On Evaluation of an Improper Real Integral Involving a Logarithmic Function

Henry Wong

Abstract

In this paper we use the methods in complex analysis to evaluate an improper real integral involving
the natural logarithmic function. Our presentation is somewhat unique because we use traditional notation
in performing the calculations.

Using the branch

logz =Inr +i6 <r>0,—%<9<37”)

of the logarithmic function, integrate the function

around the following closed contour. Let C, and C,, denote arcs of the circles |z| = p and |z| = R, respectively, where

p <1< R.Theleg L of this contour is a directed line segment along the ray arg z = 2{ The point z = '™/ is the
only singularity of f(z) which is interior to this positively oriented simple closed contour.

Theorem 1 lim Rej f(z)dz = 0.
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In the last equation, by squeeze theorem,
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and hence Theorem 1.
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Theorem 2 lim —— dr exists.
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By comparison test, lim ——— dr exists.
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From Theorem 2 and by the fact that
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Theorem 4 lim Rej f(z)dz = 0.
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and, whenever p < 1 and z = pe’? is a point on C,,
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it follows that
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In the last equation, by squeeze theorem,
lim Rej f(z)dz| =0
p—0* c,
and hence Theorem 4.
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Theorem 5 lim lim —— dr exists.
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By comparison test, lim S dr exists. From Theorem 2, lim - dr exists. It follows from (1),
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lim lim ———dr = lim ——dr + lim —dr.
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Theorem 6 lim Imf f(z)dz =0.
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Proof.
The proof is the same as the proof of Theorem 1 except that every occurrence of Re should be replaced by Im.

Theorem 7 11m Im | f(z)dz =0.

p—>0 C,
Proof.
The proof is the same as the proof of Theorem 4 except that every occurrence of Re should be replaced by Im.
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Proof.

The residue theorem suggests that
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By equating the imaginary parts on each side of equation (2),
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Moreover,
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and hence this improper integral exists. From the last equation,
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By equating the real parts on each side of equation (2),
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It follows that
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From the last equation,
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From (3) and (4), lim lim ———dr and lim lim —— dr are solutions of (5) and (6). Moreover, —=—
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and 2 are solutions of (5) and (6) as well. By uniqueness of solutions of (5) and (6),
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