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ABSTRACT. In this paper, we investigate the time-asymptotically nonlinear stability to the
initial-boundary value problem for a coupled system in (p,q) of parabolic conservation laws
derived from a Keller-Segel type repulsive model for chemotaxis with singular sensitivity and
nonlinear production rate of g(p) = p”, where v > 1. The proofs are based on basic energy
method without any smallness assumption. We also show the zero chemical diffusion limit
(e — 0) of solutions in the case p = 0.

1. INTRODUCTION

In this paper, we consider the global existence and long time behavior of initial-boundary
value problems for a system of parabolic conservation laws

Dt — (pq)$ = Pzx, T S (07 1)7t > 07
g — (9(p) + €4°)2 = €4z, €20,

(1.1)

By taking the transformation p = n, ¢ = [In(c)]; and assuming D = —y = 1 without loss of
generality since specific values of x and D are not important in our analysis, we can derive this
system from the following chemotactic model proposed in [1] with logarithmic sensitivity and
nonlinear production rate

{nt = Dng, — [xn(In(c))z]s, = € (0,1), t >0,

1.2
¢t = eCyz + g(n)e — pe, x € (0,1), t > 0,6 >0, (12)

where n and c represent the cell density and the chemical signal concentration, respectively.
The parameter D denotes cell diffusion rate (D > 0), € describes chemical diffusion rate and x
stands for chemotactic sensitivity coefficient. If y > 0(the positive chemotaxis), the chemotaxis
means to be attractive, while if x < O(the negative chemotaxis), the chemotaxis is repulsive.
The constant p > 0 stands for the natural degradation rate of the chemical signal. The function
In ¢ denotes logarithmic chemotactic sensitivity function, which describes the signal detection
mechanism of the cellular population. Such a kind of sensitivity function can be found in works
[11=13]. The nonlinear function g(n) denotes the chemical production rate, which satisfies
g'(n) > 0 when n > 0.

When ¢(p) = p, the mathematical analysis about global well-posedness, long-time behavior,
diffusion limit, boundary layer, stability of traveling wave, etc. of (1.1) with subject to various
initial and/or boundary conditions in one and multiple space dimensions has been made in
significant progresses in the past few years, please refer [2-7, 10, 14, 1623, 29, 30, 32-35] and
the references therein. On the other hand, when the chemical production rate is a nonlinear
function, there are a few results. In [30], the global well-posedness for the Cauchy problem
of (1.1) in one dimension space for general initial data under the assumption that |¢"(p)| is
uniformly bounded was proved. Later, in [37], Zhu, Liu, Martinez and Zhao adopted a new
Lyapunov functional and removed this assumption to get the global well-posedness, the long
time behavior and the diffusion limit for the Cauchy problem of (1.1) with g(p) = p” for all
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~v > 1. However, the well posedness, long-time behavior and diffusion limit to the system (1.1) in
bounded domain remains open in the literature, although this type of boundary value problem
is more meaningful than the Cauchy problem from the biological point view. The main purpose
of this manuscript is to study the well posedness and long-time behavior for the system (1.1)
with the following two kinds of initial and boundary conditions:

e Initial-Dirichlet boundary value
(pa q)(x,O) = (p()vq())(x)a pO(‘r) > 07 T e Ia
p|x:0,:1::1 =p > 07 Q|x:0,x=1 = 07 Zf € > 0; (13)
p’x:O,x:l =p Z 07 Zf €= 07

e Neumann-Dirichlet boundary value

(P, 9)(2,0) = (po, q0)(x),po(x) = 0, z € I (1.4)
px‘x:O,le - 07 Q\xzo,le - 07
where I = [0,1].
In order to understand the qualitative behavior of (1.1), based on similar ideas in [37] for the

Cauchy problem, we use the following weak Lyapunov functional

d [ 1 1 4
- Y5 — ~57 L — B)]d Zall? =
7 <7_1/I[P pr =" (p—D)] 9:+QIIQHL2> +

Now it is the place to state our main results of this paper. The first result addresses the global
well-posedness and long-time behavior of large-amplitude global solutions to (1.1) and (1.3).

”(p%)xH%Z +5HQIH%2 =0. (1.5)

Theorem 1.1. Assume that the initial data satisfy po > 0 and (po — p,qo) € H*(I) for some
positive constant p. Then there exists a global-in-time solution (p, q) to the initial-boundary value
problem (1.1) and (1.3), such that

e For anye >0 and v > 1, it holds that
(p —p.q) € C([0,00); H*((0,1))) N L*([0, 00); H*((0, 1)),
and for all t > 0,

t
10 = DY) 72 + la(B) 172 +/0 (P (P32 + Nl (T)lI72 + ellaz(7)l[32)dr < C,
where the constant C > 0 is independent of t. Moreover, it holds that
(> = D)2 + la(®) 172 < ae™™

for some positive constants «, 5 which are independent of t.
e Fore =0 and vy > 2, it holds that

(p —p) € C([0,00); H((0,1))) N L*([0,00); H*((0,1))),
g € C([0,00); H'((0,1))) N L2([0,00); H'((0,1))),
and, for allt >0,

1> = )OI + lla@) 7 +/0 (lp = D)D) 72 + lla(D) 70 )dr < C,

for some constant C' > 0 which is independent of t.
Moreover, when p > 0, it holds that

1o = 2) ()77 + la(®) |7 < are™™",

where ay and 1 are positive constants which are independent of t.
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Remark 1.1. Compared with the Cauchy problem in [37], the distinction is that the energy
estimate for the derivatives of the solution is inversely proportional to €. We can’t utilize the
same method to estimate the first order spatial derivatives due to the influence of the boundary
conditions.

From the Theorem (1.1), we obtain the long-time dynamics for the original repulsive chemo-
taxis type model as follows.

Proposition 1.2. (Long-time behavior of original model). Consider the following initial bound-
ary value problem of the one-dimensional chemotazis type model (1.2):

(ny = Dnge — x[n(lne)y)s,
Ct = ECyg +1"C— e, v > 1;
(n,c)(x,0) = (no, co)(z); (1.6)

n‘:{::ﬂ,x:l =mn, C?z|ac:0,90=l =0, if e>0;

\n‘z:(),le - T_La Zf £= 07

x € (0,1), t > 0, where D > 0, x < 0, u > 0 and € > 0 are constant parameters, and
n > 0 and ¢ are constants. Suppose that the initial data are compatible with the boundary
conditions and satisfy up(z) > 0, 0 < ¢ < ¢o(x) < € < 0o for some constants ¢ and ¢. Assume
that co € H?((0,1)) and Inco € H?((0,1)). Then there exists a unique global-in-time classical
solution (n,c) to (1.6) such that

In(t) — n||Lee — 0, as t — oo,
and
0, if nY < p,
400, if 77 > p,as t = 00, >0

le@) L~ — {

provided that either n > 0, € > 0, where the convergence rates are exponential in time.

The next result is concerned with the Global existence, zero chemical diffusion limit and
convergence rate of the solution to (1.1)-(1.3).

Theorem 1.3. Assume that the initial data satisfy po > 0 and (po, qo) € H*(I) for p =0. Then
for any € > 0 and v > 2, there exists a unique global-in-time strong solution (p,q) to (1.1)and
(1.3)such that

10D+ [ el + elas () e < C.

where the constant C is independent of €. Moreover, let (p,q%) and (p°,q°) be the unique strong
solution to (1.1) and (1.3) with € > 0 and € = 0, respectively, then (p,q%) approaches (p°,q°)
with the following convergence rate:

1(p° = D)2 + (6 = ) B)I72 < aze™e,
where ag and B2 are positive constants which are independent of €.

Remark 1.2. When v = 1, the result in [7] shows that the diffusive problem (¢ > 0) does not
converge to the non-diffusion problem as chemical diffusion coefficient € tends to zero. However,
i our result Theorem 1.3, which shows the diffusive problem converges to the non-diffusive
problem, which implies that there is no boundary layer solution when p = 0.

Our next result shows that the global dynamics result can be obtained for the Neumann-
Dirichlet boundary value problem.
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Theorem 1.4. (Neumann-Dirichlet problem). Consider the initial-boundary value problem

Pt = Paa + (PQ)a,

Gt = eqea + (g e + (D7)

(1, @)(,0) = (po, 90)(z), (po —P,q0) € H'((0,1)), (1.7)
po(z) >0, = €0,1];

px|m=0,m:1 = 07 Q|:E:0,z:1 = O>

where p = fol po(x)dz > 0. Suppose that the initial data are compatible with the boundary
conditions. Then for any ¢ > 0 there exists a unique solution (p, q) to (1.7) such that

(p—p,9) € C([0,00); H'((0,1))) N L*([0, 00); H*((0,1)))

and
t
10 =P+ a0l + [ (0= D) + 1)+ ela(r) Fm)ar < C.

where C is independent of ¢t and . Furthermore, it holds that
I = DY F + la(®) |7 < aze™™!

for some positive constants ag, $3 which are independent of ¢t and €.

Remark 1.3. Here are some remarks concerning about Theorem 1./:

e Note that the result in [15] focuses on the case when v = 1. Compared with the result
obtained in [15], the result in this paper is the first one concerning on the case when
v > 1 for the Neumannn-Dirichlet problem. The term (p"), is strong nonlinear, luckily,
we can overcome this difficulty by using similar method in [37].

o We emphasis that the bound C' is independent on e, so we can obtain the zero chemical
diffusion limit and convergence rate of the solution obtained in Theorem 1.4 by virtue
of the similar method in [27, 37], we omit the technical details in order to simplify the
presentation.

The rest of paper is organized as follows: we first give some preliminaries in Section 2. In

section 3, we give the proof of Theoreml.1 Proposition 1.2 and Theorem1.3. Then the proof of
Theorem1.4 will be deduced in Section 4.
Notations: Throughout this paper, we denote || - ||z2, || - || and || - ||z by the usual norms of
Lebesgue measurable spaces L?, L> and Hilbert’s space H*, respectively. The values of positive
constants C' may vary line by line according to the context. For two quantities A and B, we
write A ~ B if C"'A < B < CA. The notation A < B means that A < CB for a universal
constant C' > 0 independent of time ¢.

2. PRELIMINARIES

In this section, we shall introduce some Algebraic inequalities which will be frequently used
in the subsequent analysis (cf. [3, 9, 37]).

Lemma 2.1. Let a > —1 and v > 2. Then it holds that

(a—i—l)”—l—'yazga?

Lemma 2.2. Let a > —1 and v > 2. Then it holds that
(a+1)"—1—~a>|al|".

Lemma 2.3. Let a > —1 and vy > 1. Then it holds that

(@+1)" > 1+a.
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Lemma 2.4. Leta > 0 and 0 <~ < 1. Then it holds that
la” = 1] <|a —1].
Lemma 2.5. Leta > —1 and 1 < v < 2. Then it holds that
(a+1) —1—va < d®

3. GLOBAL DYNAMICS WHEN ~ > 1

In this section, we are devoted to studying the dynamic of solutions to the problem (1.1) with
Dirichlet Boundary condition. First, using the standard arguments (e.g. see [24-26, 31]), one
can show the local existence of solutions to (1.1)-(1.3). We omit the technical details of the
routine arguments in order to simplify the presentation. Next we derive some a prior: uniform-
in-t estimates of solutions, which not only extend the local solutions to global ones, but also
play important role in investigating the long time behavior of solutions. For this goal, we shall
first focus on study of the following reformulated problem:

Pt — [P+ P)qle = Paas

@ — [(P+ D))z = o + (0

(B(x,0), ¢(x,0)) = (po — P, 90),

Pla=02=1 = 0, qlz=02=1 =0,
where p =p — p.

Lemma 3.1. (Lyapunov functional) Under the conditions of Theorem 1.1, for any~y > 1, > 0,
it holds that

1 o 1o 1
— I[(P+p)7—ﬁy—’yp7 1p}($’t)d$+§HQ(t)”%2

w [ (3 [+ 9722 + el ) (e < €, (52)
[0 )

where the constant C' depends only on p, v, and the initial data. Moreover, for any v > 2, it
holds that

15l7, < (v = 1)C. (33)
Proof. Multiplying the first equation of (3.1) by %((}3 +p)?~! — p771), then integrating the
result equation over I by parts, we obtain
1 d o _ _ e =2/~ _
— </(p+p)7dw — ! /pdw) +7/(p+p)” 2(p + p)da = /(p+p)”qxda:- (3.4)
y—1dt \J; I I I
Noting that (3.4) can be written as

1 d

e [+ D) =P =P e+ / (b+5) (5 + p)ade = / (p+p)qedz.  (3.5)
Y — 1dt T I I

Multiplying the second equation of (3.1) by ¢ and integrating the resulting equation by parts
over I, we have

1d -
5l + [+ asde + elanlz =0, (36)

Adding (3.5) to (3.6), we obtain

d/ 1 o 1 o
dt /[(pﬂo)” — 9" =" pldx + < |ql[3s +’Y/(P+p)” 2(pp)?drtellqe]2, = 0. (3.7)
dt "}/ — 1 T 2 I
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Integrating (3.7) over [0, t], we get

1 o _ 1 1
— [ G+ =" =" Bl t)da + S a7
Y I

i /ot (” / (B+p) " (Pe)da + e\lqgc\l%g) (r)dr

I
1 Y _ =y —y—1 5 1 2
= oy — 0" — 0" (po — P)|(x)dz + =||qo2-
’}/— 1 I 2

By lemma 2.4, letting a = pOT;ﬁ, for 1 < v < 2, we have

1 Y _ =Y —y—1 5 P Bl|2
[pg —P" =0 (po — p)ldx < lpo — Dll72- (3.8)
y=1J1 y—1

By Taylor’s theorem, for v > 2, we have

1 _ _ Y [ =2 _
—— [Py =P =P (po — P)ldz < /pg (po — p)*da,
y—1J1 21
where pg is between pg and p. Hence, there is a constant Cy depending only on v and initial
data, such that

1 _ _ _
— [ =5 =70~ p)lde < Collm — i (39)
By applying Lemma 2.1, we obtain
1 o B 1. 1 -
pons i) AL Ul el 'p > ﬁ\lplllw- (3.10)
Then the combination of (3.8), (3.8) and (3.9) completes the proof of Lemma 3.1. O

3.1. Global classical solution when ¢ > 0 and p > 0. In this section, we are devoted to
obtaining the global dynamical classical solution when € > 0 and p > 0. Firstly, we give the
basic L2 —energy estimate, the idea are borrowed from [37].

Lemma 3.2. Under the conditions of Theorem 1.1, for any v > 2, € > 0, it holds that

t
I3, + 15132 + [ 1520 < C.
where C' is a positive constant which is indepent of t and ¢.
3.1.1. L? Estimate when 2 < v < 3.

Proof. Step 1. First of all, let G(p,p) = ﬁ [+ D) =" —vp"'p)(x, t)dz, then (3.7) can
be rewritten as

& (66 + Jlali )+ [16+ 972 = 550

+90" 2 |1Pell 72 + ellgull72 = 0. (3.11)

Since 2 < v < 3, choosing a = (p + p)/p, applying Lemma 2.3 and using Young’s inequality, we
deduce that

]5774152 ﬁ772

+ =

(p+p)" =% <P Bl < 5

which implies

(3.12)
Plugging (3.12) into (3.11), we obtain

d _ o1 Y oy - Yoy .
& (600 + 3lale) + 37215 - 35 [GePdn 4l 0. 333
I
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Step 2. To control the term —y I; (ppr)?dz, we multiplying the first equation of (3.1) by 45°,
then integrating by parts and using the Hélder’s inequality to derive

d, . . 9
S+ 1202 = 12 /, P5u(p+ P)ada

[ SIS

1
2 2
(/(p+p)4 U 4q2dm>
I
! :
( / (» + pﬁ)“rﬁﬁ”q%x)
I

4—
~ — 2113 =172
15+ PP 12 e

I

—_

o
VR
—

~

=1

+

TS

Q

l\.')

NJ

%

v N~

[N}

1

sc(/@ﬂm 25 )dx>%<||153\\2_§: FIPLE ) 192 319

We have to estimate the L> norms on the right-hand side of (3.14). Using Holder’s inequality

and (3.3), we obtain
x
o) = |3 [ Pinda
0

§3</I|157dx> (/!I‘”pz dx)
<o( [ d:c) ,

4—y .
11,2 <0( / \ﬁl‘*‘”(ﬁm)zdx) . (3.15)

Substituting (3.15) into (3.14), and by virtue of Sobolev’s inequality, we have

<3 / 15127 de

which implies

d. N
Z1Pls + 120172

4—y

2 7
SC(/I(erp)v *(pz) da:) [</ BIA dx) +pr\|L2 ] pr”LQ
477,7
</ BI* 7 (p dx) ||1§m||z;2+”ﬁz||%2] ,

where § > 0 is a constant to be determined. Noting that when 2 < ~ < 3, by employing Young’s
inequality, we derive that

—W
(/ 161" () d””) 1P2l7 / B1*7 (Be)?d + ||Ba|7 - (3.17)

We employ Young’s inequality and (3.17) to derive

§C(5)</l(]§+ P) (P )dx>+5

(3.16)

4—7

(/ 7 (5) de) 1Bal5% < 155012 + 2502, (3.18)



8 Z.-F. FENG, J. XU, K. ZHAO, AND C.-J. ZHU

Substituting (3.18) into (3.16), we can infer that

d. . N o N i
ﬁwﬁﬁ4wwﬂééc/@+m7%mﬂm+MMmW+%mﬁﬁ
I

Let A
4+ ypr-
M, = 2P
24
Multiplying (3.19) by Mj, then inserting the result to (3.13), we deduce that
d | . Y oy~ w
& (G5 + 3llala 4 ML) + 37 21l + 205013 + el

< MC(6) /I (5 + P2 (5e) de + My (55022 + 31l %0).

Letting

then we have

d _ o1 - Y v~ .
4 (GO0 + s+ DAL ) + 52l + 1l + el

<C [+ P75 s,
I
We integrate (3.21) over [0, ¢] and employ (3.2) to deduce

o1 3 Cry o .
G(p,p) + §||CIH%2 + M| 74 +/O (ZPJY 2\1Pell72 + 1552172 + €||qx||2L2> dr

o 1 B C
Sﬂmm+ﬂm@+MMM§+7

3.1.2. L? Estimate when 3 < v < 4.

Proof. Step 1. Since 3 < v <4, from Lemma 2.3, by choosing a = £, we have

i3

(B+p) 22+ (v =2
Inserting (3.23) into (3.13), we obtain

d
dt

Noting that for any constant n > 0, it holds that

Plugging (3.25) into (3.24), one has

d (., 1 s (=27 -
& (60 Jais) +om (5 T2 .

1O =2) 55 [~
2022 [perde + el <o

By choosing

R | 9y~ _ .
4 (660 + 3l ) 0215l + 20 =27 [ 30200 + elaala <0
I

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
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we have

d Y Vo)~
& (660 + 3lall ) + 37215l
-2
10 [p e+ elade <o G2)

Step 2. Multiplying the first equation of (3.1) by 4p°, integrating by parts, and employing the
Holder’s inequality, we deduce that

d, . - 9 s -
Gl 120l = <12 [ ol + plade

<z (ﬁ+ﬁ)”‘2(ﬁx)2>% (fo+p 4q2da:>é
=12 (G592 ) ([0 +J5ﬁ4)4_”|15|4”_12q2dx>é
<iz( [0 >dw>l\lp Fop L 1Al (3.29)

I

It suffices to bound the L> norm of $° + pp* on the right-hand side of (3.28), for this purpose,
we observe that

xT xT
P (x,t) + pp*(x,t) =5 / ppydr + 4p / PP pedr
0 0

<5 /0 B3 + Plpalde + p /0 PRI
<5 </156(25+ﬁ)d1‘>
I

1
s( [ #G+5)de) <515 + 55412 15
P (p+p)dr ) <5|p° + pp°| 2o 1Dl 2,

N[

([ i) +p [l @20

Noting that

we have

17 + pi e < 2C / P)(50)2da + 2p / 1513152 d. (3.30)

Substituting (3.30) into (3.28), we obtain

d . . B
—pl7a + 12(|5p2 |13
4—7

<iz( oo ﬂm)é (¢ [+ poordn+ 1) ™ 1A ol

44—y

(/1(15+ﬁ)w—2(z5gg)2dx>é (/I(ﬁ+ﬁ)(ﬁm)2d$+ ‘|ﬁz”%2>2 e

<C </I(15 +13)7‘2(15I)2d:c>é [(/I(ﬁ +z5)(z5x)2dw> - 15 1172° + Hﬁxllel : (3.31)

IN
Q



10 Z.-F. FENG, J. XU, K. ZHAO, AND C.-J. ZHU

We employ the Young’s inequality to the right-hand side of (3.31) to obtain
d ., . . e 2~
Gl + 1205713 < C [ G+ 92

4—
o ( / (15+15)(13m)2> 152125 + 1pal122 | (3.32)

When 3 < v <4, by virtue of Young’s inequality, we can get

4—
</(ﬁ+ﬁ)(ﬁz)2dw> Bl < (4= [G+ DB e + (=Dl

1

< / (5 + P)(5a)2ds + |1l (3.33)
I

We substitute (3.33) into (3.32), and use the elementary inequality 2|p| < p? + 1 to derive
d .
S Bl74 + 121172
< [+ 2o+ s ([ p)ioide + 21
I

<c /1 (5 + P 2(50) de + 61550 ]% + (B + 3)lIfel%e). (3.34)

Step 3. Let
d+9(y -2
24
Multiplying (3.34) by M, then adding the result to (3.27), we have

M, =

d o 1 B Yo o .
o (G(p,p) + §||q\|%2 + lelplfzn) + 5 2\1pul22 + 20|5P2 122 + €llgal|7

< MC(9) /I(pﬂ?)7 2(po)*dw + Mo ([|ppa 72 + (5 + 3) |15z 72)- (3.35)
Choosing
I ypr 2
= — 1

we obtain from (3.35)

d

R | . 91~ o
5 (G004 Ghals + Ml ) + 57 2l + 20 + <l

2
S

<C /l (p+ p) " 2(pe)da. (3.36)

Integrating (3.36) over [0,¢] and using (3.2), we have
LYo 2 2 2
G(p.p) + ||QHL2 + M| Bl 74 +/ (4P MPallzz + 15Pollz2 + ellazlz2)dr

< G(po,p) + *HQOIILerMszollm (3.37)

Q‘\Q 3
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3.1.3. L? estimate when v > 4.

Proof. Step 1. Since v > 4, as an application of Lemma 2.3, by letting a = %v we have
(3.38)

B+p) 220"+ (v = 2)p" P
Substituting (3.38) into (3.7), we have

d/ 1 o o
(G(p,p) 2\q||%2> + 907 2|Ba 32 + (v — 2)p" 3/p(zogc)zdﬂc+<€Ilqmlliz <0. (3.39)
I

dt

Since v > 4, by applying the Young’s inequality, we can show that

" bl _ (v—2\ 1= 1 plt 2= B!

6l =m - 2 < T ol Wl Iy S/ M vy o

m v—1 ! =1, ot ! n
which implies
. =N
—|pl = =" - T (3.40)
1

Substituting (3.40)into (3.39), we have

& (660 + 3012 ) 4297305~ (= 20l

~ 0 =2 - J 1 + el < 0 (3.41)
Uit
Next, by choosing
ﬁ
(B )
"= <2(7—2)> ’
we have
d o 1 Y oy~
% (669 + 3lali ) + 3721513
(3.42)

27—2 ,7_27—1 o
P =) /1 B (52) % + elgu %2 < 0.

Step 2. By multiplying the first equation of (3.1) by (v + 1)|p|"~!'p and integrating by parts

with respect to x over I, we obtain

a ( /I |p*|v+1dx) Ayt 1) /I B (a2 = —(y + 1) /I G+ D)l pode.  (3.43)

Since v > 4 and p+ p > 0, by using the Holder’s inequality, we estimate the right-hand side of
(3.43) as

1

2
s< G+7) |p\w|pxwm) lalloe 57
C

] [+ Dl e

—4

(/(PH?W 2|px|2dx>” 15117 prll” 2 (3.44)

IN
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To control the L> norm of p on the right-hand side of (3.44), we note that
sty = [ (69T do
0 T
=(v-1) /0 |6~ ppada
<G [
= (=) [ 15 e

<o-n(/f !ﬁl”dxf (/ |z»zw4rzsx|2cza:)é ,

which implies

1 1
e < (v 1) ( [ 150dz ) ([ 157 el )
15" lpee < (v — 1) I|p| x I\P| D | de
1
2
<c ( /I Iﬁ\7_4\ﬁx!2dw>

1
~y—1/~ \2 =~ 12 2
sc(/j 5 (52) dx+upwuLz). (3.45)

Substituting (3.45) into (3.44), we have
7= 3 -4
~ NAY—D | ~ R i y— A ~ ~ 1y—2
<o o nba) ([ ppa) 1
y=2 4
< =21 |2 Cy—dp~ 12 20078 353
< C(9) I(p+p) po|dx | +6 Ilpl || “d [

<C0) [+ e+ ( [ e + HM\%z)

/l (5 + Pl pode

<) [+ 9 s+ ( J 2um||%2) . (3.46)

where we have used the Young’s inequality |p|7~* < |p|"~! + 1 due to vy > 4. Substituting (3.46)
into (3.43), we obtain

d
d ( Iﬁl”“dx> +alr+1) [ 19 )P
< C(9) /I (B + D)2 |pu |2z + & (|| pal*da + 2||5]|32) - (3.47)

Step 3. It suffices to bound the last term on the right-hand side. To this end, let

_ 2+ 2 (v -2

Ms _
Yy +1)p
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Multiplying (3.47) by Ms3, then adding the result to (3.42), we get

d o 1 - Yo~
L G.p) + glze + M / B dz ) + 255 %
dt 2 . 2

42 /1 1B (50)2d + €l gal 2

< C0)y(y+1)Ms /1 (B + D) ?|Pel*da + 5y(y + 1) M3 ( /1 B (o) 2da + 2Hﬁxuia) . (3.48)

Choosing

1 ) N2
0=————min{=p""* 1},
Yy +1)Ms3 iy J

We obtain from (3.48)
d ~ 1 2 — 'y+1 7 —’y—2 ~ 2
— |\ GB,p) + Sllallzz + Ms [ |p["da | + 257" (|D2 |72
dt 2 ; 4
+ [0 G+ el
< C/(ﬁ + 9) 72| p|*dex. (3.49)
I

Integrating (3.49) over [0,¢] and using (3.2), we end up with

- 1 -
G(op) + yllalle + M [ 5 do
1
"
[ (G2l + [ 102 de s clasl ) o
0 I

. | _ C
< (G0 + ol + 2 [ 1)) + . (3.50)

This completes the proof of Lemma 3.2. The following lemma is concerning on the estimate of
the first order spatial derivatives of the solution. O

Lemma 3.3. (H'-estimate). Under the conditions of Theorem 1.1, for any v > 2, € > 0, and
t >0, it holds that

t
172 (D117 + llg= (1) Z2 +/0 (I7+ ()72 + llgr (7)][72)dr < C,

where C' is a positive constant which is independent of t.
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Proof. Taking the L? inner product of the first equation of (3.1) with yp?~2p; and the second
one with ¢, we obtain

d (Y o). 1 9~
& (3720012 + Gelaals ) + 20723 + ol
= [ Ga)adde + o9 [ s
I I
+ 7/[(13 +p) 7 = pegrdr +p ! /ﬁxqtdw + 2€/qqxqtdx
1

’Y
< 272l + gllals + 47 [ 160 P+ 407

_l’_

o /([(ﬁ +p) = p ) de + 4P |Bal|® + €l (ag2) I3
I

5

Y o~ 1

o7 2Bl + SllaelTe + ) (3.51)
i=1

Now we turn to estimate Jy, J3 and Js term by term. First, we have from Poincaré inequality
that

| = \W_? [ 1o

< 40" 2Bl Nl 72 (3.52)
For J3, by the mean value theorem, we have

F+p) " = = (= D()?p,
where p* is between p + p and p, satisfying |p*| < |p| + |p|. Then we have

s = / (G457 — p ) da
< 2(y—1) /I (1] + p)"~2ppe) e

2 2 _ _ ~ ~
< 29(y = D)BI7 2 1Bal22 + 2v(v — DB "2 1513 152122
~ —1 ~ _ _ ~ ~ ~
< 29(y = DB 15172 Bl 22 + 27 (v = 1)B2O 25| 21 Ball 22 | 5o 2.2

< ClBall 5ol 72 + Clpal g 7ol 72 (3.53)
For the case 2 < v < 3, by Young’s inequality, we have
_ 51
1Bal s < 3+ C&) Il 72 (3.54)
Substituting (3.54) into (3.53), we obtain
[l < lllie + CEIAle [ Il (3.55)

For the case 3 < < 4, by using the fact ||p]|7 > < C [, [p*0~3) |p,[?dz and [p[20—3) < |p]>+1,
we have

1517257 < C(lBpel72 + 152l 72)- (3.56)
Substituting (3.56) into (3.53), we obtain

3] < Cllipal 2 /I P+ Clpa|2 /1 . (3.57)
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For the case v > 4, Noting that |p|7~* < |p|"~! + 1, combing (3.45), we have

1l < 113 [ e+ Clals [ s
I I
1) /I p"da /I [P~ Pdallpe2 + C /1 [Pl

<c ( [ e+ [ wdx) TR (3.58)

For Js, using Sobolev’s embedding inequality, we have

| J5| = €| (qg0) |13

< ellgell72llgz |72 (3.59)
From (3.51)-(3.59), we have the following inequalities. For 2 < v < 3, we have
d oy 1
o (P23 + Slasle ) + 57715l 7e + 5 el

< C(IBal72 + lazl72) (I1B2l72 + ellawl2) + (15272 + llgal72)- (3.60)
For the case 3 < v < 4, we have

d oy~ 1

o (3P Bellze + SllaslZ2) + 35 BellEe + 5 el

< Oell3 + 199ell72 + las[32) (5ol 72 + ellasllf) + CUBallze + llaslF)- - (3.61)
For the case v > 4, we have

d
dt

< C(|1p= 7 +/I~V Y (o) da + [lgzl|72) (5o 172 + ellaalZ2) + ClBollZ2 + llazl72)-  (3.62)

We have from (3.60), (3.61) and (3.62) together with Gronwall’s inequality and (3.22), (3.37)
and (3.50) that for all v > 2 it holds that

Y Y oy~ 1
(37720532 + S llallZe ) + 2672 5el 32 + 5 laell3

t
721172 + llgz 72 +/0 (1el1 72 + el 72)dr < C. (3.63)
Combing (3.63) with the equations (1.1), we obtain
t t
[ aslade + [ laiar < . (3.64)
This completes the proof of Lemma 3.3. O

3.1.4. Global dynamical when 1 < v < 2. We first derive uniform energy estimates for the zeroth
and first order spatial derivative of the perturbation equation (3.1) by using the same method
as in [37, Lemmas 5.1, 5.2]. For convenience and simplicity, we only state the results here but
omit the specific proofs.

Lemma 3.4. Under the conditions of Theorem 1.8, for any € > 0 and t > 0, it holds that

t
- 1 - - o
18172 + 1817351 + 1Bl e + llall?a +/0 (I2l72 + 155272 + ellazl72)dr < C. (3.65)

Lemma 3.5. Under the conditions of Theorem 1.1, for any 1 <~y < 2,¢ >0 andt > 0, it holds
that

t
172 (D172 + llaa (D172 +/0 (IBea (P12 + €llgaa(T)I72)dT < C, (3.66)

where C' is a positive constant which is independent of t.
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Based on the Lemmas 3.2, 3.3, 3.4 and 3.5, we can obtain the second-order spatial derivative
of (b, q)-

Lemma 3.6. (H? estimate) Let (p,q) be a solution to (1.1). Then for any e >0 and v > 1, it
holds that

t
7oe (01172 + lldaa ()12 +/0 (1Bat 72 + gzt 72)dr < C. (3.67)

Proof. Taking 0, to the two equations in (3.1), then multiplying the resulting equations with
~vpY~20;p and O.q, respectively and integrating by parts over I, we deduce

d(~ o [ o 1 o [
= (g 2/|pt\2+|qt!2dw +p" 2/\pxt\2+€/!qm\2

:—w%{ﬁmmm—EAWmmm+vﬂm@um*—ﬁ%%awm

= Jg+ Jr+ Js. (3.68)

By using Cauchy-Schwarz inequality and Sobolev’s inequality, we have

1, _ _
[J6l < J1Patll” + CUIBIE= el Z2 + llallZo 151 72)

1, i i
< lBall® + CUPNael® + llge 1 [1721)- (3.69)

3
771 < Slla* + Cllgll < l:[1*

3
< Sllguill + Cllgal*llg:ll*, (3.70)

\MSv/@+m7%mM+v/m+mvLﬂWWmMm
I I

< Cllptllzeo1Pell 2 llgell 2 + /I(ﬁl + )72 |pl|Bol || dx

< Ol|Batll7z + Cllpall7zllgel 72 + ClipalZe a7 (3.71)
From (3.68)-(3.71), we have

d (v __ . 1 v -
— | =p” 2/!pt|2+\qtl2dw +4p” 2/!pxt|2+€/\qm|2

< C(lpellze + lawllZ2) BelIZ + llaeliZ2), (3.72)

which together with Gronwall’s inequality and (3.22), implies

t
1Pl 72 + llaelZ2 +/ (122172 + llgutl|72)dr < C. (3.73)
0

which together with the equations (3.1), we have

>+ Hwaw(T)Hz)dT <C. (3.74)

t
el + el + [ (1aaa(r)
Next, we prove the decay property recorded in Theoreml1.1.

Lemma 3.7. (Ezxponential decay). Let (p,q) be a solution to (3.2). Then for any e > 0,

1B, @)1}z < ™,

where the constants o, B are independent of t.
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Proof. First, for the case 2 <~ < 3, from (3.60), (3.63) and (3.72)-(3.22), we deduce that
1d

57 IBellZ2 + llaallz) + 1517 + llaellze < Crlllpallze + llaz72) (3.75)
and

d (”W [+ 1|qt|2dx) 29072 [1pabir + 5 [ laalar

dt \ 2 I 2 2 I 2 Jr

< Oo([152 172 + llga 72 + 15all72) + €llaul|72- (3.76)

Next, we fix a constant K7 > 0 such that
K x min{%ﬁ*,s} >C)+Cy+ 1.

Multiplying (3.21) by K7, then adding the resulting estimate to (3.75) + (3.76), we have

9 M)+ N(1) < Ky /I (5 + D)2, 2de (3.77)

where

1. 9y~
M(t) = KrG(t) + 5 (15272 + laxlzz + 92 l12el72 + laell72),

Y Vo~ _ Y oy~ 1
N(t) = Ka (02 lelFe + 166l172 +ellaallie) + 507 lbellze + Sllael e

Y oy— - € - o
+ 2572 [1paPda+ 5 [ laulPde = 0+ Colpl + ool + 157:1)

— &Il
(3.78)
Now, we fix another constant Ko > 0 such that
Ko > KiCs+ 1.
Multiply (3.7) by K3 and adding the resulting estimate to (3.77), we get
& (K:6G.9) + B2l + K110
X(0)
b (Ky — K1Cis) /1 5+ ) 2(52) da + Koellgul% + N(t) < 0. (3.79)

Y (t)

By employing Poincarés inequality, we can easily deduce that there exists a t-independent con-
stant C' such that

X(t) <CY (1),

which implies the exponential decaying of X (¢). Finally, the exponential decaying of ||(p, q)(t) H%IQ
follows from the fact that ||(p, ¢)(t)|52 < CX (). For the cases 1 <y < 2,3 <~y <4 and vy > 4,
the exponential decay rate of the perturbations can be proved by using exactly the same idea
as in the proof for the case 2 < v < 3, we omit further details here for brevity. This completes
the proof. O
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3.2. Dynamics of transformed system with ¢ = 0 and p > 0. In this section, we prove
the global dynamics of large-amplitude solutions to the non-diffusive problem. We shall see
from below that the proof of the non-diffusive problem relies on a non-homogeneous damping
equation equation of g,. Let us consider the following initial-boundary value problem

Pt — (P +DP)dlz = Peas

@ =@ +p) = pe — D7
(P, ) (,0) = (po — P, q0) ();
Pl{z=0.2=1} = 0.

71~ — 0
Pe =5 (3.80)

First of all, let’s recall that the bound about L?-estimate is independent on € in the subsection
3.1.1, so let € = 0, we have the following estimates.

A Y (GO T 0]
v I

+/Ot <7/(p+p)’7 *(ps) da?) (r)dr < C, (3.81)

i
d a u 4 =25 2 S
(p,p) + HQHL2+ 1151174 +P 1P ll72 + PP 172

<c /I (5 + 5 2(x) e (3.82)

If 2 <~ <3, we have
! Y 2 2 2
G(p,p) + IIQHLz +M1IIPHL4+/ (P MPallzz + [1PPl72)dr
C
< G(po,p) + ||<I0||L2 + Mi||poll7s + — S (3.83)

If 3 <~ <4, we have

4

C
< G(po,p) + Hqulm + Mz ol 74 + — 5 (3.84)

t
N oo~ _
G,p) + glalla + Mol + /0 Q52 pallZe + 752 122)dr

If v > 4, we have
G,p) + glalla + Mol + / 55,2 + / B (52)2da) dr

. C
< G(po,p) + *HQOI|L2+M3HI)0HZﬁ1 o (3.85)

Lemma 3.8. (H'-estimate). Under the conditions of Theorem 1.1, for any v > 2, and t > 0,
it holds that

t
172 (01172 + llg=(t)]1Z2 +/0 1Poallz + llazllz < C, (3.86)

where C' is a positive constant which is independent of t.

Taking 0, to the second equation of (3.80), then subtracting the resulting equation from the
first equation of (3.80), we obtain

Got = 0" [P — (50)s — D] + (v = 1)@ +5) 2 (B)* + (B +D) T =0 Dbew. (3.87)
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Multiplying (3.87) by ¢, and integrating by parts, we have

ld 2 = 2
§$||QCE||L2 + 90" qz |72
~y—1 d 5 -1 [ 5
=g Dqzdr — vp DYzidx
I I

—p /I(ﬁQ)qudx +y(y—1) /1(15 + ) (Pa) *qude

+7/[(ﬁ+p)71 _pfyil]ﬁ:c:c%cdx

I
d 12
_ 7]57—1% Iﬁqxdaj‘ +) (3.88)
=9

Next we carry out energy estimates for Jg, Jig, Ji1, Ji2. For technical reasons, we divide the
proof into three subsections for the cases:2 <~ < 3,3 <~ <4, and v > 4.

3.2.1. H' Estimate when 2 <y < 3.

Proof. Since 2 < v < 3, by Young’s inequality, one has
B+p) <22 ) <221+,

which combing the second equation of (1.2), we have

o] = 77| /I Pauidz]

v / Fraedal
I

IN

i /I 5+ ) (o) ]
< D22 2 + 2225 (14 5 |l (3.80)

For Jig, using Cauchy-Schwarz and Gagliardo-Nirenberg inequalities, we have
| Jio] = 79" /(ﬁQ)med$|
T

< &llazll7z + CE)IPall72 gz 72 (3.90)

J11 can be estimated by Cauchy-Schwarz inequality and Gagliardo-Nirenberg inequality as
ul =296 = DI [ G+ 5252 g
I
< ([ 1o 25 Plasdde + [ 17 acldo)

1

2
<c ( / |ﬁ!2”_2)(ﬁx)2dw) Bellze a2 + Clpe o 1Bell 2 lge 2

e - Lo i e e -
< CIPPel72 + 192 1172) 2 (1Pel FollPaell 72 + 1Bl 22) gl 2

1 1
+ ClPell 72 1Pzl 72 + 1Pzl L2) 1P | 2l g 2
< 8)1PaallF2 + CO) 18Dz 72 + 1Ball72) ldall72 + 18Pl 72 + 15a]l72)- (3.91)



20 Z.-F. FENG, J. XU, K. ZHAO, AND C.-J. ZHU

Recall that (5 +p)Y~1 < (v — 1)(|p| + p)?"2|p|, we can estimate J12 as
gl =125 [1G+57™ = st
I
<290~ 1) [ (7l + 57 |ilprelllda

~ —1 ~ A — ~ ~
< 29(y = D|IB} o 1Bzallz2llgzll 2 + 2v(v — D)D" 215l oo |Paal 12 || g | 22

=1 1
< COUIpll s + 1Pl 72)1Prallp2ll gz 22
< 0llpaalze + &llgzllZ2 + C(& O)PalZ2llgzllZ2,

(3.92)

where we have use the Young’s inequality C(5)Hﬁx\|z;1 < g—i— C(6,8)||pz]l32 due to 2 <y < 31in

the last inequality. From (3.88)-(3.92), we have

1 d 2 ~—1 d ~ — 2
§@Iqullm — D pm Ipqxderw”IIquLz

< 8llpaallze + EllaallF2 + CUBBNZ2 + |1BallF2)gallF2 + Cllpbali2 + Cllpall7e-

Multiplying the first equation of (1.2) by —vp?~?pse, we have
7*|ﬁ‘7_2”ﬁx"%2 +’Yﬁy_2”ﬁx:c”%2 = _7157_2 /I(pQ)xﬁmcdx - '7]57_1 /]qq:]smcdx

Y 2 _
< 50" 2 lBaallzz + CUIpallz2llax 72 + llaxlZ2)-

Adding (3.94) into (3.93), we obtain
d (v _ o~ _ -
o (37 215+ aale = 27! [ ance)
~

—2~ Y
+ 5]77 2prz||%2 + 5137”%:”%2

< Cl(I7al72 + 1zlIF2) gz 72 + 18Bal172 + l152]172)-
Multiplying (3.82) by M4 and adding the resulting equation into (3.95), we obtain

d - 5
SGi(0) + Hi() < ClUIaR s + 172132 law 13
15522 + 15al|22] + MiC / (5 +5)72(5a)?ds,
I
where
Y ~—2 ~ v N
Ga(t) = 372l + Nl — 7 [ s
I
M, o 1. My .
+ 20 (G497 =57 =g ldo + 5l + Mad
- I
1 o 1 My o s
Hy(t) = 590" *l1Baalliz + 570" gellZ2 + =707 1BellZ2 + Mall el
By Cauchy inequality, we have
IS 1 (o1
=" [ e > =Ghaslts — Tl

By virtue of Lemma 2.1, we have

M o 1 o~
2 169 =7 = e = 200 - 05 2l

(3.93)

(3.94)

(3.95)

(3.96)

(3.97)

(3.98)
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Y ooy~ 1 _ My _
Gi(t) > §W 1Bl + 5”%”%2 +|1l72 + 7”@“%2 + My My ||| 74,

which implies
lgz)172 < 2G1(t).

Substituting (3.99) into (3.96), we have

d . -
2 C1(0) + Hi(t) < C(l5palI72 + I72]172) G1(2)

+ C(1pellze + 162 ]72) + KaC /I (B+ )" (Br) da.
Applying Gronwall’s inequality to (3.100) and using (3.81) and (3.83), we obtain
t
G1(t) +/ Hy(r)dr < C,
0

which implies that

t
r@@ﬁwm@+lumﬂ§HMMwhsc

for some constant which is independent of ¢.

3.2.2. H' Estimate when 3 < v < 4.

Proof. By using (3.56), we can estimate Jig as

ol = 4257 /I (5 + )" (5a)2dal
~ -1 ~
< COIBILE + 1)lIpa 2

-~ ~ 1 ~
< ClIppalze + 1B2172)% + 115172
< C(ll5pallz2 + P2l Z2) 1Pzl 72 + CllpelIZ2-

For Jig, by using Cauchy-Schwarz inequality and Sobolev inequality, we can show that

ol = 7Y /I (§0)og0dal

< €llazl7z + CE)IPoll72 4z 72

21

(3.99)

(3.100)

(3.101)

(3.102)

(3.103)
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For Jy1, it is straightforward to check that

il = 240y - 1)] /I (5 + P2 (52)2quda]
<o /I 1572150 gl + /I 1522 |der)

<c (upnmumnm [ 15l + il [ |ﬁx||qxrdx)

1
2
< CllIpllzoe 1P2 | e (/1 |ﬁ|2(7_3)|ﬁ1|2d$> gzl r2 + D]l ||Pell 22 1@ | 2]
e 112 2 NAis s s nkns gl -
< C | (Ipp2llz2 + P2l 22) 2 1D2]l 72 (P2 | 2 1Pae |2 + 12l £2) [l gl 2
o83 1 _
(1Dl 72 [Pl 72 + ||pwHL2)||qx||L2:|

~ . - 2, 4 4 - 4
< 0|1 Prallie + ClUPPlT + 1P2ll72) 3 1P2ll5 lgulls + 1Pall 72 ll gl
< 8llpaellie + CO[IBPN72 + 1Bl 72) (B2ll72 + llaelF2) + 1PellF2)- (3.104)

For Ji9, similar to (3.53), by virtue of (3.56), we obtain
el = 127 [ [+ 57" =57 et
<2907 = 1) [ (5] + 51l
I

~ —1 ~ vy — ~ ~
< 29(y = DB} 1Bzallz2llgell e + 2v(v = D)D" (18]l oo | Paal 12 | g | 22

~ ~ —1 ~
< Ollpea 72 + CEOUBNT " + 152l 2)llgall72

< 5”15:%”%2 + €||Qx||%2 + C(&, 5)”1396”%2)”%H2L2 (3.105)
Step 2. The subsequent coupling are identical to those presented in section 3.2.1 for the case
when 3 < v < 4. We omit the technical details for brevity. ([

3.2.3. H' Estimate when vy > 4.

Proof. Step 1. By using integration by parts and (3.45), we obtain
ol =297 [
=7 [ el
<70 /1 (B + )" (x)d|
< ([ 107 Pde + ). (3.106)

J1g can be estimated as

ol = 7Y /I ($0)2g0da]

< &llgulF2 + COPal2gu] 32 (3.107)
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Recalling (3.104) and using (3.45), we have

= 290y — 1) /1 (5 + P)2(50)2quda]
<o /I 15172150 lged + /I P 2lgald)

< 8paallz2 +C(0) {(/1 167 () ?de + 1Palz2) (IBallZ2 + llgallz2) + 1BallZ2 | - (3.108)
For Jio, similar to (3.105), by using (3.45), we obtain
[J12] = |2y /l [(5+p)"" = P IPaagudz]
< OB+ 1Bllzee) 1B 22 g | 2

< 8)1aallte + Ellaall2 + C(E, 5)(/1 1B (Ba)?dz + |1zl 2) 4o 17 - (3.109)

Step 2. Again, the subsequent coupling are identical to those presented in section 3.2.1 for the
case when 2 < v < 3. The details are omitted. Hence we conclude that for any v > 2, the
following estimate holds

t
lgzll72 + 15272 +/0 (lgzll32 + 1Paz]32) < C. (3.110)

Combing (3.110) with equation (3.80), we obtain immediately

t
[ 1 + ) adr < . (3.111)
which implies
t
[ ualiz <
0
|

Taking 0 to the two equations in (3.80), then taking the L? inner products of the resulting
equations with the first order temporal derivatives of the solution, we obtain

d (v —2/ 9 1 2 —2/ ~ 12
_ L aY - =Y
pr <2p Ilptl +5lal”) +p I\pm!

== [ G +20 =) [ G+ Fpeatdo 4 [ (5497 =7 s
= Jig + Jia + Jis- (3.112)
Let us estimate Jy3-J15 term by term.

Ji3 < lPallze + (1272 + lawlZ2) (1Pl 72 + llaelZ2). (3.113)

Ju =y — 1) /I (5 + B hinarda

< Clpellzs + (1Pallz2 + 1Paallz) iz (3.114)

VP!

—2
1Pl + CllaillZe. (3.115)

J15 <
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Plugging (3.114)-(3.115) into (3.112), we have

d (v —2/ IO 72372/ - 2
_ LAY _ g
pn <2p Ilptl +2!th + I|pa:t|

< (IBall7> + lgzlZ2) 1Pl Z2 + laelZ2) + CllpellZs + Cllaclze. (3.116)
By virtue of Gronwall’” inequality and (3.81), (3.110) and (3.111), we obtain
17el172 + llgel72 < C, (3.117)
which implies
Baa72 < C. (3.118)

Remark 3.1. When e = 0, the proof of the exponential decay rate of ||p(t)[32 + lq(t)||F: <
are Pt s essentially identical to that of the diffusive problem by using the same method in
Lemma 3.7. We omit further details here for brevity. This completes the proof of Theorem 1.1.

O

3.3. Dynamics of original functions. In this section we investigate the long-time behavior
of the original chemotaxis model. Noticing that the transformed and pre-transformed systems
have the same quantity n = p which is clear from the above sections, here we are left to consider
the dynamics of original function c. At frst, we consider the following equation

In(e))e = (7 + )" — p+eqo + ¢,

where 7 = n — 71, ¢ = [In(c)],. Solving the above equation, we have

c(z,t) = c(x,0) exp {/0 (n+n)” —n"+eq. + 6q2)d7} exp{(n” — p)t}, vt > 0.

Because of the exponential decaying of ||(72, q)(¢)||3,2, we easily see that there exist t— indepen-
dent constant ¢, co such that

t
c1 < exp {/ (n+n)” —n" +eq + qu)dT} < .
0

Moreover, since 0 < ¢ < ¢(z,0) < ¢ < oo, it holds that
cerexp () — p)t < c(x,t) < cegexp{(n” — p)t},
which implies that ¢(z,¢) > 0 for all ¢ > 0, and
c(z,t) = 0 as t — oo, when 1) < p,
c(x,t) = +oo as t — oo, when i) > p,

for € > 0. This completes the proof of Proposition 1.2.

3.4. The case p = 0, ¢ > 0. In this section, we give a ketch of proof for the case p = 0 and
¢ > 0. For convenience, we restate the following IBVP:

pt — (P0)x = Paa;

Gt — (P")x = €qze + (¢%)a,

Plz=02=1 = 0, qlz=02=1 =10, € >0 (3.119)
Pla=02=1 =0, € =0

(P, ¢)(z,0) = (po, @) ().

We divide the subsequent proof into several steps.
Step 1. Testing (3.119), with %p”f_l and (3.119), with q, and adding the results, we have

t
/deer lq||%2 +7/ /p7_2p920d1:+8Hq$H%2dT <C, (3.120)
1 0 JI
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where C' is independent on t and . Multiplying the first equation of (3.119) by p, we have

1d

2 2
S pll” + [P z—/pqpxdx
3P+ Iell* = = | (wap)

1
< 7Pl + 1ol 7o llall®

I?

1
< 2 llpell® + 21 1Pzl llal®

1
< Slpell® + 4lpl*llall,

which implies that

1d 1
5 g7 IPI” + Izl < Cllpl1* (3.121)

Applying Gronwall’s inequality to (3.121), we infer that

M@W+Anmewsc, (3.122)

where C is an increasing function of ¢, but independent on ¢.
Similar to the idea (3.19) in section 3.1.1 and (3.34) in section 3.1.2, for any 2 < v < 4, we also
have

d. B o n i
S 1Bl7s + 120ppo 172 < C/I(erp)7 2(py)?da + 6(||ppal)® + 3|1Pe|22)- (3.123)

Let § small enough, then integrating the resulting equation over (0, ), together with (3.122), we
obtain

t
I8 + [ Il <. (3.124)
0
where C' is dependent on ¢, but independent on &.

Lemma 3.9. Under the conditions of Theorem 1.3, for any v > 2, € > 0, and t > 0, it holds
that

t
152172 + gz (t)17.2 +/0 (IPaz (T 72 + €llgaa (-, T 72)dr < C,
where C' is a positive constant which is independent of ¢.

Proof. Multiplying the equation (3.119); and (3.119), by —ps, and —gy,, respectively. Then
integrating by parts and summing up the resulting equations we have
1d
2dt
= / (Pq)apazdr — 2¢ / 9o Qeads — / P’ Pauada
I T I

(lpell* + llgall®) + Ipaall® + ell oo I

=— / PaqPzzdr — / PGzPazdr — 2e / 9Q2Qeadr + (v — 1) / P2 (pr)qude
I I I I

+ / P Prrgedr
I

20
=> J (3.125)

1=16
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For Jig, by using Sobolev inequality and Young’s inequality, we have

Ji6 < ||pzllze= gl [Pz2|l

1 3
< Ollpzll2 lgllpexll 2
< Slpae|® + CO)||pa -

Similarly, J17 can be estimated

Jir < |plleee gz I[Pz |
< 5”17:693”2 + C(é)|’pr2HQmHQ~

g
|J1g] < §quH2 + 2¢]|q]1?(| gz |I*-

For Jy9, when 2 < v < 3, we have

1
2
Jio <10y~ 1) ( / p2<7—2><pm>2dx> el s |

1 1 1
< (v = D(llppall® + Ipzl*) 2 1pa 1 [ paz 1%l go |
< 8llpazal® + CO)(lppal® + llpal*) gzl + 2]

—1
Joo <Al e 1Pzellll gzl

.
< Cllpzll ™ lpeelll gzl

< 8)|paall” + C(0)[|pal” g ||

< 6lpaall® + Ellazl” + C (8, O)lIpa|* gz 1.

when 3 < v <4,
Jio < Cllpl o [pall = / 1P pallgo|d
I

1
2
< Cllpll=lIpsll o= ( / |p2<“>px|2dx) e

< 8llpaell* + Cllppall® + Ipal®) Ulpell + llg2l*)

-1
J20 < Clpll e l[pae|lllgz |l

1
< O(|lppa|® + 11p2)1?) 2 |Paal |l g
< S|paal® + CO)(lppal? + Ipal*) Nl g2

(3.126)

(3.127)

(3.128)

(3.129)

(3.130)

(3.131)

(3.132)
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When v > 4, we have

ol aJ_
Jio < C /I 19131013 2 s 2ol d

IN

4 2 2 2
% ( s dx) 1ol ol o g L2

IN

2 2 2 3 3
C (/Izﬂ (pz)“dx + ||z ]| > [Pl £ 1P| oo [ g

3
_ 1 1 1

<C (/I Ip|” Q(Pz)de + HPIHQ) P2 12 | pae|2 || gz

< 5HpmxH2 + 0(5) (/I |p!772(pz)2dx+ HPIHZ) (pruz + HQ:UHZ) (3.133)

1
J2o < Il Lo 1Pzl g ||

—2 2 2 %
< ( [ 7P+ o ) peollligel
I

< Slpaal® +C ( [ 2200 + ||px|2> ol (3.134)

When 2 <~ < 3, inserting (3.126)-(3.130) into (3.125), we obtain
1 d(
2dt
< Cllppsll® + Pl lgall? + Cllpa||* + Cellas|l?, (3.135)

which together with (3.120), (3.122) and Gronwall’s inequality, we have

1 15
I ll” + [lg=(1%) + inzacHQ + §|!qu2

t
pall? + llga® + /0 Ipell? + llase|2dr < C., (3.136)

where the constant C' is independent of e. When 3 < < 4, combining (3.125)-(3.128), (3.131)
with (3.132), when > 4, combining (3.125)-(3.128), (3.133)and (3.134), then using the same
method as the case 2 < v < 3, we can also obtain the result (3.136). This completes the proof

of Lemma 3.9. Then using the same idea as in [37, Theorem 1.2], we can show that
1" = D)D) + (@ = p") )P < caze™e. (3.137)
We omit the details of proof for brevity. This completes the proof of Theorem 1.3. O

4. PROOF OF THEOREM 1.4

In this section, we are devoted to the study of subject to the Neumann boundary condition
for p. For the reader’s convenience, we rewrite the following initial-boundary value problem:

;

Pt — (P92 = Paa

@ — (D)2 = oz +€(¢*)a

(p @) (2,0) = (po, q0)(x), (po— P> q0) € H'(0,1), (4.1)
po(z) >0, z €[0,1],

Palz=02=1 = 0, q|z=02=1 = 0.

where p = fol po(z)dzr > 0 denotes the spatial average of the cell density, which is a conserved
quantity.
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First of all, under the Neumann-Dirichlet boundary condition, we note that Lemma 3.1 still
holds true for (4.1). That is to say, we have the following energy estimate:

— [ 16+ =5 e + 501
w [ (3 [+ 2o+ s ) (rhar < c. (42)

Let p = p — p, we have
ﬁt - (ﬁQ)m — PGy = ﬁmza
g — Y@+ =D e — D' Pr = eua + €(¢%)a,
(o, q0)(z) = (po — P, q0)(x), (Po,q0) € H'(0,1),
ﬁx’x:ﬂ,x:l =0, q’:c:[),le =0.

(4.3)

In particular, making use of the fact [ ;p(w,t)dr = i} 7 po(w)dx = p, we conclude that there exists
a x* € I such that p(z*,t) = p which implies p(z*,t) = 0, so we only need to make some small
modification in the proof of Lemma 3.2. Then we have the following lemma.

Lemma 4.1. Under the conditions of Theorem 1.3, for any v > 2, € > 0, and t > 0, it holds
that If 2 <~ < 3, we have

t
Y =2~ s
Gl ) + gllall + ML+ | G2l + 175 3 + el 2 )ar

C
< G(po,p) + HqOIILz + M |poll 74 + > (4.4)

If 3 <~y <4, we have

t
Y 2y - __
G(p,p) + HqHL2 + Ma|p 74 +/0 (" 1B2llz2 + 1PB2 T2 + ellgallz2)dr

C
< G(po, p) + *HqOIILz + Mol|poll s + o (4.5)

If v > 4, we have

t
Y y—2p~ v/~
G5 + gl + MG + [ G2l + [ 157 (5o)Pde + <l )ar

_ 1 C
< G(po,p) + *HQOHLerMllpoHZfH 5 (4.6)

To simplify the presentation, we omit details of the proof of Lemma 4.1 here. The following
lemma gives the H' estimate.

Lemma 4.2. Let (p,q) be a solution to (4.3). Then for any e > 0, it holds that

1P a2) ()1 + /0 5o (T + llgz(7)I* + e(llge (7)1 + llgza (7)|*)dr < C, (4.7)

where the constant C is independent of t and €.

Proof. By using the boundary conditions we can deduce that €¢zz|e—02=1 = (¢ — v, —
264qz)|2=0,2=1 = 0, then taking J, to the second equation of (1.2), we have

qzt = 7]57_1[@ - (ﬁQ)x - pqg:] + €qzax + 5(q2>:1:x
+y( = DB+ (0)* + (B + )T 7o (4.8)
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Multiplying (4.8) by ¢, and integrating by parts, we have
d (1
% (Gllanlite) + 2"l + el
ad [ _ - o -
=p / Pazdz —yp7 ! / Paarda —yp7 ! / (Pq)2qudx — 2 / 949z qzade
dt Jr I I I
+y(v—1) /1(15 +) % (Pr) qudr + /1[(]5 +9) 7 = 0" prageds
—y—1 d ~ 2——1 ~ NY—1/~ \2 —y—1 ~

=W Ipqzdx +97p I(p +p)" (Pa)°dz + evp Ipxqmda:

+25’Yﬁ’y_1/qqrﬁmdx _7]57_1 /(ﬁQ);BQ:cdx - 25/QQ$Q$xdx

I I I
+y(y—1) /1(13 + ﬁ)’y_z(ﬁxyq‘rdx + /][(15 +p)v_1 - pfy_l]ﬁxexdm- (4.9)
Multiplying the first equation of (4.1) by —vp?~2p,., we obtain
Ay _ o o~ _ oy _ -
%gp'y 2”]%”%,2 +’7ﬁy 2”]%62”%2 = _'Yﬁy 2/(pQ)xpzz _'Vﬁy I/przz' (4-10)
I I
Taking the L? inner product of (4.1), with —gu, we obtain

1d

gl 3 + el

=1 /1 [(5+p)"™ = " pradedz + (v — 1) /I B+ D)% (Pa) quia

_7p71/ﬁ$sz - 25/QQxQI$dx~ (411)
I I

Adding (4.9),(4.10) into (4.11), we have

d (v _,_9,- o N
Y5251, + lgallZe — 757! / pauda
dt \2 .

5"l + 957 00l12e + 2l gl e
2y—1

— /1 5+ P (o) 2dx + 2 /1 G+ 57" — P pregode

L oy(y - 1) /1 5+ P)2(50)2ud — 4P~ /I (50)aBonde — 57! /I (50)eguda

+eyp?? / PrQeadr + 267p7 / qqzPedr — 4e / 44z Greda
I I I

28
=> I (4.12)

=21

Then using the similar method as in [37, lemma 3.3], we get the result, we omit the detail
for brevity. The exponential decay rate of the perturbations can be proved by using exactly
the same idea as in the proof of Lemma 3.7 through coupling together the energy inequalities
(4.4)-(4.7). To simplify the presentation, we omit further details here, the finial estimate reads

1B 7 + la®)IF < aze™™".

for some positive constant a3, $3 which are independent of time. This completes the proof of
Theorem 1.4. [l
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