].N1 + (84	4-1.64*7).N	2 >= 3000											
12															
13			PV	Wind											
14	number	to make	:6	36,58577											
15					power	req. power									
16	produce	d power	57,8	72,52	3000	3000									
17					100										
18			12.22	1151	total cost	(\$)									
19	unit cost		130	100	4438,577										
20	I Phaist I Phase	Country Charge	This Change	(2) (2)											111
Trank.	210011 2100	na oneess	MAL MINELS	(ar) (d)						4			100 DF 1	1	
_															And and a local division of the local divisi

Table 3. Integer linear programming for lower bound limit.

The result is : it is found that optimal value is 6 PV sets, and 37 wind systems. The total cost is found to be: \$4438.58.

Therefore we conclude, by taking into account uncertainties due to intermittency of power production of PV/Wind systems, we come up with slightly different optimal values.

For other papers discussing MCDM/linear programming in renewable energy considerations, see [2, 4-7].

Concluding remark

In this paper, by simplifying procedures in Pramanik & Pratim Dey [3], we can include uncertainty parameters due to intermittency of energy production by PV/wind systems, we will include an extension:

(66+1.64*5).N1 + (84+1.64*7).N2 >= 3000, which comes from setting X = x' + σ .k.

Where we take for simplicity: σ =1.64, k = 5 for PV systems, and k=7 for wind systems. Actual values of k should be determined by observations.

Similarly, we can consider the lower bound limit by setting:

(66-1.64*5).N1 + (84-1.64*7).N2 >= 3000, which comes from setting X = x' - σ .k.

Therefore we conclude, by taking into account uncertainties due to intermittency of power production of PV/Wind systems, we come up with a slightly different optimal values. Provided we set the PV systems to be 6, we obtain upper bound number of Wind energy system to be 27, and the lower bound number is 37.

This is where the subject of Neutrosophic Logic can be considered. Further investigation is recommended.

VC & FS

References:

[1] A. Zaatri & K. Allab. Analysis of PV/Wind systems by integer linear programming. *Revue des Energies Renouvelables* Vol. 15 N°1 (2012) 111 – 120

[2] Roghayeh Ghasempour et al., Multi-Criteria Decision Making (MCDM) Approach for Selecting
 Solar Plants Site and Technology: A Review. *Int. Journal of Renewable Energy Development* 8 (1) 2019 :
 15-25

[3] S. Pramanik & P. Pratim Dey. Bi-level Linear Programming Problem with Neutrosophic Numbers. *Neutrosophic Sets and Systems*, Vol. 21, 2018, University of New Mexico 110

[4] Satyajit Das, *et al.* Electrical Energy Conservation Model using Linear Programming. *International Journal on Emerging Technologies* (Special Issue NCETST-2017) 8(1): 250-259(2017)

[5] Rodrigo Martins *et al.* Optimization of Photovoltaic Power Self-Consumption using Linear Programming. *Conference Proc.*, 978-1-5090-2320-2/16 c 2016 IEEE

[6] O A Ivanin and L B Director 2016. The solution of the optimization problem of small energy complexes using linear programming methods, *J. Phys.: Conf. Ser.* 774 012046

[7] Swati Dixit. Optimization of Household Energy using Linear Programming. *Master thesis, Department of Electrical Engineering National Institute Of Technology Rourkela*, June 2014.