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 Elegant Proof of the 3n + 1 Problem via Modular Algebra 

Derek Tucker 8/1/2020 

Abstract:  The Collatz conjecture is true, the 3n +1 problem generates a fractal spiral from odd 

multiples of three to elements 5 mod 8, if they are not already, and from there onto smaller 

elements already known to go to one.  If  T is the reduced Syracuse function, then if T(u) = x, so 

too does T(4u+1) = x.  Also 3 mod 4 elements inevitabley map to 1 mod 4.  All must descend.   

We consider the function 𝐶 ∶  ℕ →  ℕ, 𝐶(𝑛) → {
3𝑛 + 1,   if 𝑛 is odd.

𝑛

2
, if 𝑛 is even.

The question is to describe the 

long term behavior of a path starting from an arbitrary natural number and iterating the foregoing 

mappings until we enter some kind of cycle or diverge to infinitely large numbers.  For example, from 3, 

our path takes us 3 →10 → 5 →16 → 8 → 4 → 2 → 1.  The Collatz conjecture states that all paths lead 

to 1.   

 Let 𝕌 be the set of odd numbers.  Without loss of generality we collapse even cases of C to their 

respective odd mappings, and consider a reduced function T, mapping odd numbers u to odd numbers 

𝑇(𝑢) →
3𝑢+1

2𝑟 , with 𝑟 maximal to produce 𝑢 ∈ ℕ.  This moves the uncertainty based on parity in C to 

the value of r. in T.  Intuitively, r(u) is the number of division steps that occur going from u to T(u).  We 

can conceptualize the difference between C and T as internalizing the parity dependence of the function.  

We prove the conjecture that iterating T from any u eventually includes 1 by demonstrating that this is 

a consequence of algebra. 

We partition odd numbers, u ≡ 2k = 1 for some natural number k, into two cases modulo 4 and 

apply T to obtain theorem 1: T(u) > u if and only if u ≡ 3+4n. 

Peoof.  Applying T to the partitions modulo 4.

I. 3(3+4n ) = 9 + 12n.  

II. 9+12n +1 = 10 + 12n.  

III. (10 + 12n)/2 = 5 + 6n.   

IV. Notice 5+6n > 3+4n, and r(u) = 1 

when u ≡ 3+4n. 

V. 3(1+4n) = 3 + 12n.   

VI. 3+12n +1=4 +12n.  

VII. (4 + 12n)/4 = 1+3n.   

VIII. Notice 1+3n < 1+4n and 3n + 1 

regenerates T, implying r(u) ≥ 2.  ∎

To examine the constraints on increasing paths, we partition the rising elements 3+4n into the 

equivalence classes modulo 8.  This gives us two cases to which we apply T to obtain theorem 2.  The 

long term behavior of a path depends only on the constraints of descending elements u ≡ 1+4n. 

Proof.  Applying T to the modulo 8 subsets of elements 3 mod 4:

I. 3(7+8k ) = 21 + 24k..  

II. 21+24k +1 = 22 + 24k.  

III. (22 + 24k)/2 = 11 + 12k.   

IV. Notice 11+12k ≡ 3+4k.    

V. 3(3+8k) = 9 + 24k. 

VI. 9+24k +1=10 +24k. 

VII. (10 + 24k)/2 = 5+12k.   

VIII. Notice  5 +12k ≡  1+4k.  ∎. 
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Remark:  We have now shown that a strictly rising path must consist entirely of u ≡ 7+8k because u ≡ 

3+8n  map exclusively to u ≡ 1+4n.  This puts the fate of infinite paths entirely on u ≡  1+4n, and proves 

that there are no strictly increasing divergent paths to arbitrarily large T(u) from a given u, all paths are 

forced to descend after finitely many steps.  

Both modulo 8 equivalence classes of u ≡ 1 + 4n map indiscriminately with respect to the 

modulo 8 status of T(u).  However, they do segregate based on r(u), giving us theorem 3.  If r(u) at 

least 3, then u ≡ 5+8k, [5] and if r(u) = 2, then u ≡ 1+8k [1].    

Proof.  Applying T to the modulo 8 subsets of elements 1 mod 4: 

I. 3(1+8k) = 3 + 24k.  

II. 3+24k +1 = 4 + 24k. 

III. (4 + 24k)/4 = 1 + 6k. 

IV. Notice r(u) = 2 when u ≡ 1+8k. 

V.      3(5+8k) = 15 + 24k. 

VI.        15+24k +1=16 +24k. 

VII. (16 + 24k)/8 = 2+3k. 

VIII. Notice  r(u) ≥ 3 when u ≡ 5+8k. ∎.  

Remark:  We have now partitioned the codomain of T into preimages using three equivalence classes 

modulo 8, those in the set, {[3], [7], [1]}.  These account for what we call the proximal preimages of 

T(u).  These are easily demonstrated observing that mapping 5 +6k  → 3+4k gives a preimage, and 

1+6k → 1+8k, also gives a preimage, together accounting for all elements in the codomain of T with 0% 

error.  The remaining preimages we call distal preimages, are all greater than the proximal preimages 

and follow a simple pattern of generation.   

Let D be a function D : 𝕌 → 𝕌, D(u) = 4u +1.  Now T(D(u)) = T(u), and in fact T(u) = T(u’) if 

and only if u’ = Dj(u), for some j where j denostes the iterations of D(u) applied.  This has been known in 

the litterature for some time.  We will show that [5] mod 8 equivalence class contains all distal 

preimages, that is, the predictability of D, theorem 4.  All u become congruent to 5 mod 8 under D, 

i.e. D(u) 8≡8 5, and map to T(u), i.e T(D(u) = T(u).  

Proof.   Applying D to arbitrary u , and T to arbitary D(u):

I. 4(2x -1) = 8x – 4. 

II. 8x -4 +1 = 8x – 3. 

III. 8x – 3 ≡ 8x +5.  

IV. Thus, all distal preimages are congruent to 

5 mod 8. 

 

V. 3(4u+1)=12u+3 

VI. 12u +3+1 =12u +4 

VII. (12u +4)/4 = 3n +1 

VIII. And all distal preimages map onto the 

image of u.  ∎. 
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This completely solves the 3n +1 problem.  Every element 6k ±1 has exactly one proximal 

preimage determined by a linear mapping, and an infinitude of distal preimages that descend upon its’ 

image from above.  Since these are always from above, the paths are always descending from a 

macroscopic perspective.  The entire problem reduces to a unidirectional flow based on the template 

given by the path from 3.  This is a fractal expansion of 3+6k → 5+8k → 1 to  3+6k → 5+8k  → 6k±1 

→ 1.   Putting together the foregoing gives us the constraints on path generation that give us our 

summary diagram.  Following the arrows in the theoreitcal summary figures below from any starting 

position eventually results in the bottom position, which practice corresponds to a descent on 1.   

 

 

In these figures, the function R: 𝕌 → ℕ, maps R(u) to the 
number of consecutive non-descending iterates starting 
from u in its path iterating T(u).  Paths from u with  
immediate descent have R(u) = 1. 

 

 

 

 

Supplamental material. 

To remove any doubt that we have complete mastery of the 3n +1 problem, we advise the 

reader to  observe the underlying structure of the an +1 problems in general.  There we find the 3n +1 

problem sandwiched between the uniform divergence of 2n +1 and uniform convergence of 2n + 0.  

Since 3 < π, it lacks the escape velocity of 5n +1, and being unidirectional, cannot enter nontrivial loops 

the way 3n – 1 can.   
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