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Abstract

The Coulomb and Yukawa potentials of particles are derived from the Schwinger field
theory at zero and the finite temperature. At the same time the correction to the Coulomb
potential is determined for the two charges interacting in the photon black-body sea by the
photon exchange mechanism. The running coupling constant is determined in dependence
on the mean free path of photons in the photon sea. The relation to the Cooper pairs and
phonon-phonon interaction at finite temperature is discussed.

1 Introduction

All properties of a superconductor, including ground-state energy, critical temperature,

quasi-particle energy spectra containing gaps, supercondensate density, specific heat, and

supercurrent density can be computed in BCS theory without mathematical complexities.

The attraction of two electrons in BCS can be in simplicity explained. An electron in a

metal normally behaves as a free particle. The electron is repelled from other electrons due

to their negative charge, but it also attracts the positive ions that make up the rigid lattice

of the metal. This attraction distorts the ion lattice, moving the ions slightly toward the

electron, increasing the positive charge density of the lattice in the vicinity. This positive

charge can attract other electrons. At long distances, this attraction between electrons

due to the displaced ions can overcome the electron repulsion due to their negative charge,

and cause them to pair up. The quantum theory explanation shows that the effect

is due to electron-phonon interactions, with the phonon being the collective motion of

the positively-charged lattice. The energy of the pairing interaction is quite weak, and

thermal energy can easily break the pairs. So only at low temperatures, in metal and

other substrates, are a significant number of the so called Cooper pairs.
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The electrons in a pair are not necessarily close together and paired electrons may still

be many hundreds of nanometers apart. This distance is usually greater than the average

inter-electron distance, so, many Cooper pairs can occupy the same space. Electrons are

fermions with one half spin, but the total spin of a Cooper pair is integer, zero, or one.

So, it means a Cooper pair is a composite boson. This means the wave functions are

symmetric under particle interchange. Therefore, unlike electrons, multiple Cooper pairs

are allowed to be in the same quantum state, which is responsible for the phenomena of

superconductivity.

The determination of potential at finite temperature is one of the problems which

form the basic ingredients of the quantum field theory (QFT) at finite temperature. This

theory was formulated some years ago by Dolan and Jackiw (1974), Weinberg (1974) and

Bernard (1974) and some of the first applications of this theory were the calculations of

the temperature behaviour of the effective potential in the Higgs sector of the standard

model.

Information on the systematic examination of the finite temperature effects in quantum

electrodynamics (QED) at one-loop order was given by Donoghue, Holstein and Robinett

(1985). They have treated the calculation of mass, charge, wave function renormalization

and so on and demonstrated the running of the coupling constant at finite temperature

and discussed the normalized vertex function and the energy momentum tensor.

A similar discussion of QED was published by Johansson, Peressutti and Skagerstam

(1986) and Cox et. al. (1984).

The finite-temperature QED, QFT and also quantum chromodynamics usually deal

with the specific processes of these theories in the heat bath of photons or other particles.

The term ”finite-temperature” implies the presence of the medium formed usually

by the electron-positron and photon gases which is in the thermodynamical equilibrium

of some temperature T ̸= 0. Such a definition is used, for instance, by Zhukovskii et

al. (1995) in the determination of the electron mass operator of the electron at finite

temperature. It is evident that the heat bath can be formed by different kinds of

elementary particles and so such different hot media have a different influence on the

same specific physical process developing in the media.

We use here the finite-temperature methods and Schwinger theory for determination

of the Coulomb and Yukawa potentials at finite temperature. At the same time we derive

the modified Coulomb potential from the two-charge interaction by the exchange photon

mechanism in the photon sea (Pardy, 1994a). The phonon sea as the analogue to the

photon sea is discussed.

2 Formulation of the problem in field theory

The basic formula of the Schwinger field theory is the vacuum-vacuum amplitude

(Schwinger, 1970):
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⟨0+|0−⟩ = e
i
h̄
W , (1)

where in the case of the electromagnetic field the action W is defined as (Schwinger et

al., 1976)

W =
1

2c2

∫
(dx)(dx′)Jµ(x)D

µν
+ (x− x′)Jν(x

′), (2)

where Jµ ≡ (cϱ,J) is the conserved current and Dµν
+ (x− x′) is the photon propagator in

a medium with the index of refraction n, the magnetic permeability µ and the dielectric

constant ε.

The equations corresponding to the action (2) are as follows:

∆φ− µε

c2
∂2φ

∂t2
= −1

ε
ϱ (3)

∆A− µε

c2
∂2A

∂t2
= −µ

c
J. (4)

The explicit form of Dµν
+ (x− x′) has been obtained by as (Schwinger et al., 1976)

Dµν
+ =

µ

c
[gµν + (1− n−2)βµβν ]D+(x− x′), (5)

where βµ = (1,0) and

D+(x− x′) =
∫ (dk)

(2π)4
eik(x−x′) 1

|k2| − n2(k0)2 − iϵ
(6)

with kµ = (k0,k). The Green function D+(x− x′) can be further specified as

D+(x− x′) =
i

c

1

4π2

∫ ∞

0
dω

sin nω
c
|x− x′|

|x− x′|
e−iω|t−t′| (7)

by the standard contour integral method (Schwinger et al., 1976) .

The vacuum persistence probability follows from eq. (1) in the form (Schwinger et al.,

1976) :

|⟨0+|0−⟩|2 = e−
2
h̄
ImW . (8)

In order to derive the Coulomb law at zero temperature from the actionW , we consider

the physical situation where the photon source Jµ varies very slowly in time. Then, in

order to obtain this limit, we write for the action (2) (Schwinger, 1970):

W =
1

2c2

∫
(dx)(dx′)dx0dτJµ(x, x

0 + τ/2)Dµν
+ (x− x′, τ)Jν(x

′, x0 − τ/2), (9)

where D+ is given by eq. (7) with x0 = ct.

Now, let us consider the quasistationary arrangement (Schwinger, 1970) in a such

sense that we begin with the vacuum, we turn on these sources slowly and then keep
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them constant for a long time T. The fact that the sources do not change appreciably in

time means that their Fourier transforms are essentially restricted to zero frequency.

The structure ofW then reduces to an account of the instantaneous coupling of sources

involving the spatial function

∫ ∞

−∞
dτD+(x− x′, τ) =

i

c

1

4π2

∫ ∞

0
dω

sin nω
c
|x− x′|

|x− x′|

∫ ∞

−∞
dτe−iω

c
|τ | =

1

4π

1

|x− x′|
, (10)

where we have used the relation

∫ ∞

−∞
dτe−iω

c
|τ | =

2c

iω
. (11)

The vacuum amplitude (1) can be written in this case in the form

⟨0+|0−⟩ = exp
[
−i
∫

dx0E(x0)
]
, (12)

where (c = n = µ = 1)

E(x0) =
1

4π

1

2

∫
dx dx′ [ϱ(x, t)ϱ(x

′, t′)− J(x, t) · J(x′, t′)]

|x− x′|
. (13)

Now, if we restrict the situation to the stationary regime, then we get:

E =
1

4π

1

2

∫
dx dx′ [ϱ(x)ϱ(x

′)− J(x) · J(x′)]

|x− x′|
. (14)

The last formula implies the Coulomb and Amperian interactions of charges and closed

currents. We can see that a substantial step in the derivation of the Coulomb potential

was the τ -integration of the Green function (7).

3 The Coulomb potential at finite temperature

The situation at finite temperature is similar, the difference being that the Green function

D+ has the finite-temperature correction as follows (Pardy, 1989):

D = D+ +DT , (15)

where

DT (x− x′) =
i

c

1

2π2

∫ ∞

0
dω

sin nω
c
|x− x′|

|x− x′|
cosω(t− t′)

exp(h̄ω/kT )− 1
, (16)

where k is here the Boltzmann constant.

The finite-temperature correction to the original Coulomb potential is obviously an

analogue of eq. (10):
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VT =
∫ ∞

−∞
dτDT (x− x′, τ). (17)

Using the definition of the delta-function

δ(ω) =
2

cπ

∫ ∞

−∞
dτ cos

ω

c
τ (18)

and after some integration we get the final formula

VT =
in

8πh̄c
kT, (19)

where n is the index of refraction which can be determined by the plasma fluctuation

methods and it depends on temperature.

The derivation of the potential at finite temperature was performed as an analogue

of the derivation of the Čerenkov radiation at finite temperature where the substantial

temperature effect was involved in the finite-temperature part of the photon Green

function (Pardy, 1989).

The fact that the finite-temperature Green function generates the complex potential

has no classical analogue, and it is a result only of the quantum field theory. We can

easily see that the classical definition of potential cannot generate the complex part. If

we have a charged particle immersed in the heat bath, and if Fext is a classical external

force acting on this particle, then the average average potential corresponding to this force

and to the stochastical force generated by collisions of the test particle with the particles

of the heat bath is as follows:

−⟨V ⟩ =
∫ b

a
Fext · dx+

∫ b

a
⟨Fs⟩ · dx =

∫ b

a
Fext · dx, (20)

where a and b are space points; the potential is considered between them, and Fs is the

stochastic force which is caused by the collisions of a test particle with the particles of the

heat bath. The average value of this stochastic force is evidently zero. In such a way, the

stochastic collisions of a test particle with the particles of the medium does not generate

the complex potential in classical physics. Such potential is a result only of the quantum

field theory.

The physical meaning of the imaginary part of this potential can be seen from the

relation |⟨0+|0−⟩|2 ≤ 1, which contains an exponential term dependent on temperature

and which can be interpreted as the non-stability of the vacuum-to-vacuum amplitude,

or, in other words, the finite life-time of the vacuum-to-vacuum transition.

4 The Yukawa potential

While we have worked with the massless photon field in the previous section, now let us

first determine the potential for a field of massive particles. For spin 0 we have (Schwinger,

1970)
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W =
1

2

∫
(dx)(dx′)K(x)∆+(x− x′)K(x) (21)

and for spin 1 it is [8]:

W =
1

2

∫
(dx)(dx′)×

[
Jµ(x)∆+(x− x′)Jµ(x

′) +
1

m2
∂µJ

µ(x)∆+(x− x′)∂′
νJ

ν(x′)
]

(22)

with (c = 1),

∆+(x− x′) =
∫ (dk)

(2π)4
eik(x−x′) 1

|k2| − (k0)2 +m2 − iϵ
, (23)

where the last formula is the Green function for the massive field with mass m. For higher

spin the action W is more complicated.

The algorithm of the calculation of the potential corresponding to the massive field

with spin is the same as for the massless field. In such a way we write

V (|x|) =
∫

dτ∆+(x, τ) =
e−m|x|

4π|x|
. (24)

In case of the finite temperature, we use the transformation

1

p2 +m2 − iϵ
−→ 1

p2 +m2 − iϵ
+

2πi

exp β(E − µ)− 1
δ(p2 +m2), (25)

where we have generalized the Einstein-Bose distribution by adding to the energy E the

chemical potential µ. While for photons the chemical potential can be shown to be zero,

for massive particles it is necessary to use the non-zero chemical potential. This potential

enters the first law of thermodynamics for cases involving a varying number of particles:

dE = TdS − PdV − µdN, (26)

where E is the internal energy of a system, S its entropy, P is pressure andN is the number

of particles. For the zero value of the chemical potential the formula (25) has an infra-red

divergence and must be investigated by special mathematical techniques (Weldon, 1994).

The finite-temperature part of the potential can again be obtained by the τ -integration

of the temperature part of (25). After the τ -integration and p0-integration, we get the

formula which contains the following integral

I =
∫ ∞

0

dp2√
p2

sin(
√
p2|x|)δ(p2 +m2), p = |p|, (27)

which is evidently equal to zero because of the properties of the δ-function.
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What is suprising is that the potential is equal to zero, which means that in the case of

the massive particles which generate the Yukawa potential the vacuum-vacuum amplitude

is not influenced by temperature.

It is necessary to say that the derived potential is not the screening potential which is

discussed in QCD (Baier; Kalashnikov, 1994) and which follows from the linear response

theory (Kajantie; Kapusta, 1985).

5 The photon propagator with radiative
corrections and the corresponding potential

First, we remember how the Coulomb potential is modified if we involve radiation

corrections in the photon propagator. Then, we apply, in analogy with previous

chapters, the τ -integration to the temperature Green function of the photon with radiative

corrections. We take here the radiative corrections expressed by the vacuum polarization

diagram. According to (Dittrich, 1978; Schwinger, 1973; Pardy, 1994a; 1994b; 1994c), the

photon propagator with such radiative corrections is in the momentum representation of

the form:

D̃(k) = D(k) + δD(k), (28)

or,

D̃(k) =
1

|k|2 − (k0)2 − iϵ
+

+
∫ ∞

4m2
dM2 a(M2)

|k|2 − (k0)2 +M2 − iϵ
, (29)

the last term in equation (29) being derived on the virtual photon condition

|k|2 − (k0)2 = −M2, (30)

where, for simplicity, we consider the index of refraction of the medium equal to 1. The

weight function a(M2) has been derived in the following form (Dittrich, 1978; Schwinger,

1973; Pardy, 1994a; 1994b; 1994c):

a(M2) =
α

3π

1

M2

(
1 +

2m2

M2

)(
1− 4m2

M2

)1/2

. (31)

The x-representation of D(k) in eq. (1) is given by the Fourier transform:

D̃+(x− x′) =
∫ (dk)

(2π)4
eik(x−x′)D̃(k), (32)

or,
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D̃+(x− x′) = D+(x− x′) +
∫ ∞

(2m)2
dM2a(M2)∆+(x− x′,M2). (33)

The introduction of the modified photon propagation function implies a change of

interaction between static charges, i.e. the change of the Coulomb potential. By the same

procedure as in the preceding text, we get (c = 1):

Ṽ (|x|) =
∫ ∞

−∞
dτD̃+(x) =

∫ ∞

−∞
dτ

∫ (dk)

(2π)4
D̃(k)eikx = (34)

1

4π|x|
+

α

3π

∫ ∞

(2m)2

dM2

M2

(
1 +

2m2

M2

)(
1− 4m2

M2

)1/2
e−M |x|

4π|x|
(35)

In the case of the finite temperature regime, we use eqs. (18) and (25) in order to get

(c = h̄ = 1):

VT (|x|) =
i

8π
kT. (36)

In other words, the temperature has no influence on forming the additional potential

corresponding to radiative corrections.

The probability of the persistence of the vacuum follows from the vacuum amplitude

(9) in the form (6):

|⟨0+|0−⟩|2 = e−
2
h̄
ImW , (37)

where in the case of the finite temperature situation ImW in general contains the imag-

inary part of the potential. Physically it means that the vacuum-vacuum transition of

the physical system is influenced by the temperature environment. Since the radiative

corrections term in eq. (33) involves the massive Green function, which at zero temper-

ature gives Yukawa behaviour of the potential and at non-zero temperature is equal to

zero, we can observe in experiment only contributions from the zero-temperature radiative

corrections with the decay factor following from eq. (36).

6 The two-body interaction in the photon sea
with photon-photon interaction

In the previous chapters we supposed that the potential of the particles is initiated by the

massless or massive fields of these particles. In order to get the zero temperature and finite

temperature potentials we used the formal derivation by means of the Green functions.

Now, we consider the situation where the heat bath is the medium of photons with the

temperature T and the exchange photon can interact with the photons of the heat bath.

The physical realization of such a medium is, for instance, the photons in the internal space

of the black body with temperature T . The problem which we solve is one of the problems

of QED in the photon sea and has its origin in the article by Tryon (1974). However,
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while Tryon in his article considers only the photon-electron interaction, we will consider

here especially the photon-photon interaction where the exchanged photon interacts with

thermal bath photons. We use here the notion of the mean free paths of photons in order

to get the corrections to the two-body potential in the heat bath of photons. We use

such an approach here because the considered processes can be visualized by Feynman

diagrams and because quantum field theory does not immediately give a solution to this

problem.

It has been shown many times that the heat bath of photons which forms the

thermodynamical medium moving stochastically has an influence on the mass of the

charged particles in that medium. On the other hand, the photon-photon interaction has

an immediate influence on the behaviour of the interaction potential, and has therefore an

influence on the coupling constant, in accordance with the general idea that the coupling

constant depends on temperature.

Considering the thermal bath of photons inside the black body, it is evident that there

are two fundamental situations of the interaction of the two charges in the photon sea.

The first situation is the process where there is the photon exchange between two

charges on the condition that the exchanged photons are not influenced by the photon

sea. It means that the thermal photons do not interact with the exchanged photons.

According to QED this process corresponds to the Coulomb potential V .

The second situation is the process where the exchanged photons interact with the

photon of the black-body photon sea. In other words, the interacting of the two charges

is realized through the photon-photon interaction.

While the the first process is of second order in the fine structure constant α, as easily

follows from the corresponding Feynman diagrams, the second process is of sixth order

and it involves the scattering of light by light where the ingoing and outgoing particles

are the black-body photon and the exchanged photon.

Since the cross-section of the photon-photon interaction is vera small, it can be

neglected in comparison with the electron-electron scattering.

In such a way the situation of the two-body interaction consists photon exchange

between charges which can be destroyed by the photon sea. According to Partovi (1994)

the collision frequency νγγ of a given photon can be expressed by the relation:

νγγ(k) =
4448π3α2

455625
c r2ek

3(T/Te)
6, (38)

where k is a photon momentum, re is the classical electron radius and Te = m = 5.9 GK.

Obviously the mean collision frequency can now be found by averaging νγγ(k). The mean

free path of the photon in the black-body bath is then

l =
c

mean collision frequency
(39)

and according to (Partovi, 1994) it is:
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l[m] = 9× 10−6

(
T [K]

5.9× 109

)−9

. (40)

The probability that the photon exchange between two charges in the distance r will

be destroyed by the photon-photon interaction is obviously r/l. It is evident that if the

distance between both charges is r ≥ l, then there is no interaction between these charges

because every exchanged photon interacts with some of the sea photons. So, VT is equal to

zero with probability r/l and it is equal to V (r) with probability 1− r/l as a consequence

of the existence of the mean free path of photons. Thus we can easily write the two-body

potential in the photon sea in of the form

VT (r) ≈ (1− r

l
)V (r), r ≤ l, (41)

and VT = 0 for r > l.

The dependence of the coupling constant on temperature follows from the last formula.

Namely, if we put at zero temperature

V (r) = −a

r
, (42)

then it is obvious that

a(r, T ) ≈ (1− r

l
)a(0) (43)

and a(r, T ) = 0 for r ≥ l, where the mean free path l depends on temperature.

We see that the coupling constant following from our definition of the potential at

finite temperature depends not only on temperature, but also on the distance between

the particles. So we have got the specific form of the running coupling constant. It is easy

to see that for sufficiently large temperature T the coupling constant is approximately

zero and the interaction of two particles in the photon medium is also approximately zero.

So, particles are free in the sufficient high temperature regime.

While the mean free path for hydrogen under standard conditions is about 10−6 m,

allowing hydrogen to behave like a continuous medium on scales larger than a micron,

the same quantity for a photon gas is a staggering 1061 m, implying that under ordinary

conditions photons behave like a collection of independent, free-streaming particles on any

physically meaningful scale (Partovi, 1994). It means that the influence of the photon-

photon interaction on the hydrogen spectrum is practically beyond any experimental

possibilities.

The influence of the black-body radiation on the energy shift was determined exper-

imentally by Hollberg and Hall (1984). Following the detailed calculation of Farley and

Wing (1981), and using the high-precision laser spectroscopic techniques, they have mea-

sured the predicted shift of Rydberg energy levels induced by black-body radiation. The
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implementation of laser precision measurement and optical heterodyne techniques has al-

lowed the measurement of atomic energy shifts with a precision not possible before. These

measurements are consistent with the predicted finite-temperature radiative corrections

to atomic energy levels induced by black-body radiation, not, of course, as a result of the

photon-photon interaction, but as a result of the dynamical Stark shift and the electric-

dipole depopulation rate, which are effects generated by the black-body radiation and not

by the change of interaction potential in the photon sea.

7 Discussion

We have seen how the finite-temperature potential follows from the temperature Green

function in the framework of the Schwinger field theory. We have concentrated only on

the Coulomb and Yukawa potentials and we derived the finite-temperature terms to these

potentials using the Green fuctions of a photon with and without radiative corrections,

and then by considering the processes expressed by the Feynman diagrams.

Baier and Kalashnikov (1994) determined the so-called non-Abelian screening potential

in the situation beyond leading order. It is evident that the screening potential corre-

sponds to a different physical situation than that considered by us. They determined the

static QCD colour-singlet potential beyond the leading order exploiting the infra-red limit

of the time-time component of the gluon self-energy Π44(0,k). They worked in the tem-

poral axial gauge and used the full Schwinger-Dyson equation for Π44, which includes the

ring graphs and non-perturbative vertex corrections. Gauge covariance was guaranteed

by the exact Slavnov-Taylor identities in order to construct the three-gluon vertex. Their

result for the screening static potential V (r) is as follows:

V (r) = −N2 − 1

2N
g2(T )

∫ d3q

(2π)3
eiqr

q2 +Π44(0, q)
, (44)

where r = |r|, q = |q| and g(T ) is the coupling constant at finite temperature.

The final result of their calculations is the formula:

V (r)|mr−→∞ ≈ N2 − 1

8π2

3g2(T )

(rm)6
T. (45)

It is evident that the photon-photon interaction forms the analogue of the phonon-

phonon interaction in solid states and condensed matter. Thus, in analogy with photons,

we can define the mean free path of phonons and expect in the case of solid states and

condensed matter the mean free path of phonons to be as follows:

l =
A

Tm
, (46)

where A and m are constants corresponding to the specific matter and T is the tempera-

ture. It is well known that phonons are the fundamental medium which makes possible the
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heat transfer in solid states, and according to Rietschel (1994) electron-phonon interaction

is the relevant mechanism in the high-temperature superconductivity.

The mean free path (46), although derived only by analogy with the photon situation

in QED, is in fact realistic, because according to Anderson (1981) there exist so-called

non-resonant phonon scattering mechanisms in a solid characterized by a mean free path

l ≈ T−3 which is in agreement with the analogous formula (46). So, the relevance of the

mean free path in solid state physics is obvious, as shown also in the article by Yang et al.

(1994), where it is demonstrated that the mean free path of phonons can be determined

experimentally by measuring thermal diffusivity without having the need to measure the

thermal conductivity and the heat capacity per unit volume.

The mean free path plays a fundamental role in particle physics, as was shown for

instance by Haglin and Pratt (1994), who studied mean free paths of pions and kaons

using relativistic kinetic theory at temperature and densities characteristic of hadronic

matter.
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